Computational Investigation of the Mechanical Response of a Bioinspired Nacre-like Nanocomposite under Three-Point Bending
<p>Fabrication process of the 3D staggered composite model: initial 2D model creation using CVT, development of the interfacial zone by modifying Voronoi cell boundaries, and assembly of varied layers to construct the final 3D composite.</p> "> Figure 2
<p>Schematic representation of granular nanocomposite: microstructural details of staggered composite and interfaces between grains and interlayers.</p> "> Figure 3
<p>Representative traction–separation curves for interfacial behaviors: (<b>a</b>) normal direction and (<b>b</b>) shear direction.</p> "> Figure 4
<p>Microstructural meshing of the specimen: (<b>a</b>) single grain meshing detail and (<b>b</b>) layer-by-layer meshing configuration.</p> "> Figure 5
<p>Schematic representation of the three-point bending test setup in the simulation: (<b>a</b>) front view and (<b>b</b>) 3D view of the setup.</p> "> Figure 6
<p>Sequential stress distribution snapshots (<math display="inline"><semantics> <msub> <mi>σ</mi> <mrow> <mn>22</mn> </mrow> </msub> </semantics></math>) during the simulation: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 0.0 nm (initial stage), (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 83.16 nm (initial loading stage), (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 226.8 nm (microcrack initiation), (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 393.12 nm (crack growth), (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 574.56 nm (crack coalescence), and (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mo>=</mo> </mrow> </semantics></math> 756 nm (final failure stage).</p> "> Figure 7
<p>Detailed analysis of the bottom layer in <a href="#jcs-08-00173-f006" class="html-fig">Figure 6</a>: (<b>a</b>) initial crack sites exhibiting high-stress concentration, (<b>b</b>) microcrack nucleation along interfacial zones at initial crack sites, (<b>c</b>) coalescence of microcracks from various sites, and (<b>d</b>) crack propagation along interfacial zones.</p> "> Figure 8
<p>Comprehensive analysis of the specimen’s front face illustrating preloading and fracture stages: (<b>a</b>) initial configuration of mineral tablets across different layers, (<b>b</b>) final configuration and stress distribution in a fully fractured specimen, (<b>c</b>) sliding dynamics of adjacent layers, and (<b>d</b>) stress distribution within a single layer.</p> "> Figure 9
<p>Detailed visualization of interlayer crack deflection and propagation in the specimen.</p> ">
Abstract
:1. Introduction
2. Computational Model and FEM Implementation
2.1. Geometric Model of Staggered Nanocomposite
2.2. Interfacial Zone Modeling Using Cohesive Zone Model
2.3. Material Properties
2.4. FEM Implementation of the Cohesive Zone Model
2.5. Loading and Boundary Conditions
3. Results and Discussion
3.1. Mechanical Response
3.2. Failure Mechanism and Fracture Morphology
4. Future Studies and Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-Dimensional |
3D | Three-Dimensional |
CVT | Centroidal Voronoi Tessellation |
FEA | finite-element analysis |
GO | graphene oxide |
PVC | polyvinyl chloride |
RVE | representative volume element |
References
- Ritchie, R.O.; Buehler, M.J.; Hansma, P. Plasticity and toughness in bone. Phys. Today 2009, 62, 41–47. [Google Scholar] [CrossRef]
- Jäger, I.; Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 2000, 79, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Barthelat, F.; Tang, H.; Zavattieri, P.; Li, C.M.; Espinosa, H. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 2007, 55, 306–337. [Google Scholar] [CrossRef]
- Weiner, S.; Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem. 1997, 7, 689–702. [Google Scholar] [CrossRef]
- Jackson, A.; Vincent, J.F.; Turner, R. The mechanical design of nacre. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 1988, 234, 415–440. [Google Scholar]
- Barthelat, F. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size. J. Mech. Phys. Solids 2014, 73, 22–37. [Google Scholar] [CrossRef]
- Guo, X.; Gao, H. Bio-inspired material design and optimization. In IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives; Springer: Berlin/Heidelberg, Germany, 2006; pp. 439–453. [Google Scholar]
- Rabiei, R.; Bekah, S.; Barthelat, F. Failure mode transition in nacre and bone-like materials. Acta Biomater. 2010, 6, 4081–4089. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.R.; Philips, N.R.; Compton, B.G.; Wilbrink, D.V.; Ritchie, R.O.; Utz, M. Micromechanical models to guide the development of synthetic ‘brick and mortar’composites. J. Mech. Phys. Solids 2012, 60, 1545–1560. [Google Scholar] [CrossRef]
- Barthelat, F.; Mirkhalaf, M. The quest for stiff, strong and tough hybrid materials: An exhaustive exploration. J. R. Soc. Interface 2013, 10, 20130711. [Google Scholar] [CrossRef] [PubMed]
- Bonderer, L.J.; Studart, A.R.; Gauckler, L.J. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Valashani, S.M.M.; Barrett, C.J.; Barthelat, F. Self-assembly of microscopic tablets within polymeric thin films: A possible pathway towards new hybrid materials. RSC Adv. 2015, 5, 4780–4787. [Google Scholar] [CrossRef]
- Deville, S.; Saiz, E.; Nalla, R.K.; Tomsia, A.P. Freezing as a path to build complex composites. Science 2006, 311, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.B.; Gao, H.L.; Yao, H.B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S.M.; Li, S.K.; Yan, Y.X.; Liu, Y.Y.; et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Barthelat, F.; Zhu, D. A novel biomimetic material duplicating the structure and mechanics of natural nacre. J. Mater. Res. 2011, 26, 1203–1215. [Google Scholar] [CrossRef]
- Espinosa, H.D.; Juster, A.L.; Latourte, F.J.; Loh, O.Y.; Gregoire, D.; Zavattieri, P.D. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat. Commun. 2011, 2, 173. [Google Scholar] [CrossRef] [PubMed]
- Chintapalli, R.K.; Breton, S.; Dastjerdi, A.K.; Barthelat, F. Strain rate hardening: A hidden but critical mechanism for biological composites? Acta Biomater. 2014, 10, 5064–5073. [Google Scholar] [CrossRef] [PubMed]
- Valashani, S.M.M.; Barthelat, F. A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre. Bioinspiration Biomim. 2015, 10, 026005. [Google Scholar] [CrossRef] [PubMed]
- Barthelat, F.; Rabiei, R. Toughness amplification in natural composites. J. Mech. Phys. Solids 2011, 59, 829–840. [Google Scholar] [CrossRef]
- Barthelat, F.; Yin, Z.; Buehler, M.J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 2016, 1, 1–16. [Google Scholar] [CrossRef]
- Kotha, S.; Li, Y.; Guzelsu, N. Micromechanical model of nacre tested in tension. J. Mater. Sci. 2001, 36, 2001–2007. [Google Scholar] [CrossRef]
- Bar-On, B.; Wagner, H.D. Mechanical model for staggered bio-structure. J. Mech. Phys. Solids 2011, 59, 1685–1701. [Google Scholar] [CrossRef]
- Gao, H. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 2006, 138, 101–137. [Google Scholar] [CrossRef]
- Alava, M.J.; Nukala, P.K.; Zapperi, S. Statistical models of fracture. Adv. Phys. 2006, 55, 349–476. [Google Scholar] [CrossRef]
- Dimas, L.S.; Giesa, T.; Buehler, M.J. Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture. J. Mech. Phys. Solids 2014, 63, 481–490. [Google Scholar] [CrossRef]
- Katti, D.R.; Katti, K.S. Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques Part I Elastic properties. J. Mater. Sci. 2001, 36, 1411–1417. [Google Scholar] [CrossRef]
- Askarinejad, S.; Rahbar, N. Toughening mechanisms in bioinspired multilayered materials. J. R. Soc. Interface 2015, 12, 20140855. [Google Scholar] [CrossRef] [PubMed]
- Pro, J.W.; Lim, R.K.; Petzold, L.R.; Utz, M.; Begley, M.R. GPU-based simulations of fracture in idealized brick and mortar composites. J. Mech. Phys. Solids 2015, 80, 68–85. [Google Scholar]
- Pro, J.W.; Lim, R.K.; Petzold, L.R.; Utz, M.; Begley, M.R. The impact of stochastic microstructures on the macroscopic fracture properties of brick and mortar composites. Extrem. Mech. Lett. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Mirkhalaf, M.; Barthelat, F. Nacre-like materials using a simple doctor blading technique: Fabrication, testing and modeling. J. Mech. Behav. Biomed. Mater. 2016, 56, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Niebel, T.P.; Bouville, F.; Kokkinis, D.; Studart, A.R. Role of the polymer phase in the mechanics of nacre-like composites. J. Mech. Phys. Solids 2016, 96, 133–146. [Google Scholar] [CrossRef]
- Anup, S. Influence of initial flaws on the mechanical properties of nacre. J. Mech. Behav. Biomed. Mater. 2015, 46, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Chandler, M.Q.; Cheng, J.R.C. Discrete element modeling of microstructure of nacre. Comput. Part. Mech. 2018, 5, 191–201. [Google Scholar] [CrossRef]
- Lim, R.K.; Pro, J.W.; Begley, M.R.; Utz, M.; Petzold, L.R. High-performance simulation of fracture in idealized ‘brick and mortar’composites using adaptive Monte Carlo minimization on the GPU. Int. J. High Perform. Comput. Appl. 2016, 30, 186–199. [Google Scholar] [CrossRef]
- Gao, H.; Ji, B.; Jäger, I.L.; Arzt, E.; Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 2003, 100, 5597–5600. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.; Ngo, T.D.; Ghazlan, A.; Hui, D. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Compos. Part B Eng. 2017, 108, 210–223. [Google Scholar] [CrossRef]
- Maghsoudi-Ganjeh, M.; Lin, L.; Yang, X.; Zeng, X. Computational modeling and simulation of bioinspired nacre-like composites. J. Mater. Res. 2021, 36, 2651–2661. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Zeng, X. Computational modeling of interfacial behaviors in nanocomposite materials. Int. J. Solids Struct. 2017, 115, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, X.; Zeng, X. Geometrical modeling of cell division and cell remodeling based on Voronoi tessellation method. CMES Comput. Model. Eng. Sci. 2014, 98, 203–220. [Google Scholar]
- Evesque, P.; Adjémian, F. Stress fluctuations and macroscopic stick-slip in granular materials. Eur. Phys. J. E 2002, 9, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Dastjerdi, A.K.; Rabiei, R.; Barthelat, F. The weak interfaces within tough natural composites: Experiments on three types of nacre. J. Mech. Behav. Biomed. Mater. 2013, 19, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Barthelat, F.; Espinosa, H. An experimental investigation of deformation and fracture of nacre–other of pearl. Exp. Mech. 2007, 47, 311–324. [Google Scholar] [CrossRef]
- Barthelat, F.; Li, C.M.; Comi, C.; Espinosa, H.D. Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 2006, 21, 1977–1986. [Google Scholar] [CrossRef]
- Lopez, M.I.; Martinez, P.E.M.; Meyers, M.A. Organic interlamellar layers, mesolayers and mineral nanobridges: Contribution to strength in abalone (Haliotis rufescence) nacre. Acta Biomater. 2014, 10, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Soh, A.; Bai, Y. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003, 24, 3623–3631. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Suo, Z.; Evans, A.; Yao, N.; Aksay, I. Deformation mechanisms in nacre. J. Mater. Res. 2001, 16, 2485–2493. [Google Scholar] [CrossRef]
- Meyers, M.A.; McKittrick, J.; Chen, P.Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zeng, X. Numerical investigation of the role of intercellular interactions on collective epithelial cell migration. Biomech. Model. Mechanobiol. 2018, 17, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi-Ganjeh, M.; Lin, L.; Wang, X.; Wang, X.; Zeng, X. Computational modeling of the mechanical behavior of 3D hybrid organic-inorganic nanocomposites. JOM 2019, 71, 3951–3961. [Google Scholar] [CrossRef]
- Maghsoudi-Ganjeh, M.; Wang, X.; Zeng, X. Computational investigation of the effect of water on the nanomechanical behavior of bone. J. Mech. Behav. Biomed. Mater. 2020, 101, 103454. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi-Ganjeh, M.; Lin, L.; Wang, X.; Zeng, X. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach. Biomech. Model. Mechanobiol. 2019, 18, 463–478. [Google Scholar] [CrossRef]
- Maghsoudi-Ganjeh, M.; Lin, L.; Wang, X.; Zeng, X. Bioinspired design of hybrid composite materials. Int. J. Smart Nano Mater. 2019, 10, 90–105. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Zeng, X. An improved interfacial bonding model for material interface modeling. Eng. Fract. Mech. 2017, 169, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.L.; Schäffer, T.E.; Viani, M.; Thompson, J.B.; Frederick, N.A.; Kindt, J.; Belcher, A.; Stucky, G.D.; Morse, D.E.; Hansma, P.K. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 1999, 399, 761–763. [Google Scholar] [CrossRef]
- Evans, A.; Suo, Z.; Wang, R.; Aksay, I.; He, M.; Hutchinson, J. Model for the robust mechanical behavior of nacre. J. Mater. Res. 2001, 16, 2475–2484. [Google Scholar] [CrossRef]
- Lin, A.Y.M.; Meyers, M.A.M. Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2009, 2, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, H.D.; Rim, J.E.; Barthelat, F.; Buehler, M.J. Merger of structure and material in nacre and bone–erspectives on de novo biomimetic materials. Prog. Mater. Sci. 2009, 54, 1059–1100. [Google Scholar] [CrossRef]
- Hrabánková, I.; Frỳda, J.; Šepitka, J.; Sasaki, T.; Frỳdová, B.; Lukeš, J. Mechanical properties of deep-sea molluscan shell. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, Y. Nanoscale plastic deformation mechanism in single crystal aragonite. J. Mater. Sci. 2013, 48, 785–796. [Google Scholar] [CrossRef]
- Hughes, T.J.; Pister, K.S.; Taylor, R.L. Implicit-explicit finite elements in nonlinear transient analysis. Comput. Methods Appl. Mech. Eng. 1979, 17, 159–182. [Google Scholar] [CrossRef]
- Ni, Y.; Song, Z.; Jiang, H.; Yu, S.H.; He, L. Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths. J. Mech. Phys. Solids 2015, 81, 41–57. [Google Scholar] [CrossRef]
- Wu, K.; Zheng, Z.; Zhang, S.; He, L.; Yao, H.; Gong, X.; Ni, Y. Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure. Mater. Des. 2019, 163, 107532. [Google Scholar] [CrossRef]
- Gao, H.L.; Chen, S.M.; Mao, L.B.; Song, Z.Q.; Yao, H.B.; Cölfen, H.; Luo, X.S.; Zhang, F.; Pan, Z.; Meng, Y.F.; et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 2017, 8, 287. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, R.; Sarayloo, R.; Dalir, H. Failure study of fiber/epoxy composite laminate interface using cohesive multiscale model. Adv. Compos. Lett. 2020, 29, 2633366X20910157. [Google Scholar] [CrossRef]
- Keshavanarayana, S.R.; Shahverdi, H.; Kothare, A.; Yang, C.; Bingenheimer, J. The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core. Compos. Struct. 2017, 175, 111–122. [Google Scholar] [CrossRef]
- Ehsani, A.; Rezaeepazhand, J. Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm. Int. J. Mech. Sci. 2016, 119, 97–106. [Google Scholar] [CrossRef]
- Song, J.; Fan, C.; Ma, H.; Liang, L.; Wei, Y. Crack deflection occurs by constrained microcracking in nacre. Acta Mech. Sin. 2017, 34, 143–150. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Yang, H.; Liu, Y.; Yarlagadda, P.K.; Yan, C. Investigation of failure mechanisms of nacre at macro and nano scales. J. Mech. Behav. Biomed. Mater. 2020, 112, 104018. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.M.; Ji, H.M.; Li, X.W. The crucial role of platelet stacking mode in strength and toughness of nacre. Mater. Des. 2023, 230, 111987. [Google Scholar] [CrossRef]
- Cui, W.; Li, M.; Liu, J.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 2014, 8, 9511–9517. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.B.; Lee, S.R.; Seo, T.H.; Kim, Y.K. Fabrication of a strong artificial nacre based on tannic acid-functionalized graphene oxide and poly (vinyl alcohol) through their multidentate hydrogen bonding. Macromol. Res. 2022, 30, 279–284. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Ma, P.; Zhang, S.; Zhang, H.; Du, M.; Xie, Y.; Chen, M.; Dong, W.; Ming, W. Artificial nacre from supramolecular assembly of graphene oxide. ACS Nano 2018, 12, 6228–6235. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xu, Z.; Wu, Y.; Cheng, Q.; Guo, Q.; Wang, H. Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon 2017, 111, 807–812. [Google Scholar] [CrossRef]
- Tang, S.; Wu, Z.; Li, X.; Xie, F.; Ye, D.; Ruiz-Hitzky, E.; Wei, L.; Wang, X. Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films with high strength and superior gas barrier properties. Carbohydr. Polym. 2023, 299, 120204. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, W.; Tan, J.; Liu, J.; Zhu, M.; Zhu, B.; Zhang, Q. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 7170–7180. [Google Scholar] [CrossRef]
- Wang, J.; Song, T.; Ming, W.; Yele, M.; Chen, L.; Zhang, H.; Zhang, X.; Liang, B.; Wang, G. High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Res. 2024, 17, 2061–2069. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Chang, J.; Yang, J.; Dai, H.; Xia, Z.; Hui, Z.; Wang, R.; Huang, W.; Sun, G. Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 2023, 23, 5663–5672. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, R.; Yan, J.; Peng, J.; Tomsia, A.P.; Liang, R.; Sun, G.; Liu, M.; Jiang, L.; Cheng, Q. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem. Int. Ed. 2023, 62, e202216874. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Chen, P.; Zhao, Y.; Lu, G.; Yang, H. Physical Mechanism and Resistance Characteristics of Nacre-Like Composites for Two-Point Impact. J. Mater. Eng. Perform. 2023, 1–18. [Google Scholar] [CrossRef]
- Gao, D.; Chen, P.; Lu, G.; Yang, H. Numerical analysis for impact resistance of nacre-like composites. Mater. Today Commun. 2023, 35, 106031. [Google Scholar] [CrossRef]
- Flores-Johnson, E.; Shen, L.; Guiamatsia, I.; Nguyen, G.D. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Compos. Sci. Technol. 2014, 96, 13–22. [Google Scholar] [CrossRef]
(MPa) | (nm) | (nm) | (MPa) | (nm) | (nm) | ||||
---|---|---|---|---|---|---|---|---|---|
40 | 0.6 | 50 | 1 | 0 | 40 | 0.6 | 50 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Rumi, M.J.U.; Zeng, X. Computational Investigation of the Mechanical Response of a Bioinspired Nacre-like Nanocomposite under Three-Point Bending. J. Compos. Sci. 2024, 8, 173. https://doi.org/10.3390/jcs8050173
Yang X, Rumi MJU, Zeng X. Computational Investigation of the Mechanical Response of a Bioinspired Nacre-like Nanocomposite under Three-Point Bending. Journal of Composites Science. 2024; 8(5):173. https://doi.org/10.3390/jcs8050173
Chicago/Turabian StyleYang, Xingzi, Md Jalal Uddin Rumi, and Xiaowei Zeng. 2024. "Computational Investigation of the Mechanical Response of a Bioinspired Nacre-like Nanocomposite under Three-Point Bending" Journal of Composites Science 8, no. 5: 173. https://doi.org/10.3390/jcs8050173
APA StyleYang, X., Rumi, M. J. U., & Zeng, X. (2024). Computational Investigation of the Mechanical Response of a Bioinspired Nacre-like Nanocomposite under Three-Point Bending. Journal of Composites Science, 8(5), 173. https://doi.org/10.3390/jcs8050173