Bio-Pesticidal Potential of Nanostructured Lipid Carriers Loaded with Thyme and Rosemary Essential Oils against Common Ornamental Flower Pests
"> Figure 1
<p>Scheme of extraction process to obtain TEO and REO: (<b>a</b>) thyme and rosemary freshly harvested plant material; (<b>b</b>) grinding step by agro-industrial chopper; (<b>c</b>) distillation equipment: boiler–extractor vessel–condenser–collector; (<b>d</b>) thyme EO and rosemary EO.</p> "> Figure 2
<p>Experimental scheme of NLCs production: (<b>a</b>) heating aqueous phase and organic phase separately; (<b>b</b>) mixing and homogenization of both phases by HSH; (<b>c</b>) homogenization of hot pre-emulsion by HHPH; (<b>d</b>) homogenization of hot pre-emulsion by USH.</p> "> Figure 3
<p>Particle size distributions of REO-NLC HHPH (red line); REO-NLC USH (green line); REO-NLC HSH (blue line).</p> "> Figure 4
<p>Surface response charts and contour plots of experimental design at EO low concentration: (<b>a</b>) particle size, (<b>b</b>) polydispersity index, and (<b>c</b>) zeta potential; and at EO high concentration: (<b>d</b>) particle size, (<b>e</b>) polydispersity index, and (<b>f</b>) zeta potential.</p> "> Figure 5
<p>Particle size distributions of FEO-NLC (red line); TEO-NLC (green line); REO-NLC (blue line).</p> "> Figure 6
<p>TEM and SEM images: (<b>a</b>) TEO-NLC TEM micrography; (<b>b</b>) REO-NLC TEM micrography; (<b>c</b>) TEO-NLC SEM micrography; (<b>d</b>) REO-NLC SEM micrography.</p> "> Figure 7
<p>DSC and TGA thermograms: (<b>a</b>) DSC curves: blue line for CW; green line for CW + MIG physical mixture; orange line for FEO-NLC; red line for TEO-NLC; pink line for REO-NLC; (<b>b</b>) TGA curve for NLC formulation with a TEO:REO 50:50 mixture.</p> "> Figure 8
<p>Mortality percentage of solutions of EOs and suspensions of EO-NLC: FEO-NLC (pink triangles), REO-NLC (green triangles), REO (red rectangles), TEO-NLC (blue rhombuses), and TEO on (green octahedron) (<b>a</b>) <span class="html-italic">M. persicae</span>, (<b>b</b>) <span class="html-italic">T. urticae</span>, and (<b>c</b>) <span class="html-italic">F. occidentalis</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Essential Oil Extraction
2.3. Characterization of Essential Oil’s Chemical Composition
2.4. Preparation of NLC Dispersions
2.5. Factorial Design
2.6. Characterization of NLC
2.6.1. Particle Size, Polydispersity Index, and Zeta Potential Determination
2.6.2. Morphological and Structural Characterization
2.6.3. Encapsulation Efficiency and Loading Capacity
Encapsulation Efficiency
Loading Capacity
2.6.4. Thermal Analysis
2.7. Toxicity Test by Direct Contact
3. Results
3.1. Chemical Composition of Essential Oils and Identification of Chemotypes
3.2. Selection of NLC Preparation Method
3.3. Factorial Design
3.4. Determination of Morphology, Surface Characteristics, Internal Structure
3.5. Encapsulation Efficiency and Loading Capacity
3.6. DSC and TGA Analysis
3.7. Direct Contact Toxicity Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rani, N.; Duhan, A.; Pal, A.; Kumari, P.; Beniwal, R.K.; Verma, D.; Goyat, A.; Singh, R. Are Nano-Pesticides Really Meant for Cleaner Production? An Overview on Recent Developments, Benefits, Environmental Hazards and Future Prospectives. J. Clean. Prod. 2023, 411, 137232. [Google Scholar] [CrossRef]
- Swain, S.S.; Paidesetty, S.K.; Padhy, R.N.; Hussain, T. Nano-Technology Platforms to Increase the Antibacterial Drug Suitability of Essential Oils: A Drug Prospective Assessment. OpenNano 2023, 9, 100115. [Google Scholar] [CrossRef]
- Rojas, K.; Verdugo-Molinares, M.G.; Vallejo-Cardona, A.A. Use of Encapsulating Polymers of Active Compounds in the Pharmaceutical and Food Industry. Food Chem. Adv. 2024, 4, 100619. [Google Scholar] [CrossRef]
- Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The Emerging Role of Nanotechnology in Skincare. Adv. Colloid Interface Sci. 2021, 293, 102437. [Google Scholar] [CrossRef]
- Garg, J.; Pathania, K.; Sah, S.P.; Pawar, S.V. Nanostructured Lipid Carriers: A Promising Drug Carrier for Targeting Brain Tumours. Future J. Pharm. Sci. 2022, 8, 25. [Google Scholar] [CrossRef]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, Bioactivities, Mode of Action and Industrial Applications of Essential Oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential Oils and Their Bioactive Compounds as Eco-Friendly Novel Green Pesticides for Management of Storage Insect Pests: Prospects and Retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef]
- Katopodi, A.; Detsi, A. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of Natural Products as Promising Systems for Their Bioactivity Enhancement: The Case of Essential Oils and Flavonoids. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127529. [Google Scholar] [CrossRef]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kanwar, R.; Mehta, S.K. Recent Development in Essential Oil-Based Nanocarriers for Eco-Friendly and Sustainable Agri-Food Applications: A Review. ACS Agric. Sci. Technol. 2022, 2, 823–837. [Google Scholar] [CrossRef]
- Pereira, P.C.G.; Parente, C.E.T.; Carvalho, G.O.; Torres, J.P.M.; Meire, R.O.; Dorneles, P.R.; Malm, O. A Review on Pesticides in Flower Production: A Push to Reduce Human Exposure and Environmental Contamination. Environ. Pollut. 2021, 289, 117817. [Google Scholar] [CrossRef] [PubMed]
- McGovern, R.J.; Elmer, W.H. Florists’ Crops: Global Trends and Disease Impact. In Handbook of Florists’ Crops Diseases; McGovern, R.J., Elmer, W.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–9. [Google Scholar]
- Silva-Castaño, A.F.; Brochero, H.L. Abundance and Flight Activity of Frankliniella occidentalis (Thysanoptera: Thripidae) in a Female Chrysanthemum Crop for Seeding, Colombia. Agron. Colomb. 2021, 39, 216–225. [Google Scholar] [CrossRef]
- Molina-Acosta, M.D.; Calvo, S.J.; Palacio, M.M.; Giraldo, C.E. Incidencia de plagas en material poscosecha de nueve cultivares de hortensia tipo exportación, en Antioquia (Colombia). Rev. Colomb. Entomol. 2021, 47, e7530. [Google Scholar] [CrossRef]
- Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated Infected Wound Healing by Topical Application of Encapsulated Rosemary Essential Oil into Nanostructured Lipid Carriers. Artif. Cells Nanomed. Biotechnol. 2019, 47, 980–988. [Google Scholar] [CrossRef]
- Souto, E.B.; Severino, P.; Marques, C.; Andrade, L.N.; Durazzo, A.; Lucarini, M.; Atanasov, A.G.; El Maimouni, S.; Novellino, E.; Santini, A. Croton argyrophyllus Kunth Essential Oil-Loaded Solid Lipid Nanoparticles: Evaluation of Release Profile, Antioxidant Activity and Cytotoxicity in a Neuroblastoma Cell Line. Sustainability 2020, 12, 7697. [Google Scholar] [CrossRef]
- Baldim, I.; Tonani, L.; Von Zeska Kress, M.R.; Pereira Oliveira, W. Lippia sidoides Essential Oil Encapsulated in Lipid Nanosystem as an Anti-Candida Agent. Ind. Crops Prod. 2019, 127, 73–81. [Google Scholar] [CrossRef]
- Stahl-Biskup, E. Essential Oil Chemistry of the Genus Thymus—A Global View. In Thyme; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Ferreira, M.; Chaves, L.L.; Lima, S.A.C.; Reis, S. Optimization of Nanostructured Lipid Carriers Loaded with Methotrexate: A Tool for Inflammatory and Cancer Therapy. Int. J. Pharm. 2015, 492, 65–72. [Google Scholar] [CrossRef]
- Das Neves, J.; Sarmento, B. Precise Engineering of Dapivirine-Loaded Nanoparticles for the Development of Anti-HIV Vaginal Microbicides. Acta Biomater. 2015, 18, 77–87. [Google Scholar] [CrossRef]
- Krendlinger, E.J.; Wolfmeier, U.H. (Eds.) Carnauba Wax. In Natural and Synthetic Waxes Origin, Production, Technology, and Applications; Wiley-VCH: Weinheim, Germany, 2023; pp. 129–152. [Google Scholar]
- Ritter, B.; Schulte, J.; Schulte, E.; Thier, H.P. Detection of Coating Waxes on Apples by Differential Scanning Calorimetry. Eur. Food Res. Technol. 2001, 212, 603–607. [Google Scholar] [CrossRef]
- Öğütcü, M.; Yilmaz, E. Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. Int. J. Food Prop. 2015, 18, 1741–1755. [Google Scholar] [CrossRef]
- Yi, B.R.; Kim, M.J.; Lee, S.Y.; Lee, J.H. Physicochemical Properties and Oxidative Stability of Oleogels Made of Carnauba Wax with Canola Oil or Beeswax with Grapeseed Oil. Food Sci. Biotechnol. 2017, 26, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Khoobdel, M.; Ahsaei, S.M.; Farzaneh, M. Insecticidal Activity of Polycaprolactone Nanocapsules Loaded with Rosmarinus Officinalis Essential Oil in Tribolium Castaneum (Herbst). Entomol. Res. 2017, 47, 175–184. [Google Scholar] [CrossRef]
- Pavela, R. Sublethal Effects of Some Essential Oils on the Cotton Leafworm Spodoptera Littoralis (Boisduval). J. Essent. Oil Bear. Plants 2012, 15, 144–156. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal and Repellent Activity of Selected Essential Oils against of the Pollen Beetle, Meligethes aeneus (Fabricius) Adults. Ind. Crops Prod. 2011, 34, 888–892. [Google Scholar] [CrossRef]
- Khani, M.; Marouf, A.; Amini, S.; Yazdani, D.; Farashiani, M.E.; Ahvazi, M.; Khalighi-Sigaroodi, F.; Hosseini-Gharalari, A. Efficacy of Three Herbal Essential Oils Against Rice Weevil, Sitophilus Oryzae (Coleoptera: Curculionidae). J. Essent. Oil Bear. Plants 2017, 20, 937–950. [Google Scholar] [CrossRef]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; Van Griensven, L.J.L.D. Chemical Composition of Essential Oils of Thymus and Mentha Speciesand Their Antifungal Activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef]
- Pitarokili, D.; Tzakou, O.; Loukis, A. Composition of the Essential Oil of Spontaneous Rosmarinus officinalis from Greece and Antifungal Activity Against Phytopathogenic Fungi. J. Essent. Oil Res. 2008, 20, 457–459. [Google Scholar] [CrossRef]
- Rey, C.; Sáez, F. Field Culture, in Vitro Culture and Selection of Thymus. In Thyme The genus Thymtls; Stahl-Biskup, E., Saez, F., Eds.; Taylor & Francis Group: Abingdon, UK, 2002; pp. 177–196. [Google Scholar]
- Stashenko, E. Propiedades y Caracterización. In Aceites Esenciales; Stashenko, E.E., Ed.; Universidad Industrial de Santander: Bucaramanga, Colombia, 2009; pp. 85–124. ISBN 978-958-44-5944-2. [Google Scholar]
- Ivanovic, J.; Misic, D.; Zizovic, I.; Ristic, M. In Vitro Control of Multiplication of Some Food-Associated Bacteria by Thyme, Rosemary and Sage Isolates. Food Control 2012, 25, 110–116. [Google Scholar] [CrossRef]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Comparative Toxicity of Rosmarinus officinalis L. Essential Oil and Blends of Its Major Constituents against Tetranychus Urticae Koch (Acari: Tetranychidae) on Two Different Host Plants. Pest Manag. Sci. 2006, 62, 366. [Google Scholar] [CrossRef] [PubMed]
- Langsi, J.D.; Nukenine, E.N.; Oumarou, K.M.; Moktar, H.; Fokunang, C.N.; Mbata, G.N. Evaluation of the Insecticidal Activities of α-Pinene and 3-Carene on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Insects 2020, 11, 540. [Google Scholar] [CrossRef] [PubMed]
- Perina, F.J.; Amaral, D.C.; Fernandes, R.S.; Labory, C.R.; Teixeira, G.A.; Alves, E. Thymus vulgaris Essential Oil and Thymol against Alternaria alternata (Fr.) Keissler: Effects on Growth, Viability, Early Infection and Cellular Mode of Action: Thymol (2-Isopropyl-5-Methylphenol) for the Control of Alternaria alternata: Mode of Action. Pest. Manag. Sci. 2015, 71, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.E. Thymus vulgaris L. Essential Oil and Its Main Component Thymol: Anthelmintic Effects against Haemonchus Contortus from Sheep. Vet. Parasitol. 2016, 228, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal Efficacy of Thymol, Carvacrol, Eugenol and Menthol as Alternative Agents to Control the Growth of Food-Relevant Fungi. J. Mycol. Medicale 2014, 24, e51–e56. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, Phytotoxic and Insecticidal Properties of Essential Oil Isolated from Turkish Origanum Acutidens and Its Three Components, Carvacrol, Thymol and p-Cymene. Bioresour. Technol. 2008, 99, 8788–8795. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, Y.X.; Hu, X.; Liu, C.Y.; Quan, L.H.; Liao, Y.H. Solid Lipid Nanoparticles for Sustained Pulmonary Delivery of Yuxingcao Essential Oil: Preparation, Characterization and in Vivo Evaluation. Int. J. Pharm. 2017, 516, 364–371. [Google Scholar] [CrossRef]
- Souto, E.B.; Doktorovova, S.; Zielinska, A.; Silva, A.M. Key Production Parameters for the Development of Solid Lipid Nanoparticles by High Shear Homogenization. Pharm. Dev. Technol. 2019, 24, 1181–1185. [Google Scholar] [CrossRef]
- Ghodrati, M.; Farahpour, M.R.; Hamishehkar, H. Encapsulation of Peppermint Essential Oil in Nanostructured Lipid Carriers: In-Vitro Antibacterial Activity and Accelerative Effect on Infected Wound Healing. Colloids Surf. A Physicochem. Eng. Asp. 2019, 564, 161–169. [Google Scholar] [CrossRef]
- Mehnert, W.; Mader, K. Solid Lipid Nanoparticles Production, Characterization and Applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations. Adv. Drug Deliv. Rev. 2002, 54, 131–155. [Google Scholar] [CrossRef] [PubMed]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured Lipid Carriers (NLC): A Potential Delivery System for Bioactive Food Molecules. Innov. Food Sci. Emerg. Technol. 2013, 19, 29–43. [Google Scholar] [CrossRef]
- Zielińska, A.; Ferreira, N.R.; Durazzo, A.; Lucarini, M.; Cicero, N.; Mamouni, S.E.; Silva, A.M.; Nowak, I.; Santini, A.; Souto, E.B. Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules 2019, 24, 2683. [Google Scholar] [CrossRef]
- Nasseri, M.; Golmohammadzadeh, S.; Arouiee, H.; Jaafari, M.R.; Neamati, H. Antifungal Activity of Zataria multiflora Essential Oil-Loaded Solid Lipid Nanoparticles in-Vitro Condition. Iran. J. Basic Med. Sci. 2016, 19, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Baldim, I.; Paziani, M.H.; Grizante Barião, P.H.; von Zeska Kress, M.R.; Oliveira, W.P. Nanostructured Lipid Carriers Loaded with Lippia sidoides Essential Oil as a Strategy to Combat the Multidrug-Resistant Candida auris. Pharmaceutics 2022, 14, 180. [Google Scholar] [CrossRef]
- Shi, F.; Zhao, J.-H.; Liu, Y.; Wang, Z.; Zhang, Y.-T.; Feng, N.-P. Preparation and Characterization of Solid Lipid Nanoparticles Loaded with Frankincense and Myrrh Oil. Int. J. Nanomed. 2012, 7, 2033–2043. [Google Scholar] [CrossRef]
- Miranda, M.; Cruz, M.T.; Vitorino, C.; Cabral, C. Nanostructuring Lipid Carriers Using Ridolfia segetum (L.) Moris Essential Oil. Mater. Sci. Eng. C 2019, 103, 109804. [Google Scholar] [CrossRef]
- Basson, I.; Reynhardt, E.C. An Investigation of the Structures and Molecular Dynamics of Natural Waxes II. Carnauba Wax. J. Phys. D Appl. 1988, 21, 1429–1433. [Google Scholar] [CrossRef]
- Reynhardt, E.C.; Riederer, M. Structures and Molecular Dynamics of Plant Waxes. Eur. Biophys. J. 1994, 23, 59–70. [Google Scholar] [CrossRef]
- Freitas, C.A.S.; Vieira, Í.G.P.; Sousa, P.H.M.; Muniz, C.R.; Gonzaga, M.L.D.C.; Guedes, M.I.F. Carnauba Wax P-Methoxycinnamic Diesters: Characterisation, Antioxidant Activity and Simulated Gastrointestinal Digestion Followed by in Vitro Bioaccessibility. Food Chem. 2016, 196, 1293–1300. [Google Scholar] [CrossRef]
- Craig, R.G.; Eick, J.D.; Peyton, F.A. Properties of Natural Waxes Used in Dentistry. J. Dent. Res. 1965, 44, 1308–1316. [Google Scholar] [CrossRef]
- Severino, P.; Pinho, S.C.; Souto, E.B.; Santana, M.H.A. Polymorphism, Crystallinity and Hydrophilic–Lipophilic Balance of Stearic Acid and Stearic Acid–Capric/Caprylic Triglyceride Matrices for Production of Stable Nanoparticles. Colloids Surf. B Biointerfaces 2011, 86, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Pires, F.Q.; Angelo, T.; Silva, J.K.R.; Sá-Barreto, L.C.L.; Lima, E.M.; Gelfuso, G.M.; Gratieri, T.; Cunha-Filho, M.S.S. Use of Mixture Design in Drug-Excipient Compatibility Determinations: Thymol Nanoparticles Case Study. J. Pharm. Biomed. Anal. 2017, 137, 196–203. [Google Scholar] [CrossRef] [PubMed]
- de Meneses, A.C.; Marques, E.B.P.; Leimann, F.V.; Gonçalves, O.H.; Ineu, R.P.; de Araújo, P.H.H.; de Oliveira, D.; Sayer, C. Encapsulation of Clove Oil in Nanostructured Lipid Carriers from Natural Waxes: Preparation, Characterization and in Vitro Evaluation of the Cholinesterase Enzymes. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123879. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Salem, N.Y.; Abd ElNaby, S.S.; Adel, M.M. Characterization of Nanoparticles Loaded with Garlic Essential Oil and Their Insecticidal Activity Against Phthorimaea Operculella (Zeller) (PTM) (Lepidoptera: Gelechiidae). Int. J. Nanosci. Nanotechnol. 2021, 17, 147–160. [Google Scholar]
- Adel, M.M.; Salem, N.Y.; Abdel-Aziz, N.F.; Ibrahim, S.S. Application of New Nano Pesticide Geranium Oil Loaded-Solid Lipid Nanoparticles for Control the Black Cutworm Agrotis Ipsilon (Hub.) (Lepi., Noctuidae). Eur. Asian J. BioSci. Eurasia J. Biosci. 2019, 13, 1453–1461. [Google Scholar]
- Zayed, M. Silica Nanoparticles Boosted Abamectin’s Acaricidal Bioactivity Against Tetranychus Urticae Koch’s Two Spotted Spider Mite Developmental Stages. J. Plant Prot. Pathol. 2022, 13, 93–100. [Google Scholar] [CrossRef]
- Sioutas, G.; Tsouknidas, A.; Gelasakis, A.I.; Vlachou, A.; Kaldeli, A.K.; Kouki, M.; Symeonidou, I.; Papadopoulos, E. In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite (Dermanyssus gallinae). Pharmaceutics 2023, 15, 659. [Google Scholar] [CrossRef]
- Tortorici, S.; Cimino, C.; Ricupero, M.; Musumeci, T.; Biondi, A.; Siscaro, G.; Carbone, C.; Zappalà, L. Nanostructured Lipid Carriers of Essential Oils as Potential Tools for the Sustainable Control of Insect Pests. Ind. Crops Prod. 2022, 181, 114766. [Google Scholar] [CrossRef]
- Kraiss, H.; Cullen, E.M. Efficacy and Nontarget Effects of Reduced-Risk Insecticides on Aphis Glycines (Hemiptera: Aphididae) and Its Biological Control Agent Harmonia Axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 2008, 101, 391–398. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
− | 0 | + | |
A: Essential oil, %w/w | 1 | 2 | 3 |
B: Tween 80, %w/w | 3 | 4 | 5 |
C: LL/SL (Liquid lipid/Solid lipid) | 15/85 | 20/80 | 25/75 |
tR (min) | Chemical Compounds | Relative Amount (%) |
---|---|---|
9.5 | Methyl 2-methylbutanoate | 0.2 |
15.9 | α-Thujene | 2.2 |
16.3 | α-Pinene | 1.4 |
17.0 | Camphene | 1.0 |
18.0 | Sabinene | 0.1 |
18.2 | Oct-1-en-3-ol | 1.1 |
18.6 | β-Myrcene | 2.2 |
19.5 | α-Phellandrene | 0.3 |
19.6 | Δ3-Carene | 0.1 |
19.9 | α-Terpinene | 3.3 |
20.3 | p-Cymene | 18.1 |
20.5 | Limonene | 0.5 |
20.6 | β-Phellandrene | 0.2 |
20.6 | 1,8-Cineole | 1.0 |
21.7 | γ-Terpinene | 18.7 |
21.8 | Pent-4-en-1-yl butanoate | 0.2 |
22.2 | cis-Sabinene hydrate | 0.4 |
22.8 | Terpinolene | 0.2 |
23.3 | Linalool | 3.1 |
23.5 | trans-Sabinene hydrate | 0.2 |
25.4 | trans-Chrysanthemal | 0.1 |
26.4 | Borneol | 2.0 |
26.7 | Terpinen-4-ol | 1.1 |
27.2 | α-Terpineol | 0.2 |
28.7 | Thymyl methyl ether | 0.1 |
28.8 | Neral | 0.2 |
29.9 | Geranial | 0.2 |
30.6 | Thymol | 35.6 |
30.7 | Borneol acetate | 0.3 |
30.9 | Carvacrol | 1.5 |
35.7 | trans-β-Caryophyllene | 4.0 |
38.8 | γ-Cadinene | 0.2 |
tR (min) | Chemical Compounds | Relative Amount% |
---|---|---|
15.8 | Tricyclene | 0.3 |
15.9 | α-Thujene | 0.6 |
16.3 | α-Pinene | 19.4 |
17.1 | Camphene | 7.6 |
17.2 | Thuja-2,4(10)-diene | 0.1 |
18.3 | β-Pinene | 4.0 |
18.7 | β-Myrcene | 1.3 |
19.5 | α-Phellandrene | 2.7 |
19.9 | α-Terpinene | 1.4 |
20.3 | p-Cymene | 3.3 |
20.5 | Limonene | 3.7 |
20.7 | 1,8-Cineole + β-Phellandrene | 21.9 |
21.7 | γ-Terpinene | 4.4 |
22.2 | cis-Sabinene hydrate | 0.2 |
22.8 | Terpinolene | 0.9 |
23.3 | Linalool | 0.6 |
23.5 | trans-Sabinene hydrate | 0.1 |
25.5 | Camphor | 11.6 |
26.4 | Borneol | 1.9 |
26.7 | Terpinen-4-ol | 0.7 |
27.2 | α-Terpineol | 0.8 |
27.7 | Verbenone | 1.1 |
30.5 | Thymol | 7.1 |
30.8 | Carvacrol | 0.2 |
35.7 | trans-β-Caryophyllene | 3.8 |
36.9 | α-Humulene | 0.3 |
15.8 | Tricyclene | 0.3 |
15.9 | α-Thujene | 0.6 |
16.3 | α-Pinene | 19.4 |
17.1 | Camphene | 7.6 |
17.2 | Thuja-2,4(10)-diene | 0.1 |
18.3 | β-Pinene | 4.0 |
Formulation | Method | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|
REO-NLC | USH | 913.2 ± 37.5 | 0.205 ± 0.020 | −43.8 ± 1.1 |
REO-NLC | HSH | 505.1 ± 8.2 | 0.163 ± 0.027 | −29.0 ± 0.6 |
REO-NLC | HHPH | 285.8 ± 6.2 | 0.262 ± 0.019 | −24.8 ± 0.5 |
Formulation | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
NLC1 | 644.7 ± 4.7 | 0.198 ± 0.036 | −29.7 ± 0.7 |
NLC2 | 1432 ± 106 | 0.203 ± 0.103 | −32.6 ± 0.3 |
NLC3 | 380.6 ± 24.3 | 0.566 ± 0.136 | −55.1 ± 3.9 |
NLC4 | 1323 ± 150 | 0.505 ± 0.104 | −30.8 ± 0.7 |
NLC5 | 555.2 ± 3.0 | 0.111 ± 0.066 | −28.5 ± 0.4 |
NLC6 | 980.9 ± 34.7 | 0.707 ± 0.031 | −21.9 ± 0.2 |
NLC7 | 453.1 ± 4.5 | 0.180 ± 0.030 | −37.1 ± 0.7 |
NLC8 | 1075 ± 23.7 | 0.134 ± 0.024 | −20.2 ± 0.3 |
NLC0 | 697.8 ± 34.1 | 0.193 ± 0.028 | −39.8 ± 0.2 |
NLC0 | 590.6 ± 7.2 | 0.149 ± 0.019 | −31.1 ± 1.0 |
NLC0 | 783.1 ± 27.7 | 0.141 ± 0.026 | −46.1 ± 0.2 |
NLC0 | 897.5 ± 57.1 | 0.063 ± 0.023 | −41.1 ± 0.5 |
Sample | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
FEO-NLC | 352.9 ± 1.2 | 0.153 ± 0.019 | −34.3 ± 0.7 |
TEO-NLC | 347.8 ± 2.1 | 0.182 ± 0.015 | −33.8 ± 0.4 |
REO-NLC | 288.1 ± 1.7 | 0.188 ± 0.015 | −34.5 ± 0.4 |
Sample | Marker Compound | EE (%) | LC (%) |
---|---|---|---|
TEO-NLC | Thymol | 71.9 ± 1.13 | 1.18 ± 0.21 |
REO-NLC | 1,8-Cineole | 80.6 ± 2.16 | 1.40 ± 0.43 |
Sample | Melting | |||
---|---|---|---|---|
Onset (°C) | Endset (°C) | Peak (T Melt, °C) | Enthalpy (J/g) | |
CW | 71.05 | 85.77 | 82.79 | 187.32 |
CW + MIG | 69.34 | 83.74 | 80.83 | 114.10 |
FEO-NLC | 63.79 | 83.71 | 79.04 | 102.08 |
TEO-NLC | 63.40 | 81.44 | 78.06 | 102.87 |
REO-NLC | 65.30 | 83.10 | 79.65 | 117.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Múnera-Echeverri, A.; Múnera-Echeverri, J.L.; Segura-Sánchez, F. Bio-Pesticidal Potential of Nanostructured Lipid Carriers Loaded with Thyme and Rosemary Essential Oils against Common Ornamental Flower Pests. Colloids Interfaces 2024, 8, 55. https://doi.org/10.3390/colloids8050055
Múnera-Echeverri A, Múnera-Echeverri JL, Segura-Sánchez F. Bio-Pesticidal Potential of Nanostructured Lipid Carriers Loaded with Thyme and Rosemary Essential Oils against Common Ornamental Flower Pests. Colloids and Interfaces. 2024; 8(5):55. https://doi.org/10.3390/colloids8050055
Chicago/Turabian StyleMúnera-Echeverri, Alejandro, José Luis Múnera-Echeverri, and Freimar Segura-Sánchez. 2024. "Bio-Pesticidal Potential of Nanostructured Lipid Carriers Loaded with Thyme and Rosemary Essential Oils against Common Ornamental Flower Pests" Colloids and Interfaces 8, no. 5: 55. https://doi.org/10.3390/colloids8050055
APA StyleMúnera-Echeverri, A., Múnera-Echeverri, J. L., & Segura-Sánchez, F. (2024). Bio-Pesticidal Potential of Nanostructured Lipid Carriers Loaded with Thyme and Rosemary Essential Oils against Common Ornamental Flower Pests. Colloids and Interfaces, 8(5), 55. https://doi.org/10.3390/colloids8050055