New Derivatives of Chalcones, Chromenes, and Stilbenoids, Complexed with Methyl-β-Cyclodextrin with Antioxidant Properties and Antibacterial Synergism with Antibiotics
<p>UV/vis absorption spectra of the investigated dyes and chalcones in free form in a buffer solution and complexed with methyl-cyclodextrin (MCD): (<b>a</b>) Congo Red 8 µM; (<b>b</b>) Methylene blue 15 µM; (<b>c</b>) Malachite green 10 µM; (<b>d</b>) R351-ClO<sub>4</sub><sup>−</sup> 2.5 µM; (<b>e</b>) sample 9–50 µM; (<b>f</b>) Brilliant green 35 µM, toluidine blue 5 µM, gentian violet 3 µM, sudan III 7 µM. PBS (0.01M, pH 7.4). DMSO could be added to enhance the solubility of free samples. T = 37 °C.</p> "> Figure 1 Cont.
<p>UV/vis absorption spectra of the investigated dyes and chalcones in free form in a buffer solution and complexed with methyl-cyclodextrin (MCD): (<b>a</b>) Congo Red 8 µM; (<b>b</b>) Methylene blue 15 µM; (<b>c</b>) Malachite green 10 µM; (<b>d</b>) R351-ClO<sub>4</sub><sup>−</sup> 2.5 µM; (<b>e</b>) sample 9–50 µM; (<b>f</b>) Brilliant green 35 µM, toluidine blue 5 µM, gentian violet 3 µM, sudan III 7 µM. PBS (0.01M, pH 7.4). DMSO could be added to enhance the solubility of free samples. T = 37 °C.</p> "> Figure 2
<p>FTIR spectra of the investigated «drug candidates» in free form in a buffer solution and complexed with methyl-cyclodextrin (MCD): (<b>a</b>) chalcone (9), (<b>b</b>) 1-methyl-3-(2-amino-3-cyano-7-methoxychromene-4-yl)-pyridinium methanesulfate (17). PBS (0.01M, pH 7.4). T = 37 °C.</p> "> Figure 3
<p><sup>1</sup>H NMR spectra of the «drug candidate» sample 9: (<b>a</b>) in free form in d<sub>6</sub>-DMSO; (<b>b</b>) complexed with methyl-cyclodextrin (MCD) (1:5 mol/mol) in D<sub>2</sub>O with predicted peak correlations. T = 25 °C. (<b>c</b>) The proposed structure of the chalcone 9—MCD complex obtained during computer modeling. Carbon atoms are indicated in green (MCD) and blue (the guest molecule, compound <b>9</b>); oxygen atoms are indicated in red. hydrogen—white, sulfur—yellow, nitrogen—blue. The purple sphere is Na<sup>+</sup>. The simulation was performed using the PyMOL program. (<b>d</b>) Schematic cyclodextrin torus representation.</p> "> Figure 3 Cont.
<p><sup>1</sup>H NMR spectra of the «drug candidate» sample 9: (<b>a</b>) in free form in d<sub>6</sub>-DMSO; (<b>b</b>) complexed with methyl-cyclodextrin (MCD) (1:5 mol/mol) in D<sub>2</sub>O with predicted peak correlations. T = 25 °C. (<b>c</b>) The proposed structure of the chalcone 9—MCD complex obtained during computer modeling. Carbon atoms are indicated in green (MCD) and blue (the guest molecule, compound <b>9</b>); oxygen atoms are indicated in red. hydrogen—white, sulfur—yellow, nitrogen—blue. The purple sphere is Na<sup>+</sup>. The simulation was performed using the PyMOL program. (<b>d</b>) Schematic cyclodextrin torus representation.</p> "> Figure 4
<p>ABTS antioxidant test of the “drug candidates” complexed with methyl-cyclodextrin (MCD) (1:5 mol/mol): (<b>a</b>) Dyes and fluorophores; (<b>b</b>) Chalcone and stilbene derivatives. PBS (0.01M, pH 7.4). T = 37 °C.</p> "> Figure 4 Cont.
<p>ABTS antioxidant test of the “drug candidates” complexed with methyl-cyclodextrin (MCD) (1:5 mol/mol): (<b>a</b>) Dyes and fluorophores; (<b>b</b>) Chalcone and stilbene derivatives. PBS (0.01M, pH 7.4). T = 37 °C.</p> "> Figure 5
<p>The structures of the drug candidates in the relationships with antioxidant and antibacterial properties. The circles highlight significant fragments of molecules.</p> "> Figure 6
<p>Confocal laser scanning microscopy images of (<b>a</b>,<b>b</b>) <span class="html-italic">E. coli</span> cells and (<b>c</b>,<b>d</b>) <span class="html-italic">Lactobacilli</span> cells, stained with R6G (10 µg/mL) in free form or complexed with MCD (100 µg/mL). λexci, max = 488 nm, λemi = 530–580 nm. The scale bar is 20 µm.</p> "> Scheme 1
<p>Synthesis scheme of compound <b>17</b>.</p> "> Scheme 2
<p>Synthesis scheme of Xanthylium derivatives R351 salts compounds.</p> "> Scheme 3
<p>Synthesis scheme of the chalcone and stilbenoid derivatives.</p> ">
Abstract
:1. Introduction
Mechanism | Description | Examples |
---|---|---|
Intercalation in DNA | A wide range of dyes are capable of binding to DNA, interfering with the processes of replication and transcription processes. Dues establish hydrogen bonds with the bases of DNA, thereby hindering their functional activity. | Acridine orange [28,46,47], Methylene blue [28], Ethidium bromide [28,48,49], Proflavine, doxorubicin [50] |
Damage to the Cell Membrane | Certain dyes can interact with the phospholipids of a bacterial cell membrane, resulting in its destruction and ultimately leading to cell lysis. Lipophilic compounds tend to accumulate within the membrane, disrupting the functionality of ion pumps and enhancing proton permeability. The toxic effects of these compounds on membranes can manifest themselves through mechanisms such as membrane blockage and expansion of membranes. | Sudan dyes [51,52], Indocarbocyanine derivatives [53], Alexa and Atto [54] |
Oxidative Stress | Fluorophores like rhodamine contribute to oxidative stress within cells by inducing the production of reactive oxygen species (ROS). These ROS cause damage to cellular structures, including lipids, proteins, and DNA | Doxorubicin [55], Fluorescein and rhodamine derivatives [56] |
Ionization and Metabolic Disorders | Disruption metabolic processes, hindering the synthesis of ATP or the biosynthesis of cellular components, inhibition of mitochondrial oxidative phosphorylation | Rhodamine 6G [57], Fluorescein Analogues [58] |
Use in photodynamic therapy | Photodynamic therapy (PDT) is a minimally invasive treatment that involves the use of a photosensitizing agent, usually a dye, and a specific wavelength of light. When a photosensitizing agent absorbs light, it generates ROS that damage target cells. The dyes used in PDT are carefully selected to ensure that they can penetrate the tissues and affect certain cells or structures of the body. They are usually water-soluble or fat-soluble, depending on the location of the desired exposure. | Phthalocyanines, Porphyrins, Chlorins [59,60,61,62], Methylene blue [31], Rhodamine 123 [63] |
- Enhanced aqueous solubility: This attribute is particularly crucial for substances with limited solubility in water, as enhanced bioavailability translates into more potent antibacterial efficacy.
- Resistance to degradation: Incorporation into the CD shields dyes from the deleterious effects of light, heat, and oxygen, thereby enhancing their stability and prolonging their shelf life.
- Optimized targeted delivery: The use of cyclodextrins enhances the precision of dye delivery to the site of infection, mitigating toxicity to healthy cells. This feature is particularly advantageous in bacterial infection treatment, as it minimizes adverse reactions.
- Enhanced antibacterial and antioxidant properties of the formed inclusion complexes were observed for several drugs: the encapsulation has enhanced the antimicrobial activity of carvacrol against both E. coli and Salmonella bacteria [77]. The antibacterial nanofibers made of perillaldehyde and hydroxypropyl-γ-cyclodextrin were developed. The researchers showed that these nanofibers had improved water solubility, thermostability, and antioxidant activity [78]. Baicalein-hydroxypropyl-β-cyclodextrin inclusion complex prepared using supercritical antisolvent technology was designed to enhance the solubility, antioxidant activity, and antibacterial activity of baicalein [79].
2. Materials and Methods
2.1. Reagents
2.1.1. Chemicals
2.1.2. Preparation of–1-Methyl-3-(2-amino-7-methoxy-3-cyanochromene-4-yl) and Pyridinium Methanesulfate (Sample 17, Scheme 1)
2.1.3. Synthesis of R351 Compounds of Xanthylium Derivatives
2.1.4. Synthesis of the Chalcone and Stilbenoid Derivatives
2.1.5. Spectral Data of the Chromene, Chalcone, and Stilbenoid Derivatives
2.1.6. High-Resolution Mass Spectrometry
2.2. Methyl-β-Cyclodextrin (MCD) Inclusion Complexes Obtaining
2.2.1. Complexation in an Aqueous Buffer Solution
2.2.2. Complexation in Organic Solvent Suspension
2.2.3. Calculation of Solubility of Compounds and Dissociation Constants of Complexes with MCD
2.3. Molecular Absorption Spectroscopy and CD Spectroscopy in the UV/Visible Range
2.4. FTIR Spectroscopy
2.5. NMR Spectroscopy
2.6. Microbiology Experiments
2.6.1. Bacterial Strains
2.6.2. Study of the Antibacterial Activity of Compounds
2.6.3. Visualization of Plates Using Fluorescent Images
2.7. CLSM of Staining of Bacterial Cells Using a Theranostic Fluorescent Preparation
2.8. Antioxidant Activity Using ABTS Assay
3. Results and Discussion
3.1. Drug Candidates
3.2. Molecular Absorption Spectroscopy of Dyes and Their Complexes with MCD
3.3. FTIR Spectroscopy of Dyes and Their Complexes with MCD
3.4. 1H NMR Spectroscopy of Chalcones and Their Complexes with Methyl-β-Cyclodextrin
3.5. Investigation of the Antibacterial Potency of Novel Compounds
3.6. Comparative Analysis of Antioxidant Activity
- The DPPH assay measures the ability of a substance to scavenge free radicals generated by DPPH (2,2-diphenyl-1-picrylhydrazyl).
- The ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay assesses the capacity of antioxidants to quench ABTS radicals.
- The oxygen radical absorbance capacity (ORAC) assay determines the protective effect against oxidative stress.
3.7. The Structure and Activity Relationship (SAR) Studies
3.8. CLSM Visualization of Bacterial Cells Stained with Theranostic Formulation
3.9. Discussion of the Results and Their Biomedical Significance
- Improved solubility for compounds such as chalcones, stilbenoids, dyes, and xanthylium derivatives, making them more bioavailable.
- Enhanced bioavailability due to protection from degradation, which prolongs circulation and allows for higher concentrations in target tissues.
- Unified delivery system for combining multiple active agents in a single system, opening up new possibilities for developing theranostic formulations.
- Efficacy of antibacterial compounds by increasing their concentration at the site of infection.
- Inhibition of efflux in bacterial cells, increasing the intracellular concentration of the drug. Previously, we have demonstrated the phenomenon of efflux inhibition in bacteria by the components of natural extracts, such as apiol, dillapiol, and similar molecules [73], which are «building blocks» of chalcones (samples 12 and 14), and xanthylium derivatives R351.
- Increased permeability of cell membranes due to local defects.
- Bacterial enzyme inhibition that provides selective antibacterial activity.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Q.; Sun, Y.; Cong, H.; Hu, H.; Xu, F.J. An Overview of Chitosan and Its Application in Infectious Diseases. Drug Deliv. Transl. Res. 2021, 11, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.; Rajaram, M.V.S.; Schlesinger, L.S. Exploitation of the Macrophage Mannose Receptor (CD206) in Infectious Disease Diagnostics and Therapeutics. J. Cytol. Mol. Biol. 2014, 1, 1000003. [Google Scholar] [CrossRef]
- Porta, C.; Riboldi, E.; Totaro, M.G.; Strauss, L.; Sica, A.; Mantovani, A. Macrophages in Cancer and Infectious Diseases: The ‘good’ and the ‘Bad’. Immunotherapy 2011, 3, 1185–1202. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; He, W.; Jiao, W.; Xia, H.; Sun, L.; Wang, S.; Xiao, J.; Ou, X.; Zhao, Y.; Shen, A. Molecular Characterization of Multidrug-Resistant Tuberculosis against Levofloxacin, Moxifloxacin, Bedaquiline, Linezolid, Clofazimine, and Delamanid in Southwest of China. BMC Infect. Dis. 2021, 21, 330. [Google Scholar] [CrossRef] [PubMed]
- Deusenbery, C.; Wang, Y.; Shukla, A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect. Dis. 2021, 7, 695–720. [Google Scholar] [CrossRef] [PubMed]
- Kalelkar, P.P.; Riddick, M.; García, A.J. Biomaterial-Based Antimicrobial Therapies for the Treatment of Bacterial Infections. Nat. Rev. Mater. 2022, 7, 39–54. [Google Scholar] [CrossRef]
- Zigangirova, N.A.; Lubenec, N.L.; Zaitsev, A.V.; Pushkar, D.Y. Antibacterial Agents Reducing the Risk of Resistance Development. Clin. Microbiol. Antimicrob. Chemother. 2021, 23, 184–194. [Google Scholar] [CrossRef]
- Van Bambeke, F.; Balzi, E.; Tulkens, P.M. Antibiotic Efflux Pumps. Biochem. Pharmacol. 2000, 60, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Pang, T.; Wang, J.; Xiong, D.; Ma, L.; Li, B.; Li, Q.; Wakabayashi, S. Down-Regulation of P-Glycoprotein Expression by Sustained Intracellular Acidification in K562/Dox Cells. Biochem. Biophys. Res. Commun. 2008, 377, 441–446. [Google Scholar] [CrossRef]
- Scheffer, G.L.; Kool, M.; Heijn, M.; De Haas, M.; Pijnenborg, A.C.L.M.; Wijnholds, J.; Van Helvoort, A.; De Jong, M.C.; Hooijberg, J.H.; Mol, C.A.A.M.; et al. Specific Detection of Multidrug Resistance Proteins MRP1, MRP2, MRP3, MRP5, MDR3 P-Glycoprotein with a Panel of Monoclonal Antibodies. Cancer Res. 2000, 60, 5269–5277. [Google Scholar] [PubMed]
- Rau, S.; Autschbach, F.; Riedel, H.D.; Konig, J.; Kulaksiz, H.; Stiehl, A.; Riemann, J.F.; Rost, D. Expression of the Multidrug Resistance Proteins MRP2 and MRP3 in Human Cholangiocellular Carcinomas. Eur. J. Clin. Investig. 2008, 38, 134–142. [Google Scholar] [CrossRef]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone Resistance: Mechanisms, Impact on Bacteria, and Role in Evolutionary Success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Chu, S.; Bence, A.K.; Bailey, B.; Xue, X.; Erickson, P.A.; Montrose, M.H.; Beck, W.T.; Erickson, L.C. Quantitation of Doxorubicin Uptake, Efflux, and Modulation of Multidrug Resistance (MDR) in MDR Human Cancer Cells. J. Pharmacol. Exp. Ther. 2008, 324, 95–102. [Google Scholar] [CrossRef]
- Bai, D.P.; Lin, X.Y.; Huang, Y.F.; Zhang, X.F. Theranostics Aspects of Various Nanoparticles in Veterinary Medicine. Int. J. Mol. Sci. 2018, 19, 3299. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Ghosh, M.; Kumar, R.; Brar, B.; Surjith, K.P.; Lambe, U.P.; Ranjan, K.; Banerjee, S.; Prasad, G.; Kumar Khurana, S.; et al. The Importance of Nanomedicine in Prophylactic and Theranostic Intervention of Bacterial Zoonoses and Reverse Zoonoses in the Era of Microbial Resistance. J. Nanosci. Nanotechnol. 2021, 21, 3404–3452. [Google Scholar] [CrossRef]
- Weber, W.A.; Barthel, H.; Bengel, F.; Eiber, M.; Herrmann, K.; Schäfers, M. What Is Theranostics? J. Nucl. Med. 2023, 64, 669–670. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Jamil, B. Nanotheranostics: Applications and Limitations; Springer: Cham, Switzerland, 2019; ISBN 9783030297688. [Google Scholar] [CrossRef]
- Bhushan, A.; Gonsalves, A.; Menon, J.U. Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Pharmaceutics 2021, 13, 723. [Google Scholar] [CrossRef] [PubMed]
- Arranja, A.G.; Pathak, V.; Lammers, T.; Shi, Y. Tumor-Targeted Nanomedicines for Cancer Theranostics. Pharmacol. Res. 2017, 115, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Pradeep, A.; Jayakannan, M. Enzyme-Responsive Theranostic FRET Probe Based on l-Aspartic Amphiphilic Polyester Nanoassemblies for Intracellular Bioimaging in Cancer Cells. ACS Appl. Bio Mater. 2019, 2, 5245–5262. [Google Scholar] [CrossRef] [PubMed]
- Kalash, R.S.; Lakshmanan, V.K.; Cho, C.S.; Park, I.K. Theranostics. In Biomaterials Nanoarchitectonics; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 197–215. [Google Scholar] [CrossRef]
- Kelkar, S.S.; Reineke, T.M. Theranostics: Combining Imaging and Therapy. Bioconjug. Chem. 2011, 22, 1879–1903. [Google Scholar] [CrossRef]
- Feng, G.; Liu, B. Multifunctional AIEgens for Future Theranostics. Small 2016, 12, 6528–6535. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, A.; Eppard, E.; Kürpig, S.; Bundschuh, R.A.; Schönberger, S.; Gonzalez-Carmona, M.; Feldmann, G.; Ahmadzadehfar, H.; Essler, M. Theranostics in Nuclear Medicine Practice. OncoTargets Ther. 2017, 10, 4821–4828. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wong, S.T.C. Cancer Theranostics: An Introduction. In Cancer Theranostics; Academic Press: Cambridge, MA, USA, 2014; pp. 3–8. [Google Scholar] [CrossRef]
- Scherer, K.; Bircher, A.J.; Figueiredo, V. Blue Dyes in Medicine—A Confusing Terminology. Contact Dermat. 2006, 54, 231–232. [Google Scholar] [CrossRef]
- Qi, X.; Grafskaia, E.; Yu, Z.; Shen, N.; Fedina, E.; Masyutin, A.; Erokhina, M.; Lepoitevin, M.; Lazarev, V.; Zigangirova, N.; et al. Methylene Blue-Loaded NanoMOFs: Accumulation in Chlamydia Trachomatis Inclusions and Light/Dark Antibacterial Effects. ACS Infect. Dis. 2023, 9, 1558–1569. [Google Scholar] [CrossRef] [PubMed]
- Nafisi, S.; Saboury, A.A.; Keramat, N.; Neault, J.F.; Tajmir-Riahi, H.A. Stability and Structural Features of DNA Intercalation with Ethidium Bromide, Acridine Orange and Methylene Blue. J. Mol. Struct. 2007, 827, 35–43. [Google Scholar] [CrossRef]
- Blessing, W.D.; Stolier, A.J.; Teng, S.C.; Bolton, J.S.; Fuhrman, G.M. A Comparison of Methylene Blue and Lymphazurin in Breast Cancer Sentinel Node Mapping. Am. J. Surg. 2002, 184, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Shuang, S.; Dong, C.; Pan, J. Study on the Interaction of Methylene Blue with Cyclodextrin Derivatives by Absorption and Fluorescence Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2935–2941. [Google Scholar] [CrossRef]
- Aghahosseini, F.; Arbabi-Kalati, F.; Fashtami, L.A.; Djavid, G.E.; Fateh, M.; Beitollahi, J.M. Methylene Blue-mediated Photodynamic Therapy: A Possible Alternative Treatment for Oral Lichen Planus. Lasers Surg. Med. 2006, 38, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.; Hoskin, T.L.; Degnim, A.C. Safety and Technical Success of Methylene Blue Dye for Lymphatic Mapping in Breast Cancer. Am. J. Surg. 2008, 196, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Alosaimy, R.A.; Bin Helayel, H.; Ahad, M.A. Gentian Violet (GV) Ink Associated Reaction in a Case of Preloaded Descemet Membrane Endothelial Keratoplasty: Case Report. Am. J. Ophthalmol. Case Rep. 2024, 34, 102056. [Google Scholar] [CrossRef] [PubMed]
- Maley, A.M.; Arbiser, J.L. Gentian Violet: A 19th Century Drug Re-emerges in the 21st Century. Exp. Dermatol. 2013, 22, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Alsaedi, M.K.; Lone, O.; Nejad, H.R.; Das, R.; Owyeung, R.E.; Del-Rio-Ruiz, R.; Sonkusale, S. Soft Injectable Sutures for Dose-Controlled and Continuous Drug Delivery. Macromol. Biosci. 2024, 24, 2300365. [Google Scholar] [CrossRef] [PubMed]
- Hoenke, S.; Serbian, I.; Deigner, H.-P.; Csuk, R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020, 25, 5443. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, Z.; Chen, C.; Liu, X.; Wang, Y.; Chen, Q.; Wang, J.; Li, H.; Peng, X.; Yoon, J. Construction of Rhodamine-Based AIE Photosensitizer Hydrogel with Clinical Potential for Selective Ablation of Drug-Resistant Gram-Positive Bacteria In Vivo. Adv. Healthc. Mater. 2022, 11, 2200837. [Google Scholar] [CrossRef]
- Custódio, B.; Carneiro, P.; Marques, J.; Leiro, V.; Valentim, A.M.; Sousa, M.; Santos, S.D.; Bessa, J.; Pêgo, A.P. Biological Response Following the Systemic Injection of PEG–PAMAM–Rhodamine Conjugates in Zebrafish. Pharmaceutics 2024, 16, 608. [Google Scholar] [CrossRef]
- Chaubey, P.; Mishra, B.; Mudavath, S.L.; Patel, R.R.; Chaurasia, S.; Sundar, S.; Suvarna, V.; Monteiro, M. Mannose-Conjugated Curcumin-Chitosan Nanoparticles: Efficacy and Toxicity Assessments against Leishmania donovani. Int. J. Biol. Macromol. 2018, 111, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, C.; Moriwaki, C.; Claudia, A.; Sato, F.; Luciano, M.; Medina, A.; Matioli, G. Curcumin—B-Cyclodextrin Inclusion Complex: Stability, Solubility, Characterisation by FT-IR, FT-Raman, X-ray Diffraction and Photoacoustic Spectroscopy, and Food Application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef]
- Barros, C.H.N.; Hiebner, D.W.; Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Synthesis and Self-Assembly of Curcumin-Modified Amphiphilic Polymeric Micelles with Antibacterial Activity. J. Nanobiotechnol. 2021, 19, 104. [Google Scholar] [CrossRef]
- Sahu, A.; Kasoju, N.; Goswami, P.; Bora, U. Encapsulation of Curcumin in Pluronic Block Copolymer Micelles for Drug Delivery Applications. J. Biomater. Appl. 2011, 25, 619–639. [Google Scholar] [CrossRef]
- Bhat, P.A.; Chat, O.A.; Dar, A.A. Exploiting Co-Solubilization of Warfarin, Curcumin, and Rhodamine B for Modulation of Energy Transfer: A Micelle FRET On/Off Switch. ChemPhysChem 2016, 17, 2360–2372. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, L.; Qin, W.; Loy, D.A.; Wu, Z.; Chen, H.; Zhang, Q. Preparation, Characterization and Antioxidant Properties of Curcumin Encapsulated Chitosan/Lignosulfonate Micelles. Carbohydr. Polym. 2022, 281, 119080. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Guerra, J.; Palomar-Pardavé, M.; Romero-Romo, M.; Corona-Avendaño, S.; Guzmán-Hernández, D.; Rojas-Hernández, A.; Ramírez-Silva, M.T. On the Curcumin and Β-Cyclodextrin Interaction in Aqueous Media. Spectrophotometric and Electrochemical Study. ChemElectroChem 2022, 9, e202101534. [Google Scholar] [CrossRef]
- Lyles, M.B.; Cameron, I.L. Interactions of the DNA Intercalator Acridine Orange, with Itself, with Caffeine, and with Double Stranded DNA. Biophys. Chem. 2002, 96, 53–76. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Malashkeevich, S.M.; Belogurova, N.G.; Kudryashova, E.V. Thermoreversible Gels Based on Chitosan Copolymers as “Intelligent” Drug Delivery System with Prolonged Action for Intramuscular Injection. Pharmaceutics 2023, 15, 1478. [Google Scholar] [CrossRef]
- Zelikin, A.N.; Trukhanova, E.S.; Putnam, D.; Izumrudov, V.A.; Litmanovich, A.A. Competitive Reactions in Solutions of Poly-L-Histidine, Calf Thymus DNA, and Synthetic Polyanions: Determining the Binding Constants of Polyelectrolytes. J. Am. Chem. Soc. 2003, 125, 13693–13699. [Google Scholar] [CrossRef]
- Muniz, D.F.; dos Santos Barbosa, C.R.; de Menezes, I.R.A.; de Sousa, E.O.; Pereira, R.L.S.; Júnior, J.T.C.; Pereira, P.S.; de Matos, Y.M.L.S.; da Costa, R.H.S.; de Morais Oliveira-Tintino, C.D.; et al. In Vitro and in Silico Inhibitory Effects of Synthetic and Natural Eugenol Derivatives against the NorA Efflux Pump in Staphylococcus Aureus. Food Chem. 2021, 337, 127776. [Google Scholar] [CrossRef] [PubMed]
- Ihmels, H.; Otto, D. Intercalation of Organic Dye Molecules into Double-Stranded DNA—General Principles and Recent Developments. Top. Curr. Chem. 2005, 258, 161–204. [Google Scholar] [CrossRef]
- Fonovich, T.M. Sudan Dyes: Are They Dangerous for Human Health. Drug Chem. Toxicol. 2013, 36, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, H.W.; Ren, J.R.; Chen, L.; Li, Y.C.; Zhao, J.F.; Zhao, H.P.; Yuan, Y. Binding of Sudan II and IV to Lecithin Liposomes and E. Coli Membranes: Insights into the Toxicity of Hydrophobic Azo Dyes. BMC Struct. Biol. 2007, 7, 16. [Google Scholar] [CrossRef]
- Ardizzone, A.; Kurhuzenkau, S.; Illa-Tuset, S.; Faraudo, J.; Bondar, M.; Hagan, D.; Van Stryland, E.W.; Painelli, A.; Sissa, C.; Feiner, N.; et al. Nanostructuring Lipophilic Dyes in Water Using Stable Vesicles, Quatsomes, as Scaffolds and Their Use as Probes for Bioimaging. Small 2018, 14, e1703851. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.D.; Rawle, R.J.; Boxer, S.G. Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. PLoS ONE 2014, 9, e87649. [Google Scholar] [CrossRef]
- Sritharan, S.; Sivalingam, N. A Comprehensive Review on Time-Tested Anticancer Drug Doxorubicin. Life Sci. 2021, 278, 119527. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, B. Oxidative Chemistry of Fluorescent Dyes: Implications in the Detection of Reactive Oxygen and Nitrogen Species. Biochem. Soc. Trans. 2011, 39, 1221–1225. [Google Scholar] [CrossRef]
- Gear, A.R. Rhodamine 6G: A Potent Inhibitor of Mitochondrial Oxidative Phosphorylation. J. Biol. Chem. 1978, 249, 3628–3637. [Google Scholar] [CrossRef]
- Huang, Y.J.; Wang, H.; Gao, F.B.; Li, M.; Yang, H.; Wang, B.; Tai, P.C. Fluorescein Analogues Inhibit SecA ATPase: The First Sub-Micromolar Inhibitor of Bacterial Protein Translocation. ChemMedChem 2012, 7, 571–577. [Google Scholar] [CrossRef]
- McCaw, D.L.; Bryan, J.N. Photodynamic Therapy. Cancer Manag. Small Anim. Pract. 2009, 90, 163–166. [Google Scholar]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Felsher, D.W. Cancer Revoked: Oncogenes as Therapeutic Targets. Nat. Rev. Cancer 2003, 3, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.G.; Grumezescu, A.M. Photodynamic Therapy—An up-to-Date Review. Appl. Sci. 2021, 11, 3626. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Shikov, A.N.; Obluchinskaya, E.D.; Vuorela, H. The Pharmacokinetics of Fucoidan after Topical Application to Rats. Mar. Drugs 2019, 17, 687. [Google Scholar] [CrossRef] [PubMed]
- Michalkova, R.; Mirossay, L.; Gazdova, M.; Kello, M.; Mojzis, J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers 2021, 13, 2730. [Google Scholar] [CrossRef]
- Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.E.; Khalil, A. A Comprehensive Review on the Antiviral Activities of Chalcones. J. Drug Target. 2021, 29, 403–419. [Google Scholar] [CrossRef]
- De Luca, D.; Lauritano, C. In Silico Identification of Type III PKS Chalcone and Stilbene Synthase Homologs in Marine Photosynthetic Organisms. Biology 2020, 9, 110. [Google Scholar] [CrossRef]
- Hellewell, L.; Bhakta, S. Chalcones, Stilbenes and Ketones Have Anti-Infective Properties via Inhibition of Bacterial Drug-Efflux and Consequential Synergism with Antimicrobial Agents. Access Microbiol. 2020, 2, e000105. [Google Scholar] [CrossRef]
- Vontzalidou, A.; Dimitrakoudi, S.M.; Tsoukalas, K.; Zoidis, G.; Chaita, E.; Dina, E.; Cheimonidi, C.; Trougakos, I.P.; Lambrinidis, G.; Skaltsounis, A.L.; et al. Development of Stilbenoid and Chalconoid Analogues as Potent Tyrosinase Modulators and Antioxidant Agents. Antioxidants 2022, 11, 1593. [Google Scholar] [CrossRef]
- Tian, J.; Jin, L.; Liu, H.; Hua, Z. Stilbenes: A Promising Small Molecule Modulator for Epigenetic Regulation in Human Diseases. Front. Pharmacol. 2023, 14, 1326682. [Google Scholar] [CrossRef]
- Katiyar, M.K.; Dhakad, G.K.; Shivani; Arora, S.; Bhagat, S.; Arora, T.; Kumar, R. Synthetic Strategies and Pharmacological Activities of Chromene and Its Derivatives: An Overview. J. Mol. Struct. 2022, 1263, 133012. [Google Scholar] [CrossRef]
- Batista, J.M.; Lopes, A.A.; Ambrósio, D.L.; Regasini, L.O.; Kato, M.J.; Bolzani, V.D.S.; Cicarelli, R.M.B.; Furlan, M. Natural Chromenes and Chromene Derivatives as Potential Anti-Trypanosomal Agents. Biol. Pharm. Bull. 2008, 31, 538–540. [Google Scholar] [CrossRef]
- Tejashri, G.; Amrita, B.; Darshana, J. Cyclodextrin Based Nanosponges for Pharmaceutical Use: A Review. Acta Pharm. 2013, 63, 335–358. [Google Scholar] [CrossRef]
- Zlotnikov, I.D.; Belogurova, N.G.; Krylov, S.S.; Semenova, M.N.; Semenov, V.V.; Kudryashova, E.V. Plant Alkylbenzenes and Terpenoids in the Form of Cyclodextrin Inclusion Complexes as Antibacterial Agents and Levofloxacin Synergists. Pharmaceuticals 2022, 15, 861. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in Drug Delivery System. Expert Opin. Drug Deliv. 2005, 2, 335–346. [Google Scholar] [CrossRef]
- El-Kemary, M.; Sobhy, S.; El-Daly, S.; Abdel-Shafi, A. Inclusion of Paracetamol into β-Cyclodextrin Nanocavities in Solution and in the Solid State. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1904–1908. [Google Scholar] [CrossRef]
- Kamimura, J.A.; Santos, E.H.; Hill, L.E.; Gomes, C.L. Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT Food Sci. Technol. 2014, 57, 701–709. [Google Scholar] [CrossRef]
- Gao, S.; Li, X.; Yang, G.; Feng, W.; Zong, L.; Zhao, L.; Ye, F.; Fu, Y. Antibacterial perillaldehyde/hydroxypropyl-γ-cyclodextrin inclusion complex electrospun polymer-free nanofiber: Improved water solubility, thermostability, and antioxidant activity. Ind. Crop. Prod. 2022, 176, 114300. [Google Scholar] [CrossRef]
- Ji, M.; Sun, Y.; Yan, T.; Zhao, J.; Zhang, H.; Wang, Z. Preparation and characterization of baicalein/hydroxypropyl-β-cyclodextrin inclusion complex for enhancement of solubility, antioxidant activity and antibacterial activity using supercritical antisolvent technology. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 285–295. [Google Scholar] [CrossRef]
- Chernyshova, N.B.; Tsyganov, D.V.; Khrustalev, V.N.; Raihstat, M.M.; Konyushkin, L.D.; Semenov, R.V.; Semenova, M.N.; Semenov, V.V. Synthesis and Antimitotic Properties of Ortho-Substituted Polymethoxydiarylazolopyrimidines. Arkivoc 2017, 2017, 151–165. [Google Scholar] [CrossRef]
- Varakutin, A.E.; Muravsky, E.A.; Tsyganov, D.V.; Shinkarev, I.Y.; Samigullina, A.I.; Kuptsova, T.S.; Chuprov-Netochin, R.N.; Smirnova, A.V.; Khomutov, A.A.; Leonov, S.V.; et al. Synthesis of Chalcones with Methylenedioxypolymethoxy Fragments Based on Plant Metabolites and Study of Their Antiproliferative Properties. Russ. Chem. Bull. 2023, 72, 1632–1647. [Google Scholar] [CrossRef]
- Zlotnikov, I.D.; Dobryakova, N.V.; Ezhov, A.A.; Kudryashova, E.V. Achievement of the Selectivity of Cytotoxic Agents against Cancer Cells by Creation of Combined Formulation with Terpenoid Adjuvants as Prospects to Overcome Multidrug Resistance. Int. J. Mol. Sci. 2023, 24, 8023. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy, M. Does Antioxidant Properties of the Main Component of Essential Oil Reflect Its Antioxidant Properties? The Comparison of Antioxidant Properties of Essential Oils and Their Main Components. Nat. Prod. Res. 2014, 28, 1952–1963. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef]
- de Bruijn, W.J.C.; Araya-Cloutier, C.; Bijlsma, J.; de Swart, A.; Sanders, M.G.; de Waard, P.; Gruppen, H.; Vincken, J.-P. Antibacterial Prenylated Stilbenoids from Peanut (Arachis hypogaea). Phytochem. Lett. 2018, 28, 13–18. [Google Scholar] [CrossRef]
- Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W. The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals. Antibiotics 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.E.I.; Guo, Q. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Zarzycki, P.K.; Lamparczyk, H. The Equilibrium Constant of β-Cyclodextrin-Phenolphtalein Complex; Influence of Temperature and Tetrahydrofuran Addition. J. Pharm. Biomed. Anal. 1998, 18, 165–170. [Google Scholar] [CrossRef]
- Morais, T.R.; Conserva, G.A.A.; Varela, M.T.; Costa-Silva, T.A.; Thevenard, F.; Ponci, V.; Fortuna, A.; Falcão, A.C.; Tempone, A.G.; Fernandes, J.P.S.; et al. Improving the drug-likeness of inspiring natural products—Evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A. Sci. Rep. 2020, 10, 5467. [Google Scholar] [CrossRef]
- Kwak, Y.S.; Joo, S.H.; Gansukh, E.; Mistry, B.M.; Keum, Y.S. Synthesis and Anticancer Activities of Polymethylenedioxy Analogues of Combretastatin A-2. Appl. Biol. Chem. 2019, 62, 25. [Google Scholar] [CrossRef]
Dyes and Fluorophores | |||
---|---|---|---|
Gentian (Crystal) Violet | Congo red | Sudan III | Malachite Green |
Rhodamine 6G | Methylene blue | Ponceau 4R | Toluidine blue |
Antiseptics | Drugs | ||
Benzalkonium chloride | Chlorhexidine | Metronidazole | Clotrimazole |
Xanthylium derivatives | Chromenes | ||
R351-ClO4− | R351-Cl− | Sample 17x | Sample 17 |
Chalcones and stilbenoids | |||
Sample 7 | Sample 8 | Sample 9 | Sample 10 |
Sample 11 | Sample 12 | Sample 14 | Sample 15 |
Compound | Molar Mass, g/mol | λmax,abs, nm | ε, M−1·cm−1 | Solubility in PBS, mM | Solubility in PBS in Presence of 5 mM MCD, mM | Kdis (Compound-MCD), M |
---|---|---|---|---|---|---|
Gentian Violet | 408 (chloride salt) | 595 | 80,000 | 0.025 | 0.4 | (3.1 ± 0.2) × 10−4 |
Congo Red | 697 (sodium salt) | 335, 490 | 121,000 | 10 | 13 | (6.7 ± 0.4) × 10−3 |
Sudan III | 248 | 360, 500 | 35,000 | 0.005 | 0.03 | (1.0 ± 0.15) × 10−3 |
Brilliant Green | 483 (hydrosulfate salt) | 425, 630 | 92,000 | 21 | 24 | (1.4 ± 0.3) × 10−2 |
Malachite Green | 365 (chloride salt) | 425, 625 | 93,000 | 22 | 24 | (3.3 ± 0.5) × 10−2 |
Rhodamine 6G | 479 (chloride salt) | 500, 526 | 116,000 | 3 | 6.5 | (1.3 ± 0.2) × 10−3 |
Methylene Blue | 320 (chloride salt) | 610, 660 | 85,000 | 0.1 | 0.4 | (1.6 ± 0.1) × 10−3 |
Ponceau 4R | 376 (sodium salt) | 340, 510 | 56,000 | 8 | 12 | (2.0 ± 0.3) × 10−3 |
Toluidine Blue | 304 (chloride salt) | 630 | 40,000 | 15 | 19 | (3.8 ± 0.4) × 10−3 |
Xanthylium Derivatives R351 | 389 (R351-Cl−) 453 (R351-ClO4−) | 370, 520 | 69,000 | 0.07 | 0.15 | (4.3 ± 0.5) × 10−3 |
Sample | Cell Viability of E. coli, % | MIC Value, mM | IC25 *, mM | Synergy Coefficient with Metronidazole | ||
---|---|---|---|---|---|---|
1 mM | 0.1 mM | 25 µM | ||||
Chalcone derivative 7 | 87 ± 5 | 98 ± 2 | 100 ± 1 | >5 | 5 ± 1 | 1.08 |
Chalcone derivative 8 | 92 ± 3 | 96 ± 2 | 100 ± 2 | >5 | >5 | 1.01 |
Chalcone derivative 9 | 79 ± 4 | 94 ± 3 | 100 ± 2 | >5 | 1.5 ± 0.3 | 1.36 |
Chalcone derivative 10 | 98 ± 1 | 99 ± 1 | 100 ± 1 | >5 | >5 | 0.89 |
Chalcone derivative 11 | 97 ± 2 | 100 ± 1 | 100 ± 1 | >5 | >5 | 1.06 |
Chalcone derivative 12 | 75 ± 7 | 91 ± 4 | 97 ± 2 | >5 | 1.0 ± 0.1 | 1.03 |
Chalcone derivative 14 | 93 ± 2 | 97 ± 2 | 100 ± 1 | >5 | >5 | 0.97 |
Chalcone derivative 15 | 77 ± 8 | 87 ± 3 | 93 ± 4 | >5 | 1.1 ± 0.1 | 1.02 |
Chromene derivative 17 | 99 ± 1 | 100 ± 1 | 100 ± 1 | >5 | >5 | 0.97 |
Xanthylium derivative R351-ClO4− | 86 ± 2 | 90 ± 4 | 99 ± 1 | >5 | 5 ± 1 | 1.01 |
Xanthylium derivative R351-Cl− | 68 ± 4 | 79 ± 3 | 91 ± 2 | 7 ± 1 | 0.4 ± 0.05 | 1.16 |
Clotrimazole | 48 ± 6 | 65 ± 8 | 80 ± 3 | 2.5 ± 0.3 | 0.06 ± 0.01 | 1.24 |
Benzalkonium chloride | 5 ± 2 | 29 ± 3 | 94 ± 2 | 0.8 ± 0.2 | 0.040 ± 0.005 | 1.55 |
Chlorhexidine | 20 ± 1 | 39 ± 3 | 87 ± 5 | 1.3 ± 0.4 | 0.044 ± 0.007 | 1.95 |
Gentian Violet | 24 ± 3 | 51 ± 5 | 80 ± 4 | 1.5 ± 0.3 | 0.06 ± 0.01 | 1.23 |
Congo red | 94 ± 2 | 98 ± 2 | 100 ± 1 | >5 | >5 | 1.05 |
Sudan III | 84 ± 9 | 90 ± 5 | 98 ± 1 | >5 | >5 | 1.04 |
Toluidine blue | 74 ± 5 | 87 ± 3 | 96 ± 3 | >5 | 1.0 ± 0.2 | 1.12 |
Methylene blue | 38 ± 4 | 55 ± 7 | 82 ± 4 | 2.1 ± 0.2 | 0.035 ± 0.004 | 1.53 |
Ponceau 4R | 86 ± 2 | 90 ± 4 | 97 ± 1 | >5 | >5 | 0.95 |
Malachite Green | 12 ± 6 | 34 ± 5 | 52 ± 8 | 1.1 ± 0.2 | 0.015 ± 0.003 | 1.28 |
Rhodamine 6G | 27 ± 5 | 43 ± 2 | 88 ± 3 | 1.7 ± 0.4 | 0.07 ± 0.01 | 1.70 |
Metronidazole | 15 ± 3 | 37 ± 4 | 75 ± 8 | 0.25 ± 0.05 | 0.025 ± 0.003 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlotnikov, I.D.; Krylov, S.S.; Belogurova, N.G.; Blinnikov, A.N.; Kalugin, V.E.; Kudryashova, E.V. New Derivatives of Chalcones, Chromenes, and Stilbenoids, Complexed with Methyl-β-Cyclodextrin with Antioxidant Properties and Antibacterial Synergism with Antibiotics. Biophysica 2024, 4, 667-694. https://doi.org/10.3390/biophysica4040044
Zlotnikov ID, Krylov SS, Belogurova NG, Blinnikov AN, Kalugin VE, Kudryashova EV. New Derivatives of Chalcones, Chromenes, and Stilbenoids, Complexed with Methyl-β-Cyclodextrin with Antioxidant Properties and Antibacterial Synergism with Antibiotics. Biophysica. 2024; 4(4):667-694. https://doi.org/10.3390/biophysica4040044
Chicago/Turabian StyleZlotnikov, Igor D., Sergey S. Krylov, Natalya G. Belogurova, Alexander N. Blinnikov, Victor E. Kalugin, and Elena V. Kudryashova. 2024. "New Derivatives of Chalcones, Chromenes, and Stilbenoids, Complexed with Methyl-β-Cyclodextrin with Antioxidant Properties and Antibacterial Synergism with Antibiotics" Biophysica 4, no. 4: 667-694. https://doi.org/10.3390/biophysica4040044
APA StyleZlotnikov, I. D., Krylov, S. S., Belogurova, N. G., Blinnikov, A. N., Kalugin, V. E., & Kudryashova, E. V. (2024). New Derivatives of Chalcones, Chromenes, and Stilbenoids, Complexed with Methyl-β-Cyclodextrin with Antioxidant Properties and Antibacterial Synergism with Antibiotics. Biophysica, 4(4), 667-694. https://doi.org/10.3390/biophysica4040044