The Influence of Ultraviolet Irradiation on the Structure and Properties of Acrylonitrile Butadiene Styrene/Lignin Composites
"> Figure 1
<p>FT-IR spectra before (blue) and after (red) UV treatment for pure ABS (<b>bottom</b>) and composites with 5 % (<b>middle</b>) and 10 % (<b>top</b>) Kraft lignin content.</p> "> Figure 2
<p>HSQC (blue and red cross-peaks) and HMBC (purple peaks) NMR spectra of ABS-KL with 10% of lignin content after UV treatment. The cross peak labels include the chemical shifts and numbers of atoms (in the brackets) in the detected structure. The found new structure is highlighted with green.</p> "> Figure 3
<p>Diagrams of tensile properties of obtaining composites: (<b>a</b>) tensile strength, (<b>b</b>) elongation at the break, and (<b>c</b>) Young’s modulus.</p> "> Figure 4
<p>Scheme of photodegradation product formation pathways. Arrows show the direction of chemical reactions: (<b>1</b>) Formation of O-radical and its product (<b>2</b>) Formation of C-radical and its product. (<b>3</b>) Formation of co-product of O- and C-radicals. (<b>4</b>) Esterification of co-product and lignin. hν—UV radiation. t°—thermal impact. Red frame—new found structure.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Composites Obtaining
2.3. The Characterization of Obtained Composites
3. Results
4. Discussion
4.1. Tensile Properties
4.2. FT-IR Spectroscopy
4.3. NMR Spectroscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez, M.; Carou, D.; Rubio, E.M.; Teti, R. Current advances in additive manufacturing. Procedia CIRP 2020, 88, 439–444. [Google Scholar] [CrossRef]
- Almutairi, M.D.; Mascarenhas, T.A.; Alnahdi, S.S.; He, F.; Khan, M.A. Modal response of hybrid raster orientation on material extrusion printed acrylonitrile butadiene styrene and polyethylene terephthalate glycol under thermo-mechanical loads. Polym. Test. 2023, 120, 107953. [Google Scholar] [CrossRef]
- Algarni, M.; Ghazali, S. Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters. Crystals 2021, 11, 995. [Google Scholar] [CrossRef]
- Pal, A.K.; Mohanty, A.K.; Misra, M. Additive manufacturing technology of polymeric materials for customized products: Recent developments and future prospective. RSC Adv. 2021, 11, 36398–36438. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.N. Plastics: Information and properties of polymeric materials. In Mechanical Engineers’ Handbook: Materials and Mechanical Design, 1st ed.; Kutz, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; Volume 1, pp. 335–379. [Google Scholar]
- Lay, D. VOC Emission Factors from 3D Printers-ABS (Acrylonitrile-Butadiene-Styrene) Type Filaments. Master’s Thesis, LSU, Baton Rouge, LA, USA, A&M College of Texas, College Station, TX, USA, 2019; pp. 2–24. [Google Scholar] [CrossRef]
- Fiorio, R.; Villanueva Díez, S.; Sánchez, A.; D’hooge, D.R.; Cardon, L. Influence of different stabilization systems and multiple ultraviolet A (UVA) aging/recycling steps on physicochemical, mechanical, colorimetric, and thermal-oxidative properties of ABS. Materials 2020, 13, 212. [Google Scholar] [CrossRef]
- Ramani, R.; Ranganathaiah, C. Degradation of acrylonitrile-butadiene-styrene and polycarbonate by UV irradiation. Polym. Degrad. Stab. 2000, 3, 347–354. [Google Scholar] [CrossRef]
- Rajan, V.V.; Wäber, R.; Wieser, J. Comparative investigation of the ultraviolet stabilization of polycarbonate/poly (acrylonitrile–butadiene–styrene) with different ultraviolet absorbers. J. Appl. Polym. Sci. 2012, 124, 3988–3995. [Google Scholar] [CrossRef]
- Santos, R.M.; Botelho, G.L.; Machado, A.V. Artificial and natural weathering of ABS. J. Appl. Polym. Sci. 2010, 116, 2005–2014. [Google Scholar] [CrossRef]
- Diepens, M.; Gijsman, P. Photodegradation of bisphenol A polycarbonate. Polym. Degrad. Stab. 2007, 92, 397–406. [Google Scholar] [CrossRef]
- Shimada, J.; Kabuki, K. The mechanism of oxidative degradation of ABS resin. Part II. The mechanism of photooxidative degradation. J. Appl. Polym. Sci. 1968, 12, 671–682. [Google Scholar] [CrossRef]
- Piton, M.; Rivaton, A. Photo-oxidation of ABS at long wavelengths (λ > 300 nm). Polym. Degrad. Stab. 1997, 55, 147–157. [Google Scholar] [CrossRef]
- DeArmitt, C. Functional fillers for plastics. In Applied Plastics Engineering Handbook; William Andrew Publishing: Norwich, NY, USA, 2011; pp. 455–468. [Google Scholar]
- Song, P.; Cao, Z.; Meng, Q.; Fu, S.; Fang, Z.; Wu, Q.; Ye, J. Effect of lignin incorporation and reactive compatibilization on the morphological, rheological, and mechanical properties of ABS resin. J. Macromol. Sci. Part B 2012, 51, 720–735. [Google Scholar] [CrossRef]
- Haq, I.; Mazumder, P.; Kalamdhad, A.S. Recent advances in removal of lignin from paper industry wastewater and its industrial applications–A review. Bioresour. Technol. 2020, 312, 123636. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Filho, E.X.; de Souza Moreira, L.R.; de Aquino Ximenes, E.; Farinas, C.S. Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value Added Chemicals Within the Biorefinery Concept; Elsevier Science: Rio de Janeiro, Brazil, 2020; p. 324. [Google Scholar]
- Sadeghifar, H.; Ragauskas, A. Lignin as a UV light blocker—A review. Polymers 2020, 12, 1134. [Google Scholar] [CrossRef]
- Jędrzejczak, P.; Cegłowski, M.; Bula, K.; Klapiszewski, Ł. The Influence of TiO2–Lignin Hybrid Fillers in Low-Density Polyethylene Composites on Photocatalytic Performance and UV-Barrier Properties. Polymers 2024, 16, 474. [Google Scholar] [CrossRef]
- Shikinaka, K.; Nakamura, M.; Otsuka, Y. Strong UV absorption by nanoparticulated lignin in polymer films with reinforcement of mechanical properties. Polymers 2020, 190, 122254. [Google Scholar] [CrossRef]
- Faleva, A.V.; Grishanovich, I.A.; Ul’yanovskii, N.V.; Kosyakov, D.S. Application of 2D NMR Spectroscopy in Combination with Chemometric Tools for Classification of Natural Lignins. Int. J. Mol. Sci. 2023, 24, 12403. [Google Scholar] [CrossRef]
- Sypalova, Y.A.; Shestakov, S.L.; Kozhevnikov, A.Y. Functional Composition and Structural Features of Higher Plant Lignins. Lesn. Zh. 2023, 5, 164–183. [Google Scholar] [CrossRef]
- Björkman, A. Isolation of lignin from finely divided wood with neutral solvents. Nature 1954, 59, 477–485. [Google Scholar] [CrossRef]
- Pepper, J.M.; Baylis, P.E.; Adler, E. The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane–water medium. Can. J. Chem. 1959, 37, 1241–1248. [Google Scholar] [CrossRef]
- Pokryshkin, S.; Sypalova, Y.; Ivahnov, A.; Kozhevnikov, A. Optimization of Approaches to Analysis of Lignin by Thermal Decomposition. Polymers 2023, 15, 2861. [Google Scholar] [CrossRef]
- Athanasoulia, I.G.; Christoforidis, M.N.; Korres, D.M.; Tarantili, P.A. The effect of poly(ethylene glycol) mixed with poly(l-lactic acid) on the crystallization characteristics and properties of their blends. Polym. Int. 2019, 68, 788–804. [Google Scholar] [CrossRef]
Lignin Content, wt. % | Strength, MPa | Elongation, % | Young Modulus, GPa | |||
---|---|---|---|---|---|---|
ABS-KL | ABS-DL | ABS-KL | ABS-DL | ABS-KL | ABS-DL | |
0 | 36.3 ±0.3 | 36.3 ± 0.3 | 93.5 ± 0.5 | 93.5 ± 0.5 | 1.01 ± 0.02 | 1.01 ± 0.02 |
5 | 29.1 ± 0.3 | 30.5 ± 0.3 | 81.3 ± 0.5 | 13.8 ± 0.5 | 1.08 ± 0.02 | 1.34 ± 0.02 |
10 | 25.2 ± 0.3 | 29.9 ± 0.3 | 82.3 ± 0.5 | 13.8 ± 0.5 | 1.04 ± 0.02 | 1.19 ± 0.02 |
15 | 22.6 ± 0.2 | 24.5 ± 0.2 | 45.7 ± 0.5 | 10.2 ± 0.5 | 1.05 ± 0.02 | 1.07 ± 0.02 |
20 | 22.3 ± 0.2 | 23.7 ± 0.2 | 2.7 ± 0.5 | 4.6 ± 0.5 | 1.02 ± 0.02 | 1.06 ± 0.02 |
Lignin Fraction, wt. % | Strength, MPa | Elongation, % | Young’s Modulus, GPa |
---|---|---|---|
0 | 34.9 ± 0.3 | 5.9 ± 0.5 | 1.40 ± 0.02 |
5 | 30.2 ± 0.3 | 4.1 ± 0.5 | 1.29 ± 0.02 |
10 | 27.7 ± 0.3 | 3.4 ± 0.5 | 1.25 ± 0.02 |
Sample | Strength, MPa | Elongation, % | Young’s Modulus, GPa | Reference |
---|---|---|---|---|
ABS B501 | 36.3 | 93.5 | 1.01 | This research |
ABS-KL 5% | 29.1 | 81.3 | 1.08 | This research |
ABS-KL 10% | 25.2 | 82.3 | 1.04 | This research |
ABS-DL 5% | 30.5 | 13.8 | 1.34 | This research |
ABS-DL 10% | 29.9 | 13.8 | 1.19 | This research |
ABS | 46.5 | 12 | 2.36 | [15] |
ABS/Lignin 5% | 49.8 | 10 | 2.45 | [15] |
ABS/Lignin 10% | 45.0 | 6.4 | 2.57 | [15] |
LDPE/TL(1–5)_10 | 21.9 | 199 | >3 | [19] |
ABS 0 | 32.2 | 78 | 1.94 | [7] |
ABS 1 | 31.8 | 64 | 1.93 | [7] |
ABS 2 | 31.9 | 50 | 1.95 | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grishanovich, I.A.; Shestakov, S.L.; Potashev, A.V.; Belesov, A.V.; Kozhevnikov, A.Y. The Influence of Ultraviolet Irradiation on the Structure and Properties of Acrylonitrile Butadiene Styrene/Lignin Composites. J. Compos. Sci. 2024, 8, 519. https://doi.org/10.3390/jcs8120519
Grishanovich IA, Shestakov SL, Potashev AV, Belesov AV, Kozhevnikov AY. The Influence of Ultraviolet Irradiation on the Structure and Properties of Acrylonitrile Butadiene Styrene/Lignin Composites. Journal of Composites Science. 2024; 8(12):519. https://doi.org/10.3390/jcs8120519
Chicago/Turabian StyleGrishanovich, Ilya A., Semen L. Shestakov, Alexander V. Potashev, Artyom V. Belesov, and Aleksandr Yu. Kozhevnikov. 2024. "The Influence of Ultraviolet Irradiation on the Structure and Properties of Acrylonitrile Butadiene Styrene/Lignin Composites" Journal of Composites Science 8, no. 12: 519. https://doi.org/10.3390/jcs8120519
APA StyleGrishanovich, I. A., Shestakov, S. L., Potashev, A. V., Belesov, A. V., & Kozhevnikov, A. Y. (2024). The Influence of Ultraviolet Irradiation on the Structure and Properties of Acrylonitrile Butadiene Styrene/Lignin Composites. Journal of Composites Science, 8(12), 519. https://doi.org/10.3390/jcs8120519