Physical Foam Injection Molding of Cellulose Fiber Reinforced Polypropylene by Using CO2: Parameter Variation and Comparison to Chemical Foam Injection Molding
<p>Research design and aim of the present study.</p> "> Figure 2
<p>Reduction in weight of several PP–cellulose plates prepared with MuCell<sup>®</sup> FIM with CO<sub>2</sub> and N<sub>2</sub>, and with chemical FIM for the complete plates (y-axis) and for the middle part of the plate (x-axis). The line represents equal values for weight reduction in the middle and complete plates.</p> "> Figure 3
<p>Flexural modulus (<b>a</b>) and flexural strength (<b>b</b>) of the PP–cellulose plates prepared using FIM.</p> "> Figure 4
<p>Specific flexural modulus (<b>a</b>) and specific flexural strength (<b>b</b>) of the PP–cellulose plates, prepared using FIM in relation to a compact reference. Error bars represent the 95% confidence interval.</p> "> Figure 5
<p>Charpy impact strength, notched (<b>a</b>) and unnotched (<b>b</b>) of PP–cellulose plates, prepared using FIM.</p> "> Figure 6
<p>Charpy impact strength, specific, notched (<b>a</b>) and unnotched (<b>b</b>), of PP–cellulose plates, prepared using FIM in relation to a compact reference. Error bars represent a 95% confidence interval.</p> "> Figure 7
<p>Microscopy images of foamed PP–cellulose. MuCell<sup>®</sup> with CO<sub>2</sub>: Sample 1 (<b>a</b>), Sample 5 (<b>b</b>), Sample 6 (<b>c</b>) and Sample 7 (<b>d</b>); MuCell<sup>®</sup> with N<sub>2</sub>: Sample 10 (<b>e</b>) and Sample 16, derived using chemical FIM (<b>f</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. PP–Cellulose Compound
2.2. Foam Injection Molding
3. Results and Discussion
3.1. Processing Parameters and Achieved Weight Reductions
3.2. Flexural Properties
3.3. Impact Strength
3.4. Structure of the Foams
4. Conclusions
- Mold opening during foaming results in reduced mechanical performance, whereas the size of the mold-opening gap appears to have almost negligible influence.
- Higher injection speed during the MuCell® process led to a finer foaming cell morphology, resulting in the highest absolute and specific impact strengths of all MuCell®-foamed samples.
- With all other processing conditions being equal, N2-based MuCell® foaming tends to produce slightly better-performing materials than CO2-based MuCell® foaming.
- In terms of other processing parameters, such as shot volume, gas content and injection speed, the influence of the individual parameters on the overall mechanical performance is less clear; instead, the main factor affecting the mechanics seems to be the density reduction, regardless of the manner in which it was achieved.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simon, S.A.; Hain, J.; Osswald, T.A. Modeling and simulation of an alternative microcellular injection molding process Ku-FizzTM. AIP Conf. Proc. 2023, 2884, 220001. [Google Scholar] [CrossRef]
- Mihalic, M.; Sobczak, L.; Pretschuh, C.; Unterweger, C. Increasing the Impact Toughness of Cellulose Fiber Reinforced Polypropylene Composites—Influence of Different Impact Modifiers and Production Scales. J. Compos. Sci. 2019, 3, 82. [Google Scholar] [CrossRef]
- Vardai, R.; Lummerstorfer, T.; Pretschuh, C.; Jerabek, M.; Gahleitner, M.; Bartos, A.; Moczo, J.; Anggono, J.; Pukanszky, B. Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization. Polym. Adv. Technol. 2021, 32, 2499–2507. [Google Scholar] [CrossRef]
- Civancik-Uslu, D.; Ferrer, L.; Puig, R.; Fullana-i-Palmer, P. Are functional fillers improving environmental behavior of plastics? A review on LCA studies. Sci. Total Environ. 2018, 626, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Hesser, F. Environmental advantage by choice: Ex-ante LCA for a new Kraft pulp fibre reinforced polypropylene composite in comparison to reference materials. Compos. Part B Eng. 2015, 79, 197–203. [Google Scholar] [CrossRef]
- Shen, L.; Patel, M.K. Life cycle assessment of man-made cellulose fibres. Lenzing. Berichte 2010, 88, 1–59. [Google Scholar]
- Feng, T.; Guo, W.; Li, W.; Meng, Z.; Zhu, Y.; Zhao, F.; Liang, W. Unveiling sustainable potential: A life cycle assessment of plant-fibre composite microcellular foam molded automotive components. Materials 2023, 16, 4952. [Google Scholar] [CrossRef]
- Ding, W.; Jahani, D.; Chang, E.; Alemdar, A.; Park, C.B.; Sain, M. Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Compos. Part A Appl. Sci. Manuf. 2016, 83, 130–139. [Google Scholar] [CrossRef]
- Bozkurt, B.; Oktem, H.; Konada, N.K. Comparison of Conventional and Microcellular Injection Using New Chemical Agents. Mater. Manuf. Process. 2023, 38, 1863–1871. [Google Scholar] [CrossRef]
- Elduque, D.; Claveria, I.; Fernandez, A.; Javierre, C.; Pina, C.; Santolaria, J. Analysis of the influence of microcellular injection molding on the environmental impact of an industrial component. Adv. Mech. Eng. 2014, 6, 793269. [Google Scholar] [CrossRef]
- Altstädt, V.; Mantey, A. Thermoplast-Schaumspritzgießen. Auflage: 1; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2010; ISBN 9783446412514. [Google Scholar]
- Ma, W.; Weng, Z.; Wu, M.; Ren, Q.; Wu, F.; Wang, L.; Zheng, W. Lightweight and High Impact Polypropylene Foam Fabricated via Ultra-Low Gas Pressure Injection Molding. Macromol. Mater. Eng. 2023, 308, 2200510. [Google Scholar] [CrossRef]
- Wang, L.; Hikima, Y.; Ohshima, M.; Yusa, A.; Yamamoto, S.; Goto, H. Development of a Simplified Foam Injection Molding Technique and Its Application to the Production of High Void Fraction Polypropylene Foams. Ind. Eng. Chem. Res. 2017, 56, 13734–13742. [Google Scholar] [CrossRef]
- Naito, A.; Hosoe, S.; Hikima, Y.; Ohshima, M. Dissolution Mechanism of Physical Blowing Agent into the Polymer in Low-pressure Physical Foam Injection Molding Process (Part 1) Effect of Molding Conditions on Physical Blowing Agent Concentration. Seikei-Kakou 2024, 36, 79–86. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Matuana, L.M. Microcellular foamed wood-plastic composites by different processes: A review. Macromol. Mater. Eng. 2007, 292, 113–127. [Google Scholar] [CrossRef]
- Zeng, F.; Liu, X.; Chen, Y.; Li, H.; Mao, H.; Guo, W. The Cellular Structure and Mechanical Properties of Polypropylene/Nano-CaCO3/Ethylene-propylene-diene-monomer Composites Prepared by an In-Mold-Decoration/Microcellular-Injection-Molding Process. Polymers 2023, 15, 3604. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, L.; Guo, W.; Zhao, F.; Lio, X.; Zhao, J.; Feng, T. Research on properties and cellular structure of nano-CaCO3/rice-husk fiber/polypropylene three-phase thermoplastic microcellular foaming composites. Polym Compos. 2024, 45, 11487–11499. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, W.; Zhao, F.; Feng, T.; Yan, K. Effect of inorganic nanoparticles on polypropylene in-mold decoration and microcellular foaming injection molding composites. Polym. Eng. Sci. 2024, 64, 5061–5072. [Google Scholar] [CrossRef]
- Wang, G.; Dong, M.; Yuan, M.; Ren, J.; Gu, J.; Zhang, X.; Tan, D.; Zhang, Y.; Yao, C.; El-Bahy, Z.M.; et al. Effects of process conditions and nano-fillers on the cell structure and mechanical properties of co-injection molded polypropylene-polyethylene composites. Polymer 2024, 299, 126935. [Google Scholar] [CrossRef]
- He, J.; Ma, Y.; Xie, J.; Wu, G.; Yang, W.; Xie, P. Preparation of lightweight and high-strength polypropylene-based ternary conductive polymer foams by in situ microfiber reinforcement. J. Appl. Polym. Sci. 2023, 140, e53432. [Google Scholar] [CrossRef]
- Sun, J.; Li, Q.; Jiang, Y.; Jiang, J.; Yang, L.; Jia, C.; Chen, F.; Wang, X. Lightweight and High Impact Toughness PP/PET/POE Composite Foams Fabricated by In Situ Nanofibrillation and Microcellular Injection Molding. Polymers 2023, 15, 227. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Z.; Mi, H.-J.; Zhao, P.; Dong, B.; Liu, C.; Shen, C. High-strength, impact-resistant PP/PTFE composite foam with enhanced surface appearance achieved through mold-opening microcellular injection molding. Polymer 2024, 311, 127527. [Google Scholar] [CrossRef]
- Guo, W.; Zheng, Z.; Li, W.; Li, H.; Zeng, F.; Mao, H. The Cellular Structure and Toughness of Hydrogenated Styrene-Butadiene Block Copolymer Reinforced Polypropylene Foams. Polymers 2023, 15, 1503. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, R.; Rodrigue, D.; Riedl, B. Injection molding of postconsumer Wood–Plastic Composites. J. Thermoplast. Compos. Mater. 2006, 19, 639–669. [Google Scholar] [CrossRef]
- Yoon, J.D.; Kuboki, T.; Jung, P.U.; Wang, J.; Park, C.B. Injection molding of wood-fiber/plastic composite foams. Compos. Interfaces 2009, 16, 797–811. [Google Scholar] [CrossRef]
- Kuboki, T. Mechanical properties and foaming behavior of injection molded cellulose fiber reinforced polypropylene composite foams. J. Cell. Plast. 2014, 50, 129–143. [Google Scholar] [CrossRef]
- Mihalic, M.; Pretschuh, C.; Lummerstorfer, T.; Unterweger, C. Physical and Chemical Foam Injection Moulding of Natural-Fibre-Reinforced Polypropylene—Assessment of Weight-Reduction Potential and Mechanical Properties. J. Compos. Sci. 2023, 7, 144. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, W.; Liu, X.; Zhao, J.; Feng, T. Injection molded lightweight composites from tea-stem fiber and polypropylene: Effect of fiber loading on forming properties and cell structure. Ind. Crops Prod. 2024, 221, 119372. [Google Scholar] [CrossRef]
- Yang, C.; Wang, G.; Zhao, J.; Zhao, G.; Zhang, A. Lightweight and strong glass fiber reinforced polypropylene composite foams achieved by mold-opening microcellular injection molding. J. Mater. Res. Technol. 2021, 14, 2920–2931. [Google Scholar] [CrossRef]
- Mendoza-Cedeno, S.; Embabi, M.; Chang, E.; Kweon, M.S.; Shivokhin, M.; Pehlert, G.; Lee, P. Influence of molecular weight on high- and low-expansion foam injection molding using linear polypropylene. Polymer 2023, 266, 125611. [Google Scholar] [CrossRef]
- Wang, L.; Ishihara, S.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Sato, A.; Yano, H. Unprecedented development of ultrahigh expansion injection-molded polypropylene foams by introducing hydrophobic-modified cellulose nanofibers. ACS Appl. Mater. Interfaces 2017, 9, 9250–9254. [Google Scholar] [CrossRef]
- Amash, A.; Zugenmaier, P. Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites. Polymer 2000, 41, 1589–1596. [Google Scholar] [CrossRef]
- Borja, Y.; Rieß, G.; Lederer, K. Synthesis and Characterization of Polypropylene reinforced with Cellulose I and II fibers. J. Appl. Polym. Sci. 2006, 101, 364–369. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Z.; Mi, H.-Y.; Chen, Y.; Wang, J.; Gu, L.; Dong, B.; Liu, C.; Shen, C. Effect of supercritical nitrogen content on the weld lines and mechanical properties of microcellular injection molded double gate PP/Al parts. J. Appl. Polym. Sci. 2024, 141, e55006. [Google Scholar] [CrossRef]
- Lehner, P.; Steidl, E.; Pretschuh, C.; Steinbichler, G. Injection molding of PP Cellulose fibre compound with chemical foaming agents. In Proceedings of the SPE Foams 15th International Conference on Advances in Foam Materials & Technology, Bayreuth, Germany, 11–12 October 2017. [Google Scholar]
- Nobe, R.; Qiu, J.; Kudo, M.; Zhang, G. Lightweight investigation of long chain branching polypropylene/cellulose nanofiber composite foams. J. Appl. Polym. Sci. 2021, 138, 50193. [Google Scholar] [CrossRef]
- Mendoza-Cedeno, S.; Kweon, M.S.; Newby, S.; Shivokhin, M.; Pehlert, G.; Lee, P.C. Improved cell morphology and surface roughness in high-temperature foam injection molding using a long-chain branched polypropylene. Polymers 2021, 13, 2404. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, F.; Ren, Q.; Weng, Z.; Luo, H.; Wang, L.; Zheng, W. Effect of crystalline structure on the cell morphology and mechanical properties of polypropylene foams fabricated by core-back foam injection molding. J. Appl. Polym. Sci. 2021, 138, 51370. [Google Scholar] [CrossRef]
- Shaayegan, V.; Wang, C.; Ataei, M.; Costa, F.; Han, S.; Bussmann, M.; Park, C.B. Supercritical CO2 utilization for development of graded cellular structures in semicrystalline polymers. J. CO2 Util. 2021, 51, 101615. [Google Scholar] [CrossRef]
- Kastner, C.; Mitterlehner, T.; Altmann, D.; Steinbichler, G. Backpressure optimization in foam injection molding: Method and assessment of sustainability. Polymers 2020, 12, 2696. [Google Scholar] [CrossRef]
- Sobczak, L.; Lang, R.W.; Haider, A. Polypropylene Composites with Natural Fibers and Wood—General Mechanical Property Profiles. Compos. Sci. Technol. 2012, 72, 550–557. [Google Scholar] [CrossRef]
- Yetgin, S.H.; Unal, H.; Mimaroglu, A. Influence of foam agent content and talc filler on the microcellular and mechanical properties of injection molded polypropylene and talc filled polypropylene composite foams. J. Cell. Plast. 2014, 50, 563–573. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Faruk, O. Injection moulded microcellular wood fibre-polypropylene composites. Compos. Part A 2006, 37, 1358–1367. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Y.; Lin, J.; Li, Y.; Zhai, J.; Li, X. Mold-opening foam injection molded strong PP/CF foams with high EMI shielding performance. J. Mater. Res. Technol. 2022, 17, 700–712. [Google Scholar] [CrossRef]
- Llewelyn, G.; Rees, A.; Griffiths, C.A.; Jacobi, M. A novel hybrid foaming method for low-pressure microcellular foam production of unfilled and talc-filled polypropylenes. Polymers 2019, 11, 1896. [Google Scholar] [CrossRef] [PubMed]
- Llewelyn, G.; Rees, A.; Griffiths, C.A.; Jacobi, M. A design of experiment approach for surface roughness comparisons of foam injection-moulding methods. Materials 2020, 13, 2358. [Google Scholar] [CrossRef]
- Xu, J.; Kishbaugh, L. Simple Modeling of the Mechanical Properties with Part Weight Reduction for Microcellular Foam Plastic. J. Cell. Plast. 2003, 39, 29–47. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Faruk, O. Microcellular wood fiber reinforced PP composites: Cell morphology, surface roughness, impact, and odor properties. J. Cell. Plast. 2005, 41, 539–550. [Google Scholar] [CrossRef]
- Gómez-Gómez, J.F.; Arencón, D.; Sánchez-Soto, M.Á.; Martínez, A.B. Influence of the injection moulding parameters on the microstructures and thermal properties of microcellular polyethylene therephthalate glycol foams. J. Cell. Plast. 2012, 49, 47–63. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Hwang, S.-S.; Chen, S.-C.; Lai, M.-C. Effects of injection molding process parameters on the chemical foaming behavior of polypropylene and polystyrene melts. Polymers 2021, 13, 2331. [Google Scholar] [CrossRef]
- Gong, W.; Jiang, T.-H.; Zeng, X.-B.; He, L.; Zhang, C. Experimental-numerical studies of the effect of cell structure on the mechanical properties of polypropylene foams. e-Polymers 2020, 20, 713–723. [Google Scholar] [CrossRef]
- Hou, J.; Zhao, G.; Wang, G. Polypropylene/talc foams with high weight reduction and improved surface quality fabricated by mold-opening microcellular injection molding. J. Mater. Res. Technol. 2021, 12, 74–86. [Google Scholar] [CrossRef]
Shot Volume [cm3] | Gas/CFA Content [wt%] | Mold Opening [mm] | Injection Speed [cm3/s] | Screw Speed [m/s] | Back Pressure [bar] | Cooling Time [s] | Cycle Time [s] | |
---|---|---|---|---|---|---|---|---|
Comp. | 114 | 0 | 0 | 114 | 0.3 | 70 | 25 | 42 |
CO2 | 95–108 | 1.0–1.6 | 0–0.6 | 110–250 | 0.3–0.5 | 150–175 | 22–30 | 37.5–45.5 |
N2 | 95 | 0.6 | 0.3–0.6 | 200 | 0.5 | 160 | 22 | 45.5 |
Chem. | 96.5 | 3–4 | 0.3–0.5 | 193 | 0.3–0.5 | 83–160 | 22 | 31–45.5 |
Type | Nr. | Shot Volume [cm3] | Gas Content [wt%] | Mold Opening [mm] | Injection Speed [cm3/s] | Density Reduction, Middle [%] | Weight Reduction, Middle [%] | Weight Reduction, Plate [%] |
---|---|---|---|---|---|---|---|---|
Compact | 0 | 114 | 0 | 0 | 110 | 0 | 0 | 0 |
CO2 | 1 | 108 | 1.2 | 0 | 110 | 6.8 | 3.4 | 5.4 |
2 | 100 | 1.0 | 0 | 200 | 10.2 | 9.1 | 10.0 | |
3 | 100 | 1.6 | 0 | 170 | 10.7 | 9.6 | 9.7 | |
4 | 100 | 1.2 | 0.6 | 200 | 25.9 | 8.5 | 10.8 | |
5 | 95 | 1.6 | 0 | 250 | 14.8 | 13.5 | 12.8 | |
6 | 95 | 1.2 | 0 | 200 | 22.2 | 19.3 | 15.2 | |
7 | 95 | 1.2 | 0.3 | 200 | 27.8 | 16.4 | 16.0 | |
8 | 95 | 1.2 | 0.5 | 200 | 30.7 | 16.5 | 15.7 | |
9 * | 95 | 1.2 | 0.3 | 240 | 26.8 | 15.9 | 15.4 | |
N2 | 10 | 95 | 0.6 | 0.3 | 200 | 28.6 | 17.0 | 15.4 |
11 | 95 | 0.6 | 0.5 | 200 | 33.5 | 17.1 | 15.5 |
Nr. | CFA Content [wt%] | Mold Opening [mm] | Temperature Nozzle [°C] | Screw Speed [m/s] | Density Reduction, Middle [%] | Weight Reduction, Middle [%] | Weight Reduction, Plate [%] |
---|---|---|---|---|---|---|---|
12 | 3 | 0.3 | 200 | 0.5 | 24.5 | 13.5 | 14.7 |
13 | 3 | 0.5 | 200 | 0.5 | 26.6 | 13.2 | 14.6 |
14 | 4 | 0.5 | 200 | 0.3 | 26.0 | 9.2 | 11.2 |
15 | 4 | 0.5 | 185 | 0.3 | 22.4 | 7.8 | 11.8 |
16 * | 4 | 0.5 | 185 | 0.3 | 25.4 | 9.2 | 13.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pretschuh, C.; Mihalic, M.; Sponner, C.; Lummerstorfer, T.; Steurer, A.; Unterweger, C. Physical Foam Injection Molding of Cellulose Fiber Reinforced Polypropylene by Using CO2: Parameter Variation and Comparison to Chemical Foam Injection Molding. J. Compos. Sci. 2025, 9, 50. https://doi.org/10.3390/jcs9010050
Pretschuh C, Mihalic M, Sponner C, Lummerstorfer T, Steurer A, Unterweger C. Physical Foam Injection Molding of Cellulose Fiber Reinforced Polypropylene by Using CO2: Parameter Variation and Comparison to Chemical Foam Injection Molding. Journal of Composites Science. 2025; 9(1):50. https://doi.org/10.3390/jcs9010050
Chicago/Turabian StylePretschuh, Claudia, Matthias Mihalic, Christian Sponner, Thomas Lummerstorfer, Andreas Steurer, and Christoph Unterweger. 2025. "Physical Foam Injection Molding of Cellulose Fiber Reinforced Polypropylene by Using CO2: Parameter Variation and Comparison to Chemical Foam Injection Molding" Journal of Composites Science 9, no. 1: 50. https://doi.org/10.3390/jcs9010050
APA StylePretschuh, C., Mihalic, M., Sponner, C., Lummerstorfer, T., Steurer, A., & Unterweger, C. (2025). Physical Foam Injection Molding of Cellulose Fiber Reinforced Polypropylene by Using CO2: Parameter Variation and Comparison to Chemical Foam Injection Molding. Journal of Composites Science, 9(1), 50. https://doi.org/10.3390/jcs9010050