Metal Powder Production by Atomization of Free-Falling Melt Streams Using Pulsed Gaseous Shock and Detonation Waves
<p>Schematic (<b>a</b>) and photograph (<b>b</b>) of the laboratory setup.</p> "> Figure 2
<p>Samples of aluminum powder: (<b>a</b>) on separator trays and (<b>b</b>) after collection and drying.</p> "> Figure 3
<p>Example of IP records in a single operation cycle during PDG operation in the frequency mode.</p> "> Figure 4
<p>PMSDs of zinc powder particles in separator trays #1–#4 obtained by means of dry sifting on sieves on fractions 140–250, 70–140, 30–70, and 0–30 μm; sample mass 313.8 g.</p> "> Figure 5
<p>Results of microscopic and AFM examination of zinc powder fractions (<b>a</b>) 140–250 µm and (<b>b</b>,<b>c</b>) 0–30 µm.</p> "> Figure 6
<p>Zinc powder PSDs obtained by laser diffraction WDM for several particle fractions: (<b>a</b>) 0–30 µm, (<b>b</b>) 30–70 µm, and (<b>c</b>) 70–140 µm.</p> "> Figure 7
<p>PMSDs of aluminum powder particles in separator trays #1–#4 obtained by means of dry sifting on sieves on fractions 140–250, 70–140, 30–70, and 0–30 μm; sample mass 143.2 g.</p> "> Figure 8
<p>Results of microscopic and AFM examination of aluminum powder fractions (<b>a</b>) 140–800 µm and (<b>b</b>,<b>c</b>) 0–30 µm.</p> "> Figure 9
<p>Aluminum powder PSDs obtained by laser diffraction WDM for several particle fractions: (<b>a</b>) 0–30 µm, (<b>b</b>) 30–70 µm, and (<b>c</b>) 70–140 µm.</p> "> Figure 10
<p>Sequential video frames of the shock-induced atomization process of the free-falling stream of stainless-steel melt.</p> "> Figure 11
<p>PMSDs of stainless-steel powder particles obtained by means of dry sifting on sieves on fractions (<b>a</b>) >1000, 800–1000, 400–800, 250–400, 140–250, 70–140, 30–70, and 0–30 μm; and on fractions (<b>b</b>) 140–250, 70–140, 30–70, and 0–30 μm; sample weight 84.4 g.</p> "> Figure 12
<p>Results of microscopic and AFM examination of stainless-steel powder obtained on sieves (<b>a</b>) 70–140 µm and (<b>b</b>,<b>c</b>) 0–30 µm.</p> "> Figure 13
<p>Stainless-steel powder PSDs obtained by laser diffraction WDM for several particle fractions: (<b>a</b>) 30–70 µm, (<b>b</b>) 70–140 µm, and (<b>c</b>) 140–250 µm.</p> "> Figure 14
<p>Comparison of PSDs obtained by laser diffraction WDM for aluminum and zinc powders of fraction 0–30 µm.</p> "> Figure 15
<p>Comparison of PSDs obtained by laser diffraction WDM for zinc, aluminum, and stainless-steel powders of fraction 30–70 µm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metals
2.2. Fuel and Oxidizer for the Pulsed Detonation Gun
2.3. Experimental Setup
2.4. Measuring Techniques
3. Results
3.1. Zinc
3.2. Aluminum
3.3. Stainless Steel
4. Discussion
4.1. Comparison of Particle Size Distributions
4.2. Phenomenology of Melt Stream Atomization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive manufacturing: A comprehensive review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Milewski, J.O. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- El-Eskandarany, M.; Sherif; Aoki, K.; Sumiyama, K.; Suzuki, K. Reactive ball mill for solid state synthesis of metal nitrides powders. Mater. Sci. Forum 1992, 88, 801. [Google Scholar] [CrossRef]
- El-Eskandarany, M.; Sherif; Saida, J.; Inoue, A. Structural and calorimetric evolutions of mechanically-induced solid-state devitrificated Zr60Ni25Al15 glassy alloy powder. Acta Mater. 2003, 51, 1481. [Google Scholar] [CrossRef]
- Champagne, B.; Angers, R. REP atomization mechanism. Powder Metall. Int. 1984, 16, 125–128. [Google Scholar]
- Bondarev, B.I.; Shmakov, Y.V. Technology of Rapidly Solidified Al Alloy Production; All-Russian Institute of Light Alloys Publishers: Moscow, Russia, 1997. [Google Scholar]
- Huo, S.H.; Qian, M.; Schaffer, G.B.; Crossin, E. Aluminium powder metallurgy. In Fundamentals of Aluminium Metallurgy; Production, Processing and Applications; Lumley, R., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 655–701. [Google Scholar]
- Xia, Y.; Fang, Z.Z.; Sun, P.; Zhang, Y.; Zhu, J. Novel method for making biomedical segregation-free Ti-30Ta alloy spherical powder for additive manufacturing. JOM 2018, 70, 364–369. [Google Scholar] [CrossRef]
- Singh, D.; Koria, S.C.; Dube, R.K. Study of free fall gas atomisation of liquid metals to produce powder. Powder Metall. 2001, 44, 177–184. [Google Scholar] [CrossRef]
- Lawley, A. Atomization of specialty alloy powders. JOM Orig. 2014, 33, 13–18. [Google Scholar] [CrossRef]
- Dawes, J.; Bowerman, R.; Trepleton, R. Introduction to the additive manufacturing powder metallurgy supply chain. Johnson Matthey Technol. Rev. 2015, 59, 243–256. [Google Scholar] [CrossRef]
- Ciftcia, N.; Ellendta, N.; Mladlera, L.; Uhlenwinkel, V. Impact of hot gas atomization on glass forming alloys. In Proceedings of the PM 2016 World Congress, Hamburg, Germany, 9–13 October 2016; Compiled by European Powder Metallurgy Association: Bellstone Shrewsbury, UK, 2016; pp. 1–7. [Google Scholar]
- Lohner, H.; Czisch, C.; Schreckenberg, P.; Fritsching, U.; Bauckhage, K. Atomization of viscous melts. Atomiz. Spr. 2005, 15, 169–180. [Google Scholar] [CrossRef]
- Wolf, G.; Neoth, M.; Schubert, M.V.E.; Bergmann, H.W. Production and characterization of liquid gas atomized hard magnetic NdFeB alloy powders for bonded isotropic magnets. Powder Metall. World Congr. 1994, 3, 1745–1753. [Google Scholar]
- Wolf, G.; Lang, A.; Bergmann, H.W. Investigations on melt atomization with gas and liquefied cryogenic gas. In Proceedings of the International Conference on Spray Deposition and Melt Forming, Bremen, Germany, 26–28 June 2000; Bremen Universit€at: Bremen, Germany, 2000; pp. 535–547. [Google Scholar]
- Dunkley, J.J. Atomization. In ASM Handbook; ASM International Publishers: Materials Park, OH, USA, 1998; Volume 7, pp. 35–52. [Google Scholar]
- Small, S.; Bruce, T.J. The comparison of characteristics of water and inert gas atomized powders. Int. J. Powder Metall. 1968, 4, 7–17. [Google Scholar]
- Cao, W.; Shu, J.; Chen, J. Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis. Int. J. Miner. Metall. Mater. 2024, 31, 531–538. [Google Scholar] [CrossRef]
- Rai, V.; Liu, D.; Xia, D.; Jayaraman, Y.; Gabriel, J.-C.P. Electrochemical approaches for the recovery of metals from electronic waste: A critical review. Recycling 2021, 6, 53. [Google Scholar] [CrossRef]
- Dutta, B.; Babu, S.; Jared, B.H. Science, Technology and Applications of Metals in Additive Manufacturing; Elsevier Science: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Smagorinski, M.E.; Tsantrizos, P.G. Production of spherical titanium powder by plasma atomization. In Proceedings of the 2002 World Congress of Powder Metallurgy and Particulate Materials; Metal Powder Industries Federation, Orlando, FL, USA, 16–21 June 2002; Volume 3, pp. 248–260. [Google Scholar]
- Alagheband, A.; Brown, C. Plasma atomization goes commercial. Met. Powder Rep. 1998, 53, 26–28. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, S.Y.; Tan, P.; Wang, J.; Xiang, C.S.; Tanga, H.P. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018, 333, 38–46. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Amal, R.; Madler, L. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale 2010, 2, 1324–1347. [Google Scholar] [CrossRef] [PubMed]
- Anderson, I.E.; White, E.M.H.; Dehoff, R. Feedstock powder processing research needs for additive manufacturing development. Cur. Opin. Sol. State Mat. Sci. 2018, 22, 8–15. [Google Scholar] [CrossRef]
- Cui, C.; Stern, F.; Ellendt, N.; Uhlenwinkel, V.; Steinbacher, M.; Tenkamp, J.; Walther, F.; Fechte-Heinen, R. Gas atomization of duplex stainless steel powder for laser powder bed fusion. Materials 2023, 16, 435. [Google Scholar] [CrossRef]
- Mathias, L.E.T.; Andreoli, A.F.; Gargarella, P. Gas atomization of A2 tool steel: Effect of process parameters on powders’ physical properties. J. Alloys Compd. 2023, 960, 170696. [Google Scholar] [CrossRef]
- Cui, C.; Uhlenwinkel, V.; Schulz, A.; Zoch, H.-W. Austenitic stainless steel powders with increased nitrogen content for laser additive manufacturing. Metals 2020, 10, 61. [Google Scholar] [CrossRef]
- Fritsching, U. Spray Simulation: Modeling and Simulation of Sprayforming Metals; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M.; Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Materials for additive manufacturing. Addit. Manuf. Technol. 2021, 3, 379–428. [Google Scholar]
- Ciftci, N.; Ellendt, N.; Soares Barreto, E.; Mädler, L.; Uhlenwinkel, V. Increasing the amorphous yield of {(Fe0.6Co0.4)0.75B0.2Si0.05}96Nb4 powders by hot gas atomization. Adv. Powder Technol. 2018, 29, 380–385. [Google Scholar] [CrossRef]
- Goudar, D.M.; Srivastava, V.; Rudrakshi, G. Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer. Eng. J. 2017, 21, 155–168. [Google Scholar] [CrossRef]
- See, J.B.; Johnston, G.H. Interactions between nitrogen jets and liquid lead and tin streams. Powder Technol. 1978, 21, 119–125. [Google Scholar]
- Haferkamp, L.; Haudenschild, L.; Spierings, A.; Wegener, K.; Riener, K.; Ziegelmeier, S.; Leichtfried, G.J. The influence of particle shape, powder flowability, and powder layer density on part density in laser powder bed fusion. Metals 2021, 11, 418. [Google Scholar] [CrossRef]
- Fereiduni, E.; Ghasemi, A.; Elbestawi, M. Characterization of composite powder feedstock from powder bed fusion additive manufacturing perspective. Materials 2019, 12, 3673. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, S.; Huang, B.; Liu, Z.; Du, Y. Densification behaviour of Al-Ni-Y powder containing amorphous and nanocrystalline phases. In Proceedings of the PM 2004 World Congress, Vienna, Austria, 17–21 October 2004; European Powder Metallurgy Association: Wien, Austria, 2004; Volume 1, pp. 425–430. [Google Scholar]
- Lubanska, H. Correlation of spray ring data for gas atomization of liquid metals. J. Met. 1970, 22, 45–49. [Google Scholar] [CrossRef]
- Gärtner, E.; Jung, H.Y.; Peter, N.J.; Dehm, G.; Jägle, E.A.; Uhlenwinkel, V.; Mädler, L. Reducing cohesion of metal powders for additive manufacturing by nanoparticle dry-coating. Powder Technol. 2021, 379, 585–595. [Google Scholar] [CrossRef]
- Frolov, S.M.; Smetanyuk, V.A.; Nabatnikov, S.A.; Moiseev, A.V.; Andrienko, V.G.; Piletsky, V.G. Method of ultrafine atomization of liquid fuel and device for its implementation. Patent of the Russian Federation No. 2644422, 12 February 2018. [Google Scholar]
- Hsiang, L.-P.; Faeth, G.M. Near-limit drop deformation and secondary breakup. In. J. Multiph. Flow 1992, 18, 635–652. [Google Scholar] [CrossRef]
- Guildenbecher, D.R.; Gao, J.; Chen, J.; Sojka, P.E. Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography. Int. J. Multiph. Flow 2017, 94, 107–122. [Google Scholar] [CrossRef]
- Reuter, C.B.; Tuttle, S.G. Interactions between liquid sprays and shock waves in underexpanded flows. Proc. Combust. Inst. 2024, 40, 105244. [Google Scholar] [CrossRef]
- Chen, Y.; Wagner, J.L.; Farias, P.A.; DeMauro, E.P.; Guildenbecher, D.R. Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow. Int. J. Multiph. Flow 2018, 106, 147–163. [Google Scholar] [CrossRef]
- SDToolBox—Numerical Tools for Shock and Detonation Wave Modeling. Available online: https://shepherd.caltech.edu/EDL/PublicResources/sdt/doc/ShockDetonation/ShockDetonation.pdf (accessed on 23 December 2024).
- Goodwin, D.G.; Moffat, H.K.; Schoegl, I.; Speth, R.L.; Weber, B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 3.0.0. 2023. Available online: https://zenodo.org/records/8137090 (accessed on 23 December 2024).
- da Silva, F.C.; de Lima, M.L.; Colombo, G.F. Evaluation of a mathematical model based on Lubanska equation to predict particle size for close-coupled gas atomization of 316L stainless steel. Mater. Res. 2022, 25, 20210364. [Google Scholar] [CrossRef]
- Pilch, M.; Erdman, C. Use of break-up time data and velocity history data to predict the maximum size of stable fragments for acceleration induced break-up of a liquid drop. Int. J. Multiph. Flow 1987, 13, 741–757. [Google Scholar] [CrossRef]
- Nigamtulin, R.I. Dynamics of Multiphase Media; Nauka Publ.: Moscow, Russia, 1987; Volume 1. [Google Scholar]
- Ranger, A.A.; Nicholls, J.A. Aerodynamic shattering of liquid drops. AIAA J. 1969, 7, 285–290. [Google Scholar]
- Chou, W.-H.; Faeth, G.M. Temporal properties of secondary drop breakup in the bag breakup regime. Int. J. Multiph. Flow 1998, 4, 889–912. [Google Scholar] [CrossRef]
Metal | Purity/Composition |
---|---|
Zinc | 99.9% |
Aluminum alloy AlMg5 | Al (92–95%), Mg (5–6%), Mn (up to 0.8%) |
Stainless steel AISI 304 | Fe (66–74%), Cr (17.5–20%), Ni (8–11%) |
Metal | Density, kg/m3 | Melting Temperature, °C | Boiling Temperature, °C | Melt Surface Tension, N/m | Melt Viscosity, mPa∙s |
---|---|---|---|---|---|
Zinc | 7100 | 420 | 906 | 0.78 | 2.1 |
Aluminum alloy | 2700 | 660 | 2519 | 0.88 | 1.3 |
Stainless steel AISI 304 | 7900 | 1400 | 2900–3200 | 1.7 | 6.0 |
Compound | Content, vol.% |
---|---|
Heptane isomers | 71 |
Methylcyclohexane | 14 |
Cyclohexane | 8 |
Hexane isomers | 4 |
Octane isomers | 3 |
Property | Value |
---|---|
Density at 20 °C, kg/m3 | 0.700 |
Flash temperature, °C | –9 |
Flammability limits (vol.% in air) | Lower flammability limit 0.8; Upper flammability limit 7.7 |
Self-ignition temperature, °C | >200 |
Boiling temperature, °C | 78–113 |
Vapor pressure (air = 1 at 101 kPa) | >1 |
Saturated vapor pressure, kPa | 6.1 at 20 °C; 14.5 at 38 °C; 23.1 at 50 °C |
Evaporation rate (n-buthylacetate = 1): | 3 |
Kinematic viscosity, mm2/s | 0.49 at 40 °C; 0.67 at 25 °C |
Freezing temperature, °C | <–40 |
Molecular mass, a.u. | Calc. 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolov, S.M.; Ivanov, V.S.; Aksenov, V.S.; Shamshin, I.O.; Frolov, F.S.; Zangiev, A.E.; Eyvazova, T.I.; Popkova, V.Y.; Grishin, M.V.; Gatin, A.K.; et al. Metal Powder Production by Atomization of Free-Falling Melt Streams Using Pulsed Gaseous Shock and Detonation Waves. J. Manuf. Mater. Process. 2025, 9, 20. https://doi.org/10.3390/jmmp9010020
Frolov SM, Ivanov VS, Aksenov VS, Shamshin IO, Frolov FS, Zangiev AE, Eyvazova TI, Popkova VY, Grishin MV, Gatin AK, et al. Metal Powder Production by Atomization of Free-Falling Melt Streams Using Pulsed Gaseous Shock and Detonation Waves. Journal of Manufacturing and Materials Processing. 2025; 9(1):20. https://doi.org/10.3390/jmmp9010020
Chicago/Turabian StyleFrolov, Sergey M., Vladislav S. Ivanov, Viktor S. Aksenov, Igor O. Shamshin, Fedor S. Frolov, Alan E. Zangiev, Tatiana I. Eyvazova, Vera Ya. Popkova, Maksim V. Grishin, Andrey K. Gatin, and et al. 2025. "Metal Powder Production by Atomization of Free-Falling Melt Streams Using Pulsed Gaseous Shock and Detonation Waves" Journal of Manufacturing and Materials Processing 9, no. 1: 20. https://doi.org/10.3390/jmmp9010020
APA StyleFrolov, S. M., Ivanov, V. S., Aksenov, V. S., Shamshin, I. O., Frolov, F. S., Zangiev, A. E., Eyvazova, T. I., Popkova, V. Y., Grishin, M. V., Gatin, A. K., & Dudareva, T. V. (2025). Metal Powder Production by Atomization of Free-Falling Melt Streams Using Pulsed Gaseous Shock and Detonation Waves. Journal of Manufacturing and Materials Processing, 9(1), 20. https://doi.org/10.3390/jmmp9010020