Fabrication of PVTF Films with High Piezoelectric Properties Through Directional Heat Treatment
<p>(<b>a</b>) Schematic diagram of P(VDF-TrFE) obtained by the heating table heat treatment and the SEM images of P(VDF-TrFE) of different thicknesses including (<b>b</b>) 50 μm, (<b>c</b>) 100 μm and (<b>d</b>) 150 μm.</p> "> Figure 2
<p>Composition and crystallization analysis of films of different thicknesses. (<b>a</b>) XRD image, (<b>b</b>) FTIR image, (<b>c</b>) DSC image, (<b>d</b>) schematic diagram of crystallization of films of different thicknesses.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) d<sub>33</sub> analysis of films of different thicknesses and (<b>c</b>) contact angle images.</p> "> Figure 4
<p>SEM images of different temperature: (<b>a</b>) 160 °C, (<b>b</b>) 180 °C.</p> "> Figure 5
<p>Composition and crystallization analysis of films of different temperature. (<b>a</b>) XRD image, (<b>b</b>) FTIR image, (<b>c</b>) DSC image (the sample data for the heat treatment temperature of 200 °C here is the same as above), (<b>d</b>) schematic diagram of crystallization of films of different temperature.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) d<sub>33</sub> analysis of films of different annealing temperatures and (<b>c</b>) contact angle images (the sample data for the heat treatment temperature of 200 °C here are the same as above).</p> "> Figure 7
<p>(<b>a</b>) FTIR image and (<b>b</b>) DSC image of a 100 μm film obtained by the muffle furnace, (<b>c</b>) melting point between the upper and lower surfaces of a 100 μm film obtained by heating table treatment, KPFM images of (<b>d</b>) 100 μm film obtained by the muffle furnace, (<b>e</b>) the worst-performing sample made from a heating table and (<b>f</b>) the best-performing sample made from a heating table; (<b>g</b>) schematic diagram of crystallization of films obtained from muffle furnace and heating table.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVTF Films
2.3. Characterization of Materials
2.4. Statistical Analysis
3. Results and Discussion
3.1. Adjustment of Thickness to Improve the Directional Heating
3.2. Adjustment of Temperature to Improve the Directional Heating
3.3. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Zeng, S.; Zhang, M.; Xiong, J.; Gu, H.; Wang, Z.; Hu, Y.; Zhang, X.; Du, Y.; Ren, L. Giant Piezoelectric Output and Stability Enhancement in Piezopolymer Composites with Liquid Metal Nanofillers. Adv. Sci. 2023, 10, 2304096. [Google Scholar] [CrossRef] [PubMed]
- Sang, M.; Liu, S.; Li, W.; Wang, S.; Li, J.; Li, J.; Xuan, S.; Gong, X. Flexible polyvinylidene fluoride(PVDF)/MXene(Ti3C2Tx)/Polyimide(PI) wearable electronic for body Monitoring, thermotherapy and electromagnetic interference shielding. Compos. Part A Appl. S. 2022, 153, 106727. [Google Scholar] [CrossRef]
- Wu, Y.; Qu, J.; Daoud, W.A.; Wang, L.; Qi, T. Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13347–13355. [Google Scholar] [CrossRef]
- Das, K.K.; Basu, B.; Maiti, P.; Dubey, A.K. Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices. Acta Biomater. 2023, 171, 85–113. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Qin, J.; Liu, D.; Lv, S.; Du, Y.; Zhang, T.; Ke, Q. Flexible PVDF/SiC/FeCl3 nanofiber membrane generators with synergistically enhanced piezoelectricity. Nano Energy 2024, 122, 109290. [Google Scholar] [CrossRef]
- Park, D.Y.; Joe, D.J.; Kim, D.H.; Park, H.; Han, J.H.; Jeong, C.K.; Park, H.; Park, J.G.; Joung, B.; Lee, K.J. Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Adv. Mater. 2017, 29, 1702308. [Google Scholar] [CrossRef]
- Jella, V.; Ippili, S.; Eom, J.-H.; Choi, J.; Yoon, S.-G. Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films. Nano Energy 2018, 53, 46–56. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, H.; Zhang, C.; Xu, S.; Zhang, F.; Wei, L.; Zhu, F.; Chen, Y.; Chen, Y.; Huang, Y.; et al. In situ activation of flexible magnetoelectric membrane enhances bone defect repair. Nat. Commun. 2023, 14, 4091. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, L.; Zhang, P.; Zhao, K.; Wu, Z. Enhanced corrosion resistance of bio-piezoelectric composite coatings on medical magnesium alloys. Corros. Sci. 2020, 176, 108939. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, C.; Tian, P.; Zhao, K.; Wu, Z. Fabrication and induced mineralization of bio-piezoelectric ceramic coating on titanium alloys. Ceram. Int. 2020, 46, 4006–4014. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Y.; Qian, Y.; Chen, X.; Ouyang, Y.; Yuan, W.-E. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano Energy 2020, 69, 104411. [Google Scholar] [CrossRef]
- Smith, M.; Kar-Narayan, S. Piezoelectric polymers: Theory, challenges and opportunities. Int. Mater. Rev. 2022, 67, 65–88. [Google Scholar] [CrossRef]
- Huang, Z.-X.; Li, L.-W.; Huang, Y.-Z.; Rao, W.-X.; Jiang, H.-W.; Wang, J.; Zhang, H.-H.; He, H.-Z.; Qu, J.-P. Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat. Commun. 2024, 15, 819. [Google Scholar] [CrossRef]
- You, Y.-M.; Liao, W.-Q.; Zhao, D.; Ye, H.-Y.; Zhang, Y.; Zhou, Q.; Niu, X.; Wang, J.; Li, P.-F.; Fu, D.-W.; et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 2017, 357, 306–309. [Google Scholar] [CrossRef]
- Qian, X.; Chen, X.; Zhu, L.; Zhang, Q.M. Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science 2023, 380, eadg0902. [Google Scholar] [CrossRef]
- Huang, S.; Tang, G.; Huang, H.; Wu, X.G.; Zhou, P.; Zou, L.; Xie, L.; Deng, J.; Wang, X.; Zhong, H.; et al. Enhanced piezo-response in copper halide perovskites based PVDF composite films. Sci. Bull. 2018, 63, 1254–1259. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, T.; Tian, G.; Lan, B.; Deng, W.; Tang, L.; Ao, Y.; Sun, Y.; Zeng, W.; Ren, X.; et al. Spatially Confined MXene/PVDF Nanofiber Piezoelectric Electronics. Adv. Fiber Mater. 2024, 6, 133–144. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Y.; Wang, H.; Yang, D.; Liu, C.; Dou, W.; Jiang, X.; Deng, H.; Yang, R. Regulation of TiO2@PVDF piezoelectric nanofiber membranes on osteogenic differentiation of mesenchymal stem cells. Nano Energy 2023, 115, 108742. [Google Scholar] [CrossRef]
- Tiwari, V.; Srivastava, G. Effect of thermal processing conditions on the structure and dielectric properties of PVDF films. J. Polym. 2014, 21, 587. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tong, W.; Wang, L.; Zhang, P.; Zhang, J.; Wang, X.; Zhang, S.; Liu, Y.; Liu, S.; Wang, S.; et al. Phase separation of a PVDF–HFP film on an ice substrate to achieve self-polarisation alignment. Nano Energy 2023, 106, 108082. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Chernozem, R.V.; Pariy, I.O.; Surmeneva, M.A. A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy 2021, 79, 105442. [Google Scholar] [CrossRef]
- Huang, Y.; Rui, G.; Li, Q.; Allahyarov, E.; Li, R.; Fukuto, M.; Zhong, G.-J.; Xu, J.-Z.; Li, Z.-M.; Taylor, P.L.; et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 2021, 12, 675. [Google Scholar] [CrossRef]
- Xia, G.; Fang, J.; Shou, D.; Wang, X. Phase structure deciphering for pure polymers with a giant piezoelectric response. Prog. 2024, 146, 101340. [Google Scholar] [CrossRef]
- Hernandez, C.; Gupta, S.K.; Zuniga, J.P.; Vidal, J.; Galvan, R.; Guzman, H.; Chavez, L.; Lozano, K.; Mao, Y. High pressure responsive luminescence of flexible Eu3+ doped PVDF fibrous mats. J. Mater. Sci. Technol. 2021, 66, 103–111. [Google Scholar] [CrossRef]
- Pan, J.; Jin, A. Improvement of Output Performance of the TENG Based on PVDF by Doping Tourmaline. ACS Sustain. Chem. Eng. 2024, 12, 2092–2099. [Google Scholar] [CrossRef]
- Min, G.; Pullanchiyodan, A.; Dahiya, A.S.; Hosseini, E.S.; Xu, Y.; Mulvihill, D.M.; Dahiya, R. Ferroelectric-assisted high-performance triboelectric nanogenerators based on electrospun P(VDF-TrFE) composite nanofibers with barium titanate nanofillers. Nano Energy 2021, 90, 106600. [Google Scholar] [CrossRef]
- Chen, C.; Liu, K.; Zhong, W.; Guo, J.; Tang, X.; Wang, A. Effect of Near-Electric-Field 3D Printing on the β-Phase of PVDF Thin Films. J. Electron. Mater. 2024, 53, 2076–2083. [Google Scholar] [CrossRef]
- Hu, X.; You, M.; Yi, N.; Zhang, X.; Xiang, Y. Enhanced Piezoelectric Coefficient of PVDF-TrFE Films via In Situ Polarization. Front. Energy 2021, 9, 621540. [Google Scholar] [CrossRef]
- Martín, J.; Iturrospe, A.; Cavallaro, A.; Arbe, A.; Stingelin, N.; Ezquerra, T.A.; Mijangos, C.; Nogales, A. Relaxations and Relaxor-Ferroelectric-Like Response of Nanotubularly Confined Poly(vinylidene fluoride). Chem. Mater. 2017, 29, 3515–3525. [Google Scholar] [CrossRef]
- Hou, C.; Zhang, W.; Dai, X.; Qiu, J.; Russell, T.P.; Sun, X.; Yan, S. Spatially Confined Fabrication of Polar Poly(Vinylidene Fluoride) Nanotubes. Small 2022, 18, 2205790. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, K.L.; Kang, H.S.; Jeong, B.; Park, C.; Bae, I.; Kang, S.J.; Park, Y.J.; Park, C. Epitaxially Grown Ferroelectric PVDF-TrFE Film on Shape-Tailored Semiconducting Rubrene Single Crystal. Small 2018, 14, 1704024. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Z.; Zhu, Y.; Xiao, Y.; Ding, Q.; Ruan, L.; Sun, Y.; Zhang, Z.; Zhu, C.; Chen, Z.; et al. Pattern-Potential-Guided Growth of Textured Macromolecular Films on Graphene/High-Index Copper. Adv. Mater. 2021, 33, 2006836. [Google Scholar] [CrossRef]
- Wang, Z.; He, X.; Tang, B.; Chen, X.; Dong, L.; Cheng, K.; Weng, W. Polarization behavior of bone marrow-derived macrophages on charged P(VDF-TrFE) coatings. Biomater. Sci. 2021, 9, 874–881. [Google Scholar] [CrossRef]
- Khalil, K.D.; Riyadh, S.M.; Alkayal, N.S.; Bashal, A.H.; Alharbi, K.H.; Alharbi, W. Chitosan-Strontium Oxide Nanocomposite: Preparation, Characterization, and Catalytic Potency in Thiadiazoles Synthesis. Polymers 2022, 14, 2827. [Google Scholar] [CrossRef]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Kaspar, P.; Trčka, T.; Částková, K.; Kastyl, J.; Zvereva, I.; Wang, C.; Selimov, D.; et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy 2021, 90, 106586. [Google Scholar] [CrossRef]
- Ohigashi, H.; Koga, K. Ferroelectric Copolymers of Vinylidenefluoride and Trifluoroethylene with a Large Electromechanical Coupling Factor. Jpn. J. Appl. Phys. 1982, 21, L455. [Google Scholar] [CrossRef]
- Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Yu, G.; Yu, B. The Effect of the Cooling Process on the Crystalline Morphology and Dielectric Properties of Polythene. Materials 2020, 13, 2791. [Google Scholar] [CrossRef]
- Toda, A.; Taguchi, K.; Kajioka, H. Structure Evolution in Directional Crystallization of Polymers under Temperature Gradient. Macromolecules 2012, 45, 852–861. [Google Scholar] [CrossRef]
- Gazvoda, L.; Višić, B.; Spreitzer, M.; Vukomanović, M. Hydrophilicity Affecting the Enzyme-Driven Degradation of Piezoelectric Poly-l-Lactide Films. Polymers 2021, 13, 1719. [Google Scholar] [CrossRef] [PubMed]
- Thampi, S.; Nandkumar, A.M.; Muthuvijayan, V.; Parameswaran, R. Differential Adhesive and Bioactive Properties of the Polymeric Surface Coated with Graphene Oxide Thin Film. ACS Appl. Mater. Interfaces 2017, 9, 4498–4508. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, J.; Zhang, J.; Duan, X.; Lin, W.; Cheng, K.; Weng, W.; Chen, Z. Polarized P(VDF-TrFE) film promotes skin wound healing through controllable surface potential. Colloids Surf. B 2023, 221, 112980. [Google Scholar] [CrossRef]
- Chen, J.; Song, L.; Qi, F.; Qin, S.; Yang, X.; Xie, W.; Gai, K.; Han, Y.; Zhang, X.; Zhu, Z.; et al. Enhanced bone regeneration via ZIF-8 decorated hierarchical polyvinylidene fluoride piezoelectric foam nanogenerator: Coupling of bioelectricity, angiogenesis, and osteogenesis. Nano Energy 2023, 106, 108076. [Google Scholar] [CrossRef]
- Su, Y.; Chen, C.; Pan, H.; Yang, Y.; Chen, G.; Zhao, X.; Li, W.; Gong, Q.; Xie, G.; Zhou, Y.; et al. Muscle Fibers Inspired High-Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Adv. Funct. Mater. 2021, 31, 2010962. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Yee, A.; Zhou, Z.; He, X.; Weng, W.; Wu, C.; Cheng, K. Fabrication of PVTF Films with High Piezoelectric Properties Through Directional Heat Treatment. J. Compos. Sci. 2024, 8, 512. https://doi.org/10.3390/jcs8120512
Xin X, Yee A, Zhou Z, He X, Weng W, Wu C, Cheng K. Fabrication of PVTF Films with High Piezoelectric Properties Through Directional Heat Treatment. Journal of Composites Science. 2024; 8(12):512. https://doi.org/10.3390/jcs8120512
Chicago/Turabian StyleXin, Xin, Aotian Yee, Zhiyuan Zhou, Xuzhao He, Wenjian Weng, Chengwei Wu, and Kui Cheng. 2024. "Fabrication of PVTF Films with High Piezoelectric Properties Through Directional Heat Treatment" Journal of Composites Science 8, no. 12: 512. https://doi.org/10.3390/jcs8120512
APA StyleXin, X., Yee, A., Zhou, Z., He, X., Weng, W., Wu, C., & Cheng, K. (2024). Fabrication of PVTF Films with High Piezoelectric Properties Through Directional Heat Treatment. Journal of Composites Science, 8(12), 512. https://doi.org/10.3390/jcs8120512