Establishing Benchmark Properties for 3D-Printed Concrete: A Study of Printability, Strength, and Durability
<p>Custom-made laboratory concrete printer at RTU: (<b>a</b>) printer setup with the aluminum frame and print area; (<b>b</b>) gantry system closeup: (1) motor; (2) hopper; (3) inlet; (4) pipe; (5) nozzle.</p> "> Figure 2
<p>(<b>a</b>) Rheometer working protocol. The protocol consists of two parts with varying resting intervals: an initial resting phase of 6 min, followed by 1 min working time. After 25 min, the resting time extends to 11 min, followed by 1 min working time. (<b>b</b>) Rheological chart: time vs. torque.</p> "> Figure 3
<p>Specimen preparation for mechanical tests: (<b>a</b>) print object geometry for mechanical tests; (<b>b</b>) markings on specimens before cutting; (<b>c</b>) circular saw table: (1) circular saw blade; (2) metal guide fixed perpendicular to the saw blade; (3) metal guide fixed parallel to the saw blade.</p> "> Figure 4
<p>Test setups for compressive strength tests in various directions: (<b>a</b>) direction [u]; (<b>b</b>) direction [v]; (<b>c</b>) direction [w].</p> "> Figure 5
<p>Test setups for splitting strength tests in various directions: (<b>a</b>) direction [w/u]; (<b>b</b>) direction [v/w]; (<b>c</b>) direction [u/v].</p> "> Figure 6
<p>Test setups for flexural strength tests in various directions: (<b>a</b>) direction [u.w]; (<b>b</b>) direction [v.u]; (<b>c</b>) direction [w.u].</p> "> Figure 7
<p>Print object geometry for durability tests. Two printed objects: the bottom part was printed first for the object with the cold joint (T<sub>SET</sub>); the printed object without the cold joint (T<sub>0</sub>).</p> "> Figure 8
<p>Static and dynamic yield stress values obtained via rheometer and slugs tests.</p> "> Figure 9
<p>Direct buildability test: (<b>a</b>) mixture right before plastic collapse; (<b>b</b>) plastic collapse.</p> "> Figure 10
<p>Compressive strength test results.</p> "> Figure 11
<p>Comparison between compressive strength results of samples taken from different locations.</p> "> Figure 12
<p>Flexural strength test results.</p> "> Figure 13
<p>The fracture pattern of flexural strength test specimens: (<b>a</b>) direction [u.w]; (<b>b</b>) direction [v.u]; (<b>c</b>) direction [w.u].</p> "> Figure 14
<p>Splitting strength test results.</p> "> Figure 15
<p>Water absorption test results.</p> "> Figure 16
<p>Carbonation depth of the developed mixture after 7, 28, 56, and 90 days for (<b>a</b>) cast samples; (<b>b</b>) printed samples without the cold joint (T<sub>0</sub>); (<b>c</b>) printed samples with the cold joint (T<sub>SET</sub>).</p> "> Figure 17
<p>3D-printed carbonation samples after testing: (<b>a</b>) T<sub>0</sub> after 7 days; (<b>b</b>) T<sub>0</sub> after 28 days; (<b>c</b>) T<sub>0</sub> after 56 days; (<b>d</b>) T<sub>0</sub> after 90 days; (<b>e</b>) T<sub>SET</sub> after 7 days; (<b>f</b>) T<sub>SET</sub> after 28 days; (<b>g</b>) T<sub>SET</sub> after 56 days; (<b>h</b>) T<sub>SET</sub> after 90 days.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixing and 3D Printing
2.3. Fresh State Properties
2.4. Mechanical Testing
- [u] direction—load applied perpendicular to the v,w plane (n = 9);
- [v] direction—load applied perpendicular to the u,w plane (n = 9);
- [w] direction—load applied perpendicular to the u,v plane (n = 9).
- [w/u] direction—load applied parallel to print direction (n = 9);
- [v/w] direction—load applied perpendicular to the top plane (n = 9);
- [u/v] direction—load applied perpendicular to the side plane (n = 9).
- [u.w] direction—load applied parallel to print direction (n = 7);
- [v.u] direction—load applied perpendicular to the top plane (n = 7);
- [w.u] direction—load applied perpendicular to the side plane (n = 7).
2.5. Durability Testing
- T0 with the side planes left uncoated (n = 3);
- T0 with the top and bottom planes left uncoated (n = 3);
- TSET with the side planes left uncoated (n = 3);
- TSET with the top and bottom planes left uncoated (n = 3);
- Cast samples with two of the molded planes left uncoated (n = 3).
- Without the cold joint, T0 with one of the side planes left uncoated (day 7, 28, 56, and 90, n = 3 for each day);
- With the cold joint, TSET with one of the side planes left uncoated (day 7, 28, 56, and 90, n = 3 for each day);
- Cast samples with two of the molded planes left uncoated (day 7, 28, 56, and 90, n = 3 for each day).
3. Results and Discussion
3.1. Fresh Properties
3.2. Mechanical Properties
3.2.1. Compressive Strength
3.2.2. Flexural Strength
3.2.3. Splitting Strength
3.3. Durability Properties
3.3.1. Water Absorption
3.3.2. Carbonation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, J.; Cui, C.; Yu, J.; Yu, K.; Xiao, J. Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber. Compos. Part B Eng. 2021, 211, 108639. [Google Scholar] [CrossRef]
- Malik, U.J.; Riaz, R.D.; Rehman, S.U.; Usman, M.; Riaz, R.E.; Hamza, R. Advancing mix design prediction in 3D printed concrete: Predicting anisotropic compressive strength and slump flow. Case Stud. Constr. Mater. 2024, 21, e03510. [Google Scholar] [CrossRef]
- Hou, S.; Duan, Z.; Xiao, J.; Ye, J. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Constr. Build. Mater. 2021, 273, 121745. [Google Scholar] [CrossRef]
- Munemo, R.; Kruger, J.; van Zijl, G.P.A.G. Improving interlayer bond in 3D printed concrete through induced thermo-hydrokinetics. Constr. Build. Mater. 2023, 393, 132121. [Google Scholar] [CrossRef]
- Kruger, J.; van Zijl, G. A compendious review on lack-of-fusion in digital concrete fabrication. Addit. Manuf. 2021, 37, 101654. [Google Scholar] [CrossRef]
- Moelich, G.M.; Kruger, J.; Combrinck, R. Modelling the interlayer bond strength of 3D printed concrete with surface moisture. Cem. Concr. Res. 2021, 150, 106559. [Google Scholar] [CrossRef]
- Van Der Putten, J.; De Schutter, G.; Van Tittelboom, K. The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials. In Proceedings of the First RILEM International Conference on Concrete and Digital Fabrication—Digital Concrete, Zurich, Switzerland, 10–12 September 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 234–244. [Google Scholar] [CrossRef]
- Van Der Putten, J.; De Volder, M.; Van den Heede, P.; Deprez, M.; Cnudde, V.; De Schutter, G.; Van Tittelboom, K. Transport properties of 3D printed cementitious materials with prolonged time gap between successive layers. Cem. Concr. Res. 2022, 155, 106777. [Google Scholar] [CrossRef]
- Panda, B.; Paul, S.C.; Tan, M.J. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater. Lett. 2017, 209, 146–149. [Google Scholar] [CrossRef]
- Cicione, A.; Kruger, J.; Walls, R.S.; Van Zijl, G. An experimental study of the behavior of 3D printed concrete at elevated temperatures. Fire Saf. J. 2021, 120, 103075. [Google Scholar] [CrossRef]
- Moini, M.; Olek, J.; Magee, B.; Zavattieri, P.; Youngblood, J. Additive Manufacturing and Characterization of Architectured Cement-Based Materials via X-ray Micro-computed Tomography. In Proceedings of the First RILEM International Conference on Concrete and Digital Fabrication–Digital Concrete, Zurich, Switzerland, 10–12 September 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 176–189. [Google Scholar] [CrossRef]
- Moelich, G.M.; Kruger, P.J.; Combrinck, R. The effect of restrained early age shrinkage on the interlayer bond and durability of 3D printed concrete. J. Build. Eng. 2021, 43, 102857. [Google Scholar] [CrossRef]
- Van Der Putten, J.; De Volder, M.; Van den Heede, P.; De Schutter, G.; Van Tittelboom, K. 3D Printing of Concrete: The Influence on Chloride Penetration. In RILEM International Conference on Concrete and Digital Fabrication; Springer International Publishing: Cham, Switzerland, 2020; pp. 500–507. [Google Scholar] [CrossRef]
- Nerella, V.N.; Hempel, S.; Mechtcherine, V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr. Build. Mater. 2019, 205, 586–601. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cem. Concr. Res. 2019, 119, 132–140. [Google Scholar] [CrossRef]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- Bos, F.; Mechtcherine, V.; Roussel, N.; Menna, C.; Wolfs, R.; Lombois-Burger, H.; Baz, B.; Weger, D.; Moro, S.; Nematollahi, B.; et al. RILEM TC 304-ADC ILS-mech Study Plan; Technical University of Munich: Munich, Germany, 2023. [Google Scholar] [CrossRef]
- Kränkel, T.; Van Tittelboom, K.; Van Der Putten, J. RILEM TC 304-ADC ILS-DURASHRINK Study Plan; Technical University of Munich: Munich, Germany, 2023. [Google Scholar]
- Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. Effect of constituents on rheological properties of fresh concrete—A review. Cem. Concr. Compos. 2017, 83, 146–159. [Google Scholar] [CrossRef]
- Marchon, D.; Kawashima, S.; Bessaies-Bey, H.; Mantellato, S.; Ng, S. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cem. Concr. Res. 2018, 112, 96–110. [Google Scholar] [CrossRef]
- Khayat, K.H. Effects of Antiwashout Admixtures on Fresh Concrete Properties. ACI Mater. J. 1995, 92, 164–171. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cem. Concr. Res. 2005, 35, 913–917. [Google Scholar] [CrossRef]
- EN 12350-6:2019; Testing Fresh Concrete—Part 6: Density. European Committee for Standardization: Brussels, Belgium, 2019.
- EN 1015-3:2000; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). European Committee for Standardization: Brussels, Belgium, 1999.
- EN 196-3:2016; Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. European Committee for Standardization: Brussels, Belgium, 2016.
- Ducoulombier, N.; Carneau, P.; Mesnil, R.; Demont, L.; Caron, J.-F.; Roussel, N. ‘The Slug Test’: Inline Assessment of Yield Stress for Extrusion-Based Additive Manufacturing. In Second RILEM International Conference on Concrete and Digital Fabrication; Springer International Publishing: Cham, Switzerland, 2020; pp. 216–224. [Google Scholar] [CrossRef]
- Nicolas, R.; Dirk, L. 303-PFC: Performance Requirements and Testing of Fresh Printable Cement-Based Materials; RILEM Technical Committee: Paris, France, 2021. [Google Scholar]
- Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr. Build. Mater. 2017, 145, 639–647. [Google Scholar] [CrossRef]
- Kruger, J.; Zeranka, S.; van Zijl, G. 3D concrete printing: A lower bound analytical model for buildability performance quantification. Autom. Constr. 2019, 106, 102904. [Google Scholar] [CrossRef]
- Ivanova, I.; Ivaniuk, E.; Bisetti, S.; Nerella, V.N.; Mechtcherine, V. Comparison between methods for indirect assessment of buildability in fresh 3D printed mortar and concrete. Cem. Concr. Res. 2022, 156, 106764. [Google Scholar] [CrossRef]
- Suiker, A.S.J.; Wolfs, R.J.M.; Lucas, S.M.; Salet, T.A.M. Elastic buckling and plastic collapse during 3D concrete printing. Cem. Concr. Res. 2020, 135, 106016. [Google Scholar] [CrossRef]
- EN 1015-11:2019; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization: Brussels, Belgium, 2019.
- EN 1936:2006; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. European Committee for Standardization: Brussels, Belgium, 2006.
- Sahmenko, G.; Puzule, L.; Sapata, A.; Slosbergs, P.; Bumanis, G.; Sinka, M.; Bajare, D. Gypsum–Cement–Pozzolan Composites for 3D Printing: Properties and Life Cycle Assessment. J. Compos. Sci. 2024, 8, 212. [Google Scholar] [CrossRef]
- EN-1992-1-1:2024; Eurocode 2—Design of concrete structures—Part 1-1: General rules and rules for buildings, bridges and civil engineering structures. European Committee for Standardization: Brussels, Belgium, 2024.
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; She, W.; Yang, L.; Liu, G.; Yang, Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr. Build. Mater. 2019, 201, 278–285. [Google Scholar] [CrossRef]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Law, R.; Gibb, A.G.; Thorpe, T. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 2012, 42, 558–566. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Will, F.; Näther, M.; Otto, J.; Krause, M. Large-scale digital concrete construction—CONPrint3D concept for on-site, monolithic 3D-printing. Autom. Constr. 2019, 107, 102933. [Google Scholar] [CrossRef]
- Elistratkin, M.; Alfimova, N.; Podgornyi, D.; Olisov, A.; Promakhov, V.; Kozhukhova, N. Influence of Equipment Operation Parameters on the Characteristics of a Track Produced with Construction 3D Printing. Buildings 2022, 12, 593. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Li, P.-L.; Yan, Z.-T.; Zhou, J.-K.; Quach, W.-M.; Zhuge, Y. Behavior of 3D-printed HPC plates with FRP grid reinforcement under bending. Eng. Struct. 2023, 294, 116578. [Google Scholar] [CrossRef]
- Liao, J.; Yang, K.Y.; Zeng, J.-J.; Quach, W.-M.; Ye, Y.-Y.; Zhang, L. Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) in circular columns. Eng. Struct. 2021, 249, 113246. [Google Scholar] [CrossRef]
- Anleu, P.C.B. Quantitative Micro XRF Mapping of Chlorides: Possibilities, Limitations, and Applications, from Cement to Digital Concrete; ETH Zurich: Zürich, Switzerland, 2018. [Google Scholar]
- Kruger, J.; Plessis, A.D.; van Zijl, G. An investigation into the porosity of extrusion-based 3D printed concrete. Addit. Manuf. 2021, 37, 101740. [Google Scholar] [CrossRef]
- Van Der Putten, J.; Deprez, M.; Cnudde, V.; De Schutter, G.; Van Tittelboom, K. Microstructural Characterization of 3D Printed Cementitious Materials. Materials 2019, 12, 2993. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gencturk, B.; Willam, K.; Attar, A. Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures. J. Mater. Civ. Eng. 2015, 27, 04014245. [Google Scholar] [CrossRef]
CEM I/A-LL 42.5, Schwenk | Limestone Filler, Saulkalne | Sand, fr. 0–2 mm, Sakret | Additives | Polypropylene Fiber |
---|---|---|---|---|
300 | 200 | 490 | 10 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapata, A.; Šinka, M.; Šahmenko, G.; Korat Bensa, L.; Hanžič, L.; Šter, K.; Ručevskis, S.; Bajāre, D.; Bos, F.P. Establishing Benchmark Properties for 3D-Printed Concrete: A Study of Printability, Strength, and Durability. J. Compos. Sci. 2025, 9, 74. https://doi.org/10.3390/jcs9020074
Sapata A, Šinka M, Šahmenko G, Korat Bensa L, Hanžič L, Šter K, Ručevskis S, Bajāre D, Bos FP. Establishing Benchmark Properties for 3D-Printed Concrete: A Study of Printability, Strength, and Durability. Journal of Composites Science. 2025; 9(2):74. https://doi.org/10.3390/jcs9020074
Chicago/Turabian StyleSapata, Alise, Māris Šinka, Genādijs Šahmenko, Lidija Korat Bensa, Lucija Hanžič, Katarina Šter, Sandris Ručevskis, Diāna Bajāre, and Freek P. Bos. 2025. "Establishing Benchmark Properties for 3D-Printed Concrete: A Study of Printability, Strength, and Durability" Journal of Composites Science 9, no. 2: 74. https://doi.org/10.3390/jcs9020074
APA StyleSapata, A., Šinka, M., Šahmenko, G., Korat Bensa, L., Hanžič, L., Šter, K., Ručevskis, S., Bajāre, D., & Bos, F. P. (2025). Establishing Benchmark Properties for 3D-Printed Concrete: A Study of Printability, Strength, and Durability. Journal of Composites Science, 9(2), 74. https://doi.org/10.3390/jcs9020074