Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control
"> Figure 1
<p>Schematic illustration of (<b>a</b>) parallel and (<b>b</b>) reverse flow type within the homogenizer used to produce the nanoemulsions.</p> "> Figure 2
<p>The impact of different homogenization parameters on (<b>a</b>) the mean particle diameter and (<b>b</b>) particle size distribution of 10% corn oil-in-water nanoemulsions. The default parameters were: 12,000 psi operating pressure, 3 passes, Z5 nozzle, no back pressure, and reverse flow pattern. The letters (A, B, C) represent the significance of the samples (<span class="html-italic">p</span> < 0.05). In (<b>a</b>), the error bars represent the standard deviations of multiple measurements. For (<b>b</b>), the widths of the distributions calculated from the particle size distribution data were: 0.18, 0.21, 0.26, 0.17, and 0.20 µm from the “Reverse” to “BP (2 KPsi)” sample, respectively.</p> "> Figure 3
<p>Impact of the number of passes on the particle size characteristics of nanoemulsions (10 wt% corn oil, 2 wt% Tween 20 surfactant): (<b>a</b>) the mean particle diameter and (<b>b</b>) particle size distribution. For (<b>a</b>), the standard deviations calculated from repeated measurements were 0.385, 0.006, 0.006, 0.001, 0.001, 0.005, 0.001, 0.001, and 0.003 µm from 0 to 8 passes, respectively. For (<b>b</b>), the widths of the distributions calculated from the particle size distribution data were: 10.4, 0.46, 0.41, 0.33, 0.25, 0.23, 0.21, 0.21, and 0.19 µm from 0 to 8 passes, respectively.</p> "> Figure 4
<p>The impact of homogenizer pressure parameter on (<b>a</b>) mean particle diameter and (<b>b</b>) particle size distributions of 10 wt% corn oil-in-water nanoemulsions stabilized by Tween 20. The letters (A, B) represent significant differences between samples (<span class="html-italic">p</span> < 0.05). For (<b>a</b>), the error bars represent the standard deviations of repeated measurements. A linear relation between the Log (Mean Particle Diameter/µm) and Log (Pressure/KPsi) was found: log(D) = −0.084log(P) − 0.773, R<sup>2</sup> = 0.990. For (<b>b</b>), the widths of the distributions calculated from the particle size distribution data were: 0.18, 0.24, 0.24, and 0.24 µm from the 12 k, 20 k, 30 k, and 45 k samples, respectively.</p> "> Figure 5
<p>The influence of Tween 20 concentration on (<b>a</b>) the mean particle diameter (<span class="html-italic">d</span><sub>32</sub>) and (<b>b</b>) particle size distribution of nanoemulsions containing 10 wt% corn oil. Default processing conditions were used for all samples, as described in the text. In (<b>a</b>), the error bars represent the standard deviations of repeated measurements. For (<b>b</b>), the widths of the distributions calculated from the particle size distribution data were: 0.41, 0.30, 0.41, 0.32, 0.18, 0.26, 0.24, and 0.23 µm from the “0.25” to “5.00” samples, respectively.</p> "> Figure 6
<p>The influence of oil concentration on the (<b>a</b>) mean particle diameters (<span class="html-italic">d</span><sub>32</sub> and <span class="html-italic">d</span><sub>43</sub>) and (<b>b</b>) particle size distributions of corn oil-in-water nanoemulsions stabilized by Tween 20 (emulsifier-to-oil ratio = 0.2). For (<b>a</b>), the error bars represent the standard deviations of repeated measurements. For (<b>b</b>), the widths of the distributions calculated from the particle size distribution data were: 0.18, 0.12, 0.07, 0.04, and 0.04 µm from the “10” to “50” samples, respectively.</p> "> Figure 7
<p>The influence of oil concentration on the mean particle diameter (<span class="html-italic">d</span><sub>32</sub>) and (<b>b</b>) particle size distributions of corn oil-in-water nanoemulsions at a fixed emulsifier concentration or fixed emulsifier-to-oil ratio (=0.2). For (<b>a</b>), the error bars represent the standard deviations of repeated measurements. For (<b>b</b>), the calculated widths of the distributions were: 0.14, 0.14, 0.16, 0.20, and 0.32 mm for 10, 20, 30, 40, and 50% oil concentration, respectively. For (<b>b</b>), the widths of the distributions calculated from the particle size distribution data were: 0.14, 0.14, 0.16, 0.20, and 0.32 µm from the “10” to “50” samples, respectively.</p> "> Figure 8
<p>The influence of four emulsifier types on (<b>a</b>) the mean particle diameter and (<b>b</b>) the particle size distributions. The letters (A, B, C) represent the significance of the samples (<span class="html-italic">p</span> < 0.05). For (<b>a</b>), the error bars represent standard deviations. For (<b>b</b>), the widths of the distributions calculated from the particle size distribution data were: 0.18, 0.19, 0.24, and 0.37 µm from the “Tween 20” to “Gum Arabic” samples, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Coarse Emulsions
2.3. Impact of Operating Conditions and Formulation on Nanoemulsion Formation
2.4. Characterization of the Particle Size Parameters of Nanoemulsions
2.5. Statistical Analysis
3. Results and Discussion
3.1. Impact of Homogenizer Operating Parameters on Particle Size
3.1.1. Flow Pattern
3.1.2. Impact of Nozzle Dimensions
3.1.3. Impact of Back Pressure
3.1.4. Number of Passes
3.1.5. Homogenization Pressure
3.2. Impact of Nanoemulsion Properties
3.2.1. Emulsifier Concentration at a Fixed Oil Concentration
3.2.2. Oil Concentration
3.2.3. Emulsifier-To-Oil Concentration
3.2.4. Emulsifier Type
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Nanoemulsions for Food Applications: Development and Characterization. Food Bioprocess Technol. 2012, 5, 854–867. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef]
- Kumar, N.; Verma, A.; Mandal, A. Formation, characteristics and oil industry applications of nanoemulsions: A review. J. Pet. Sci. Eng. 2021, 206, 109042. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Gandhi, M. Nanoemulsions in food: Market demand. Environ. Chem. Lett. 2019, 17, 1003–1009. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Z.; Liu, H.; Hu, L. Nanoemulsion-based delivery approaches for nutraceuticals: Fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct. 2021, 12, 1933–1953. [Google Scholar] [CrossRef]
- Walia, N.; Dasgupta, N.; Ranjan, S.; Ramalingam, C.; Gandhi, M. Food-grade nanoencapsulation of vitamins. Environ. Chem. Lett. 2019, 17, 991–1002. [Google Scholar] [CrossRef]
- Che Marzuki, N.H.; Wahab, R.A.; Abdul Hamid, M. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol. Biotechnol. Equip. 2019, 33, 779–797. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, I.F.; Hussein, M.Z. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. Nanomaterials 2020, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Nishchaya, K.; Rai, V.K. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin. Drug Deliv. 2022, 19, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, D.; Brasili, F.; Capocefalo, A.; Bizien, T.; Angelini, I.; Oddo, L.; Toumia, Y.; Paradossi, G.; Domenici, F. Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128522. [Google Scholar] [CrossRef]
- Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess Technol. 2013, 6, 628–647. [Google Scholar] [CrossRef]
- Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol. 2012, 23, 13–27. [Google Scholar] [CrossRef]
- Naseema, A.; Kovooru, L.; Behera, A.K.; Kumar, K.P.P.; Srivastava, P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv. Colloid Interface Sci. 2021, 287, 102318. [Google Scholar] [CrossRef]
- Rehman, R.; Younas, A.; Ullah, S.; Ano, A.B.; Muzaffar, R.; Altaf, A.A.; Altaf, A.A. Recent Developments in Nano-Emulsions? Preparatory Methods and their Applications: A Concise Review. Pak. J. Anal. Environ. Chem. 2022, 23, 175–193. [Google Scholar] [CrossRef]
- Safaya, M.; Rotliwala, Y.C. Nanoemulsions: A review on low energy formulation methods, characterization, applications and optimization technique. Mater. Today Proc. 2020, 27, 454–459. [Google Scholar] [CrossRef]
- Komaiko, J.S.; McClements, D.J. Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [Google Scholar] [CrossRef]
- Sneha, K.; Kumar, A. Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innov. Food Sci. Emerg. Technol. 2022, 76, 102914. [Google Scholar] [CrossRef]
- Floury, J.; Desrumaux, A.; Legrand, J. Effect of Ultra-high-pressure Homogenization on Structure and on Rheological Properties of Soy Protein-stabilized Emulsions. J. Food Sci. 2002, 67, 3388–3395. [Google Scholar] [CrossRef]
- Villalobos-Castillejos, F.; Granillo-Guerrero, V.G.; Leyva-Daniel, D.E.; Alamilla-Beltrán, L.; Gutiérrez-López, G.F.; Monroy-Villagrana, A.; Jafari, S.M. Chapter 8—Fabrication of Nanoemulsions by Microfluidization. In Nanoemulsions; Jafari, S.M., McClements, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 207–232. [Google Scholar]
- Li, Y.; Deng, L.; Dai, T.; Li, Y.; Chen, J.; Liu, W.; Liu, C. Microfluidization: A promising food processing technology and its challenges in industrial application. Food Control 2022, 137, 108794. [Google Scholar] [CrossRef]
- Jafari, S.M.; He, Y.; Bhandari, B. Nano-Emulsion Production by Sonication and Microfluidization—A Comparison. Int. J. Food Prop. 2006, 9, 475–485. [Google Scholar] [CrossRef]
- Taha, A.; Ahmed, E.; Ismaiel, A.; Ashokkumar, M.; Xu, X.; Pan, S.; Hu, H. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci. Technol. 2020, 105, 363–377. [Google Scholar] [CrossRef]
- Jo, Y.-J.; Kwon, Y.-J. Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci. Biotechnol. 2014, 23, 107–113. [Google Scholar] [CrossRef]
- Håkansson, A.; Trägårdh, C.; Bergenståhl, B. Dynamic simulation of emulsion formation in a high pressure homogenizer. Chem. Eng. Sci. 2009, 64, 2915–2925. [Google Scholar] [CrossRef]
- Floury, J.; Desrumaux, A.; Lardières, J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov. Food Sci. Emerg. Technol. 2000, 1, 127–134. [Google Scholar] [CrossRef]
- Gallassi, M.; Gonçalves, G.F.N.; Botti, T.C.; Moura, M.J.B.; Carneiro, J.N.E.; Carvalho, M.S. Numerical and experimental evaluation of droplet breakage of O/W emulsions in rotor-stator mixers. Chem. Eng. Sci. 2019, 204, 270–286. [Google Scholar] [CrossRef]
- Paximada, P.; Tsouko, E.; Kopsahelis, N.; Koutinas, A.A.; Mandala, I. Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll. 2016, 53, 225–232. [Google Scholar] [CrossRef]
- Hidajat, M.J.; Jo, W.; Kim, H.; Noh, J. Effective Droplet Size Reduction and Excellent Stability of Limonene Nanoemulsion Formed by High-Pressure Homogenizer. Colloids Interfaces 2020, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- Lee, L.; Norton, I.T. Comparing droplet breakup for a high-pressure valve homogeniser and a Microfluidizer for the potential production of food-grade nanoemulsions. J. Food Eng. 2013, 114, 158–163. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Z.; Liu, J.; Xiao, H.; McClements, D.J. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Oil droplet size. Food Funct. 2020, 11, 9936–9946. [Google Scholar] [CrossRef]
- Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir 2008, 24, 12758–12765. [Google Scholar] [CrossRef] [PubMed]
- Norton, I.T.; Frith, W.J. Microstructure design in mixed biopolymer composites. Food Hydrocoll. 2001, 15, 543–553. [Google Scholar] [CrossRef]
- Chung, C.; Smith, G.; Degner, B.; McClements, D.J. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects. Crit. Rev. Food Sci. Nutr. 2016, 56, 650–685. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.; Ezhilarasi, P.N.; Anandharamakrishnan, C. Challenges associated in stability of food grade nanoemulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 1435–1450. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Schlender, M.; Minke, K.; Spiegel, B.; Schuchmann, H.P. High-pressure double stage homogenization processes: Influences of plant setup on oil droplet size. Chem. Eng. Sci. 2015, 131, 162–171. [Google Scholar] [CrossRef]
- Schlender, M.; Minke, K.; Schuchmann, H.P. Sono-chemiluminescence (SCL) in a high-pressure double stage homogenization processes. Chem. Eng. Sci. 2016, 142, 1–11. [Google Scholar] [CrossRef]
- Kuhn, K.R.; Cunha, R.L. Flaxseed oil—Whey protein isolate emulsions: Effect of high pressure homogenization. J. Food Eng. 2012, 111, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Hakansson, A. Emulsion Formation by Homogenization: Current Understanding and Future Perspectives. In Annual Review of Food Science and Technology; Doyle, M.P., McClements, D.J., Eds.; Annual Reviews: San Mateo, CA, USA, 2019; Volume 10, pp. 239–258. [Google Scholar]
- Tan, C.P.; Nakajima, M. β-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 2005, 92, 661–671. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Gu, J.; McClements, D.J. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll. 2016, 61, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Tcholakova, S.; Denkov, N.D.; Sidzhakova, D.; Ivanov, I.B.; Campbell, B. Interrelation between Drop Size and Protein Adsorption at Various Emulsification Conditions. Langmuir 2003, 19, 5640–5649. [Google Scholar] [CrossRef]
- Courthaudon, J.-L.; Dickinson, E.; Dalgleish, D.G. Competitive adsorption of β-casein and nonionic surfactants in oil-in-water emulsions. J. Colloid Interface Sci. 1991, 145, 390–395. [Google Scholar] [CrossRef]
- Hakansson, A.; Tragardh, C.; Bergenstahl, B. Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model. Food Hydrocoll. 2009, 23, 1177–1183. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.A.S.; et al. Plant-based proteins and their multifaceted industrial applications. Lwt-Food Sci. Technol. 2022, 154, 112620. [Google Scholar] [CrossRef]
- Tan, Y.; Lee, P.W.; Martens, T.D.; McClements, D.J. Comparison of Emulsifying Properties of Plant and Animal Proteins in Oil-in-Water Emulsions: Whey, Soy, and RuBisCo Proteins. Food Biophys. 2022, 17, 409–421. [Google Scholar] [CrossRef]
- McClements, D.J.; Lu, J.K.; Grossmann, L. Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. Colloids Interfaces 2022, 6, 19. [Google Scholar] [CrossRef]
- Wanyi, W.; Lu, L.; Zehan, H.; Xinan, X. Comparison of emulsifying characteristics of different macromolecule emulsifiers and their effects on the physical properties of lycopene nanoemulsions. J. Dispers. Sci. Technol. 2020, 41, 618–627. [Google Scholar] [CrossRef]
- Flores-Andrade, E.; Allende-Baltazar, Z.; Sandoval-González, P.E.; Jiménez-Fernández, M.; Beristain, C.I.; Pascual-Pineda, L.A. Carotenoid nanoemulsions stabilized by natural emulsifiers: Whey protein, gum Arabic, and soy lecithin. J. Food Eng. 2021, 290, 110208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Qin, D.; Vu, G.; McClements, D.J. Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control. Colloids Interfaces 2023, 7, 21. https://doi.org/10.3390/colloids7010021
Zhou H, Qin D, Vu G, McClements DJ. Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control. Colloids and Interfaces. 2023; 7(1):21. https://doi.org/10.3390/colloids7010021
Chicago/Turabian StyleZhou, Hualu, Dingkui Qin, Giang Vu, and David Julian McClements. 2023. "Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control" Colloids and Interfaces 7, no. 1: 21. https://doi.org/10.3390/colloids7010021
APA StyleZhou, H., Qin, D., Vu, G., & McClements, D. J. (2023). Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control. Colloids and Interfaces, 7(1), 21. https://doi.org/10.3390/colloids7010021