Elevated-Temperature Tensile Behavior and Properties of Inconel 718 Fabricated by In-Envelope Additive–Subtractive Hybrid Manufacturing and Post-Process Precipitation Hardening
<p>(<b>a</b>,<b>b</b>) Morphology and (<b>c</b>) cohesive index of the starting IN718 powder.</p> "> Figure 2
<p>Process flow detailing the different stages in the experimental methodology.</p> "> Figure 3
<p>(<b>a</b>) CAD layout of the build plate with 24 vertically built tensile specimens. (<b>b</b>) The 24 vertically built tensile specimens after the build. (<b>c</b>) A sleeve-shaped support structure designed with a small gap to ease removal of the tensile specimens. (<b>d</b>) Easy support removal after EDM from the build plate. (<b>e</b>) Tensile specimen geometry based on ASTM E8M-22 [<a href="#B49-jmmp-08-00297" class="html-bibr">49</a>].</p> "> Figure 4
<p>Vertically built tensile specimens fabricated to have three surface finish conditions in the gauge section: AB (<b>left</b>), hybrid (<b>middle</b>) and PM (<b>right</b>).</p> "> Figure 5
<p>Different precipitation-hardening heat treatment (PHT) cycles used in this study.</p> "> Figure 6
<p>Map of the surface topography of vertically built IN718 specimens with (<b>a</b>) AB, (<b>b</b>) hybrid and (<b>c</b>) PM surfaces.</p> "> Figure 7
<p>Porosity inspections of vertically built IN718 specimens with (<b>a</b>,<b>b</b>) AB, (<b>c</b>,<b>d</b>) hybrid and (<b>e</b>,<b>f</b>) PM conditions.</p> "> Figure 7 Cont.
<p>Porosity inspections of vertically built IN718 specimens with (<b>a</b>,<b>b</b>) AB, (<b>c</b>,<b>d</b>) hybrid and (<b>e</b>,<b>f</b>) PM conditions.</p> "> Figure 8
<p>Differential distribution of the pore volume fraction and number fraction as a function of the distance R from the specimen outer surface.</p> "> Figure 9
<p>Representative (<b>a</b>) engineering stress–strain and (<b>b</b>) true stress–strain curves of vertically built IN718 with the different surface conditions.</p> "> Figure 10
<p>DIC analysis of the local strain distribution maps of the gauge section of the vertically built IN718 tensile specimens just before fracture: (<b>a</b>) AB, (<b>b</b>) hybrid and (<b>c</b>) PM surface conditions.</p> "> Figure 11
<p>Tensile properties at 650 °C for the vertically built IN718 with the different precipitation-hardening conditions: (<b>a</b>) PHT1, (<b>b</b>) PHT2 and (<b>c</b>) PHT3; and different surface conditions: (<b>d</b>) AB, (<b>e</b>) hybrid and (<b>f</b>) PM.</p> "> Figure 12
<p>Representative (<b>a</b>–<b>c</b>) engineering stress–strain and (<b>d</b>–<b>f</b>) true stress–strain curves at 650 °C for the vertically built IN718 with the different surface conditions and PHTs.</p> "> Figure 13
<p>µXCT cross-section of vertically built IN718 specimens tested at 650 °C with (<b>a</b>) AB, (<b>b</b>) hybrid and (<b>c</b>) PM surface conditions.</p> "> Figure 14
<p>Fractographs after room-temperature tensile testing of the vertically built IN718 specimens with (<b>a</b>) AB (<b>b</b>) hybrid and (<b>c</b>) PM surface finish conditions.</p> "> Figure 15
<p>High-magnification fractographs after room-temperature tensile testing of the vertically built IN718 specimens with (<b>a</b>) AB (<b>b</b>) hybrid and (<b>c</b>) PM surface finish conditions.</p> "> Figure 16
<p>Fractographs after high-temperature (650 °C) tensile testing of vertically built IN718 specimens with an AB surface finish and under (<b>a</b>) PHT1, (<b>b</b>) PHT2 and (<b>c</b>) PHT3 conditions; with a hybrid surface finish and under (<b>d</b>) PHT1, (<b>e</b>) PHT2 and (<b>f</b>) PHT3 conditions; as well as a with a PM surface finish and under (<b>g</b>) PHT1, (<b>h</b>) PHT2 and (<b>i</b>) PHT3 conditions.</p> "> Figure 17
<p>High magnification of fractographs after high-temperature (650 °C) tensile testing of vertically built IN718 specimens with an AB surface finish and under (<b>a</b>) PHT1, (<b>b</b>) PHT2 and (<b>c</b>) PHT3 conditions; with a hybrid surface finish and under (<b>d</b>) PHT1, (<b>e</b>) PHT2 and (<b>f</b>) PHT3 conditions; as well as a with a PM surface finish and under = (<b>g</b>) PHT1, (<b>h</b>) PHT2, (<b>i</b>) PHT3 conditions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Different Heat Treatments on the Microstructure
3.2. Inspection of Surface Finish and Density
3.3. Inspection of Porosity
3.4. Effect of Different Surface Conditions on Room-Temperature Tensile Properties
3.5. Effect of Surface Conditions and Heat-Treatment Cycles on High-Temperature Tensile Properties
3.6. Fractography
4. Conclusions
- The vertically built IN718 in the PM and AB conditions exhibited the lowest and highest surface roughness values, respectively. For the hybrid surface condition, the Ra and Sa values were ~80% lower, while the Rz and Sz values were ~75% lower than specimens with AB surface conditions.
- Regardless of the surface conditions, all the specimens exhibited similar relative densities, with average values above 99.94% and standard deviations below ±0.02%. A small effect of the surface condition on the density was observed, with the AB specimens having the lowest average value for the relative density while the hybrid specimens had the highest.
- As revealed by µXCT inspection, regardless of the surface condition, all the specimens contained a very small amount of uniformly distributed porosity. In addition to this general porosity, compared with the specimens with hybrid and PM surface finishes, the specimens in the AB condition contained a significantly higher (10 times) amount of porosity that was concentrated in a region 100 µm to 200 µm below the surface.
- The room-temperature tensile properties of all the vertically built IN718 specimens were within the range of properties reported for standard wrought IN718 in the annealed condition. The three surface conditions examined in the present study showed similar elastic and plastic behaviors, but the IN718 specimens with AB surfaces exhibited lower ductility relative to the hybrid and PM ones, which was explained through differences in strain localization behavior through digital image correlation, the near-surface porosity and differences in the fracture morphology.
- The strength and ductility of the vertically built IN718 at a high temperature of 650 °C surpassed the minimum specifications for wrought IN718. Even so, the AB surface exhibited lower yield strength (YS), ultimate tensile strength (UTS), elongation (EL) and a reduction in area (RA) values compared with the hybrid and PM surface conditions for all the post-process heat treatments examined in the present study. Compared with the AB surface, machined (hybrid and PM) surfaces exhibited slightly higher strength (YS and UTS) properties by about 4%. But the difference was more significant for the ductility, with the EL increasing 33–68% and the RA nearly doubling for the machined (hybrid and PM) surfaces relative to AB ones.
- After tensile testing at 650 °C, µXCT images showed that the specimens with an AB surface condition contained a lot more open cracks at their surface and that these cracks initiated at the near-surface pores. This strongly points to the significant role of the near-surface pores in having an accelerating effect on the transgranular creep fracture process and a negative impact on the ductility properties.
- The application of in-envelope hybrid surface machining appears to be an effective strategy for improving the AB surface finish and for rendering LPBF-processed IN718 to have a comparable tensile mechanical performance (at room and high temperatures) to out-of-envelope PM parts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sikan, F.; Wanjara, P.; Atabay, S.E.; Gholipour, J.; Brochu, M. Evaluation of electron beam wire-fed deposition technology for titanium compressor blade repair. Mater. Today Commun. 2023, 35, 105701. [Google Scholar] [CrossRef]
- Wanjara, P.; Backman, D.; Sikan, F.; Gholipour, J.; Amos, R.; Patnaik, P.; Brochu, M. Microstructure and mechanical properties of Ti-6Al-4V additively manufactured by electron beam melting with 3D part nesting and powder reuse influences. J. Manuf. Mater. Process. 2022, 6, 21. [Google Scholar] [CrossRef]
- Sikan, F.; Wanjara, P.; Gholipour, J.; Brochu, M. Use of miniature tensile specimens for measuring mechanical properties in the steady-state and transient zones of Ti–6Al–4V wire-fed electron beam deposits. Mater. Sci. Eng. A 2023, 862, 144487. [Google Scholar] [CrossRef]
- Sikan, F.; Wanjara, P.; Gholipour, J.; Kumar, A.; Brochu, M. Thermo-mechanical modeling of wire-fed electron beam additive manufacturing. Materials 2021, 14, 911. [Google Scholar] [CrossRef] [PubMed]
- Wanjara, P.; Gholipour, J.; Watanabe, E.; Watanabe, K.; Sugino, T.; Patnaik, P.; Sikan, F.; Brochu, M. High frequency vibration fatigue behavior of Ti6Al4V fabricated by wire-fed electron beam additive manufacturing technology. Adv. Mater. Sci. Eng. 2020, 2020, 1902567. [Google Scholar] [CrossRef]
- Wanjara, P.; Watanabe, K.; de Formanoir, C.; Yang, Q.; Bescond, C.; Godet, S.; Brochu, M.; Nezaki, K.; Gholipour, J.; Patnaik, P. Titanium alloy repair with wire-feed electron beam additive manufacturing technology. Adv. Mater. Sci. Eng. 2019, 2019, 3979471. [Google Scholar] [CrossRef]
- Sarafan, S.; Wanjara, P.; Gholipour, J.; Bernier, F.; Osman, M.; Sikan, F.; Molavi-Zarandi, M.; Soost, J.; Brochu, M. Evaluation of maraging steel produced using hybrid additive/subtractive manufacturing. J. Manuf. Mater. Process. 2021, 5, 107. [Google Scholar] [CrossRef]
- Sarafan, S.; Wanjara, P.; Gholipour, J.; Bernier, F.; Osman, M.; Sikan, F.; Soost, J.; Amos, R.; Patnaik, P.; Brochu, M. Benchmarking of 316L stainless steel manufactured by a hybrid additive/subtractive technology. J. Manuf. Mater. Process. 2022, 6, 30. [Google Scholar] [CrossRef]
- Osman, M.; Sarafan, S.; Wanjara, P.; Bernier, F.; Atabay, S.E.; Gholipour, J.; Molavi-Zarandi, M.; Soost, J.; Brochu, M. Effect of heat treatment on the microstructure and mechanical properties of 18Ni-300 maraging steel produced by additive–subtractive hybrid manufacturing. Materials 2023, 16, 4749. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.; Zuback, J.; Mukherjee, T.; Elmer, J.; Milewski, J.; Beese, A.M.; Wilson-Heid, A.d.; De, A.; Zhang, W. Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Wanjara, P.; Atabay, S.; Sarafan, S.; Gholipour, J.; Soost, J.; Brochu, M. Overview: Additive/Subtractive Hybrid Manufacturing of Heat Resisting Materials. Key Eng. Mater. 2023, 964, 27–32. [Google Scholar] [CrossRef]
- Paturi, U.M.R.; Reddy, N. Progress of machinability on the machining of Inconel 718: A comprehensive review on the perception of cleaner machining. Clean. Eng. Technol. 2021, 5, 100323. [Google Scholar] [CrossRef]
- Epishin, A.; Fedelich, B.; Nolze, G.; Schriever, S.; Feldmann, T.; Ijaz, M.F.; Viguier, B.; Poquillon, D.; Le Bouar, Y.; Ruffini, A. Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature. Metall. Mater. Trans. A 2018, 49, 3973–3987. [Google Scholar] [CrossRef]
- Weber, J. Nickel-based superalloys: Alloying methods and thermomechanical processing. Encycl. Mater. Sci. Technol. 2001, 6149–6153. [Google Scholar] [CrossRef]
- Caiazzo, F.; Alfieri, V.; Corrado, G.; Argenio, P. Laser powder-bed fusion of Inconel 718 to manufacture turbine blades. Int. J. Adv. Manuf. Technol. 2017, 93, 4023–4031. [Google Scholar] [CrossRef]
- Trosch, T.; Strößner, J.; Völkl, R.; Glatzel, U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 2016, 164, 428–431. [Google Scholar] [CrossRef]
- Jia, Q.; Gu, D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 2014, 585, 713–721. [Google Scholar] [CrossRef]
- Sufiiarov, V.; Popovich, A.A.; Borisov, E.; Polozov, I. Selective laser melting of heat-resistant Ni-based alloy. Non-Ferr. Met. 2015, 1, 32–35. [Google Scholar] [CrossRef]
- Tucho, W.M.; Cuvillier, P.; Sjolyst-Kverneland, A.; Hansen, V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater. Sci. Eng. A 2017, 689, 220–232. [Google Scholar] [CrossRef]
- McLouth, T.D.; Witkin, D.B.; Bean, G.E.; Sitzman, S.D.; Adams, P.M.; Lohser, J.R.; Yang, J.-M.; Zaldivar, R.J. Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control. Mater. Sci. Eng. A 2020, 780, 139184. [Google Scholar] [CrossRef]
- Chlebus, E.; Gruber, K.; Kuźnicka, B.; Kurzac, J.; Kurzynowski, T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 2015, 639, 647–655. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Bai, P.; Qu, H.; Liu, B.; Li, L.; Wu, L.; Guan, R.; Liu, H.; Guo, Z. Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments. J. Alloys Compd. 2019, 772, 861–870. [Google Scholar] [CrossRef]
- Attallah, M.M.; Jennings, R.; Wang, X.; Carter, L.N. Additive manufacturing of Ni-based superalloys: The outstanding issues. MRS Bull. 2016, 41, 758–764. [Google Scholar] [CrossRef]
- Marques, A.; Cunha, Â.; Silva, M.R.; Osendi, M.I.; Silva, F.S.; Carvalho, Ó.; Bartolomeu, F. Inconel 718 produced by laser powder bed fusion: An overview of the influence of processing parameters on microstructural and mechanical properties. Int. J. Adv. Manuf. Technol. 2022, 121, 5651–5675. [Google Scholar] [CrossRef]
- Aydinöz, M.; Brenne, F.; Schaper, M.; Schaak, C.; Tillmann, W.; Nellesen, J.; Niendorf, T. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater. Sci. Eng. A 2016, 669, 246–258. [Google Scholar] [CrossRef]
- Harrison, N.J.; Todd, I.; Mumtaz, K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach. Acta Mater. 2015, 94, 59–68. [Google Scholar] [CrossRef]
- Sadowski, M.; Ladani, L.; Brindley, W.; Romano, J. Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Addit. Manuf. 2016, 11, 60–70. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Z.; Zeng, X. Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Mater. Charact. 2015, 106, 420–427. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Gan, Y.; Huang, T.; Yang, C.; Junjie, L.; Lin, J. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt. Laser Technol. 2015, 75, 197–206. [Google Scholar] [CrossRef]
- Hosseini, E.; Popovich, V. A review of mechanical properties of additively manufactured Inconel 718. Addit. Manuf. 2019, 30, 100877. [Google Scholar] [CrossRef]
- Raghavan, S.; Zhang, B.; Wang, P.; Sun, C.-N.; Nai, M.L.S.; Li, T.; Wei, J. Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy. Mater. Manuf. Process. 2017, 32, 1588–1595. [Google Scholar] [CrossRef]
- Kuo, Y.-L.; Horikawa, S.; Kakehi, K. Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing. Scr. Mater. 2017, 129, 74–78. [Google Scholar] [CrossRef]
- Pröbstle, M.; Neumeier, S.; Hopfenmüller, J.; Freund, L.; Niendorf, T.; Schwarze, D.; Göken, M. Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater. Sci. Eng. A 2016, 674, 299–307. [Google Scholar] [CrossRef]
- Konečná, R.; Kunz, L.; Nicoletto, G.; Bača, A. Long fatigue crack growth in Inconel 718 produced by selective laser melting. Int. J. Fatigue 2016, 92, 499–506. [Google Scholar] [CrossRef]
- Zhang, D.; Niu, W.; Cao, X.; Liu, Z. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater. Sci. Eng. A 2015, 644, 32–40. [Google Scholar] [CrossRef]
- Brenne, F.; Taube, A.; Pröbstle, M.; Neumeier, S.; Schwarze, D.; Schaper, M.; Niendorf, T. Microstructural design of Ni-base alloys for high-temperature applications: Impact of heat treatment on microstructure and mechanical properties after selective laser melting. Prog. Addit. Manuf. 2016, 1, 141–151. [Google Scholar] [CrossRef]
- Zhao, J.-R.; Hung, F.-Y.; Lui, T.-S. Microstructure and tensile fracture behavior of three-stage heat treated inconel 718 alloy produced via laser powder bed fusion process. J. Mater. Res. Technol. 2020, 9, 3357–3367. [Google Scholar] [CrossRef]
- Popovich, V.; Borisov, E.; Popovich, A.; Sufiiarov, V.S.; Masaylo, D.; Alzina, L. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater. Des. 2017, 131, 12–22. [Google Scholar] [CrossRef]
- Strößner, J.; Terock, M.; Glatzel, U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv. Eng. Mater. 2015, 17, 1099–1105. [Google Scholar] [CrossRef]
- Fayed, E.M.; Saadati, M.; Shahriari, D.; Brailovski, V.; Jahazi, M.; Medraj, M. Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion. Sci. Rep. 2021, 11, 2020. [Google Scholar] [CrossRef] [PubMed]
- Hilaire, A.; Andrieu, E.; Wu, X. High-temperature mechanical properties of alloy 718 produced by laser powder bed fusion with different processing parameters. Addit. Manuf. 2019, 26, 147–160. [Google Scholar] [CrossRef]
- Baicheng, Z.; Xiaohua, L.; Jiaming, B.; Junfeng, G.; Pan, W.; Chen-nan, S.; Muiling, N.; Guojun, Q.; Jun, W. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater. Des. 2017, 116, 531–537. [Google Scholar] [CrossRef]
- Ren, X.; Liu, Z.; Liang, X.; Cui, P. Effects of machined surface integrity on high-temperature low-cycle fatigue life and process parameters optimization of turning superalloy Inconel 718. Materials 2021, 14, 2428. [Google Scholar] [CrossRef] [PubMed]
- Ducaffy, F.; Forte, M.; Vermeersch, O.; Piot, E. An experimental study of the effects of surface roughness on the laminar-turbulent transition of a 2D incompressible boundary-layer. In Proceedings of the AIAA Scitech 2021 Forum, Nashville, TN, USA, 11–15 January 2021; p. 247. [Google Scholar]
- Pradhan, D.; Mahobia, G.S.; Chattopadhyay, K.; Singh, V. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment. J. Alloys Compd. 2018, 740, 250–263. [Google Scholar] [CrossRef]
- Paccou, E.; Mokhtari, M.; Keller, C.; Nguejio, J.; Lefebvre, W.; Sauvage, X.; Boileau, S.; Babillot, P.; Bernard, P.; Bauster, E. Investigations of powder reusing on microstructure and mechanical properties of Inconel 718 obtained by additive manufacturing. Mater. Sci. Eng. A 2021, 828, 142113. [Google Scholar] [CrossRef]
- Atabay, S.E.; Wanjara, P.; Bernier, F.; Sarafan, S.; Gholipour, J.; Soost, J.; Amos, R.; Patnaik, P.; Brochu, M. In Envelope Additive/Subtractive Manufacturing and Thermal Post-Processing of Inconel 718. Materials 2022, 16, 1. [Google Scholar] [CrossRef]
- ASTM E21–20; Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, Annual Book of ASTM Standards 2020. ASTM International: West Conshohocken, PA, USA, 2020.
- ISO 25178-2; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 21920-2; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Term, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- AMS F Corrosion Heat Resistant Alloys Committee. Alloy Bars, Forgings, and Rings, Corrosion and Heat Resistant. Nickel Base-19Cr-3.1Mo-5.1(Cb + Ta)-0.90Ti-0.50Al Solution and Precipitation Heat Treated Consumable Electrode or Vacuum Induction Melted; SAE International: Warrendale, PA, USA, 1965. [Google Scholar]
- AMS F Corrosion Heat Resistant Alloys Committee. Alloy Bars, Forgings, and Rings, Corrosion and Heat Resistant Nickel Base-19Cr-3.1Mo-5.1(Cb + Ta)-0.90Ti-0.50Al Consumable Electrode Melted, Solution Treated at 1950 F (1065.6 C); SAE International: Warrendale, PA, USA, 1965. [Google Scholar]
- Gallmeyer, T.G.; Moorthy, S.; Kappes, B.B.; Mills, M.J.; Amin-Ahmadi, B.; Stebner, A.P. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Addit. Manuf. 2020, 31, 100977. [Google Scholar] [CrossRef]
- Sommer, D.; Hornung, S.; Esen, C.; Hellmann, R. Surface roughness optimization of hybrid PBF-LB/M-built Inconel 718 using in situ high-speed milling. Int. J. Adv. Manuf. Technol. 2024, 132, 1741–1751. [Google Scholar] [CrossRef]
- du Plessis, A. Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography. Addit. Manuf. 2019, 30, 100871. [Google Scholar] [CrossRef]
- Bhujangrao, T.; Veiga, F.; Suárez, A.; Iriondo, E.; Mata, F.G. High-temperature mechanical properties of IN718 alloy: Comparison of additive manufactured and wrought samples. Crystals 2020, 10, 689. [Google Scholar] [CrossRef]
- Special Metals Corporation. Inconel Alloy 718. In Special Metals; Special Metals Corporation: Huntington, WV, USA, 2007; 28p, SMC-045; Available online: https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf (accessed on 18 December 2024).
- Yi, J.; Kang, J.; Wang, T.; Wang, X.; Feng, T.; Feng, Y.; Wu, P. Microstructure and mechanical behavior of bright crescent areas in Inconel 718 sample fabricated by selective laser melting. Mater. Des. 2021, 197, 109259. [Google Scholar] [CrossRef]
- Newell, D.J. Solution Anneal Heat Treatments to Enhance Mechanical Performance of Additively Manufactured Inconel 718; Air Force Institute of Technology: Montgomery, OH, USA, 2020. [Google Scholar]
- Pan, H.; Dahmen, T.; Bayat, M.; Lin, K.; Zhang, X. Independent effects of laser power and scanning speed on IN718’s precipitation and mechanical properties produced by LBPF plus heat treatment. Mater. Sci. Eng. A 2022, 849, 143530. [Google Scholar] [CrossRef]
- Du, D.; Dong, A.; Shu, D.; Zhu, G.; Sun, B.; Li, X.; Lavernia, E. Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 2019, 760, 469–480. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Qin, C.; Zong, R.; Fang, X. The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater. Des. 2020, 191, 108642. [Google Scholar] [CrossRef]
- Sommer, D.; Hornung, S.; Esen, C.; Hellmann, R. Optimization of mechanical properties of additive manufactured IN 718 parts combining LPBF and in-situ high-speed milling. In Proceedings of the Laser 3D Manufacturing XI, San Francisco, CA, USA, 27 January–1 February 2024; pp. 117–125. [Google Scholar]
- Zhao, X.; Rashid, A.; Strondl, A.; Hulme-Smith, C.; Stenberg, N.; Dadbakhsh, S. Role of superficial defects and machining depth in tensile properties of electron beam melting (EBM) made Inconel 718. J. Mater. Eng. Perform. 2021, 30, 2091–2101. [Google Scholar] [CrossRef]
- Malakizadi, A.; Hajali, T.; Schulz, F.; Cedergren, S.; Ålgårdh, J.; M’Saoubi, R.; Hryha, E.; Krajnik, P. The role of microstructural characteristics of additively manufactured Alloy 718 on tool wear in machining. Int. J. Mach. Tools Manuf. 2021, 171, 103814. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, D.; Cao, M.; Chen, R.; Feng, Z.; Poprawe, R.; Schleifenbaum, J.H.; Ziegler, S. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Mater. Sci. Eng. A 2019, 767, 138327. [Google Scholar] [CrossRef]
- AMS F Corrosion Heat Resistant Alloys Committee. Alloy Bars, Forgings, and Rings, Corrosion and Heat Resistant Nickel Base-19Cr-3.1Mo-5.1(Cb + Ta)-0.90Ti-0.50Al Consumable Electrode or Vacuum Induction Melted, Solution Treated; SAE International: Warrendale, PA, USA, 1965. [Google Scholar]
- Fayed, E.M.; Saadati, M.; Shahriari, D.; Brailovski, V.; Jahazi, M.; Medraj, M. Optimization of the post-process heat treatment of Inconel 718 superalloy fabricated by laser powder bed fusion process. Metals 2021, 11, 144. [Google Scholar] [CrossRef]
- Choo, H.; White, L.P.; Xiao, X.; Sluss, C.C.; Morin, D.; Garlea, E. Deformation and fracture behavior of a laser powder bed fusion processed stainless steel: In situ synchrotron x-ray computed microtomography study. Addit. Manuf. 2021, 40, 101914. [Google Scholar] [CrossRef]
- Sila Atabay, P.W.; Gholipour, J.; Sarafan, S.; Soost, J.; Amos, R.; Brochu, M. Comprehensive Characterization of Additively Manufactured Inconel 718 Subjected to Different Post Deposition Treatments 2022; National Research Council Canada: Aerospace Research Center: Ottawa, ON, Canada, 2022; pp. 1–50. [Google Scholar]
- Ashby, M.; Gandhi, C.; Taplin, D. Overview No. 3 Fracture-mechanism maps and their construction for fcc metals and alloys. Acta Metall. 1979, 27, 699–729. [Google Scholar] [CrossRef]
Element | Cr | Mo | Nb | Al | C | Mn | Ni | Fe |
Wt.% | 19.19 | 3.07 | 5.25 | 0.64 | 0.04 | 0.14 | 52.37 | Balance |
Element | S | P | Co | Ti | Si | - | O | N |
Wt.% | 0.001 | 0.003 | 0.04 | 0.93 | 0.15 | ppm | 140 | 50 |
PSD (μm) | Flowability per 50 g (s) | AD (g/cm3) | ||||
---|---|---|---|---|---|---|
D10 | D50 | D90 | Hall | Carney | Hall | Carney |
26 | 37 | 55 | 25 | 4 | 3.92 | 3.93 |
Designation | AB | PHT1 | PHT2 | PHT3 |
---|---|---|---|---|
Standard | - | AMS 5663 [53] | AMS 5664 [54] | Non-standard [55] |
Solution Treatment (ST) | ||||
Temperature, °C | - | 980 | 1065 | 1020 |
Time, h | - | 1 | 1 | 0.25 |
Cooling | - | AC | AC | WQ |
Aging (A) Step 1 | ||||
Temperature, °C | - | 720 | 760 | 720 |
Time, h | - | 8 | 10 | 24 |
Cooling | - | Controlled FC to 620 °C at 55 °C/h | FC to 650 °C | AC |
Aging (A) Step 2 | ||||
Temperature, °C | - | 620 | 650 | - |
Time, h | - | 8 | 8 | - |
Cooling | - | AC | AC | - |
PHT1 | PHT2 | PHT3 | |
---|---|---|---|
Average grain diameter (µm) | 33.2 ± 32.5 | 32.2 ± 30.9 | 31.7 ± 26.8 |
Grain aspect ratio | 2.7 ± 1.5 | 3.5 ±2.2 | 3.3 ± 1.9 |
Carbides (nm) | - | 307.8 ± 172.5 | 84.4 ± 20.3 |
δ phase—major axis (nm) | 900.6 ± 314.0 | - | - |
δ phase—minor axis (nm) | 195.4 ± 93.5 | - | - |
Strengthening precipitates (nm) | 19.0 ± 4.0 | 33.0 ± 9.0 | 13.0 ± 3.0 |
Specimen Surface | Linear Roughness (μm) | Areal Roughness (μm) | Relative Density (%) | ||
---|---|---|---|---|---|
Ra | Rz | Sa | Sz | ||
AB | 5.1 ± 1.6 | 34.4 ± 11.1 | 4.9 ± 0.9 | 38.4 ± 11.4 | 99.94 ± 0.01 |
Hybrid | 1.0 ± 0.2 | 6.4 ± 2.0 | 1.2 ± 0.2 | 9.5 ± 3.8 | 99.98 ± 0.02 |
PM | 0.8 ± 0.5 | 4.8 ± 2.6 | 0.9 ± 0.5 | 9.2 ± 4.0 | 99.96 ± 0.02 |
Designation | Surface Condition | YS (MPa) | STD (MPa) | UTS (MPa) | STD (MPa) | EL (%) | STD (%) | TM (MPa) |
---|---|---|---|---|---|---|---|---|
AB | As-built LPBF only | 575.4 | 53.3 | 966.1 | 1.4 | 27.5 | 2.7 | 242.6 |
Hybrid | In-envelope additive–subtractive | 582.1 | 5.7 | 957.3 | 1.8 | 29.6 | 1.5 | 258.5 |
PM | Out-of-envelope machined | 595.5 | 21.7 | 955.1 | 6.2 | 30.0 | 0.7 | 262.0 |
Wrought [31,58,59] annealed | Out-of-envelope machined | 314–534 | - | 683–934 | - | 26–62 | - | - |
LPBF [22,60,61,64] | Out-of-envelope machined | 572 | 44 | 904 | 22 | 19 | 4 | - |
Surface Condition | Heat Treatment | YS (MPa) | STD (MPa) | UTS (MPa) | STD (MPa) | EL (%) | STD (%) | RA (%) | STD (%) |
---|---|---|---|---|---|---|---|---|---|
AB As-built LPBF only | PHT1 | 947.3 | 6.5 | 1076.5 | 5.8 | 14.7 | 0.9 | 17.2 | 0.6 |
PHT2 | 968.7 | 7.0 | 1092.3 | 2.7 | 18.2 | 1.3 | 21.7 | 2.8 | |
PHT3 | 914.4 | 18.3 | 1026.5 | 23.1 | 15.7 | 2.9 | 25.9 | 2.4 | |
Hybrid In-envelope additive–subtractive | PHT1 | 980.4 | 16.0 | 1099.9 | 5.2 | 24.7 | 1.2 | 37.5 | 2.7 |
PHT2 | 987.0 | 7.5 | 1110.4 | 3.8 | 24.2 | 1.3 | 37.5 | 2.7 | |
PHT3 | 977.7 | 7.6 | 1105.6 | 5.6 | 23.3 | 1.8 | 43.1 | 8.9 | |
PM Out-of-envelope machined | PHT1 | 953.2 | 31.4 | 1104.5 | 6.7 | 24.6 | 1.1 | 42.6 | 4.9 |
PHT2 | 925.0 | 10.3 | 1111.4 | 2.0 | 25.9 | 1.2 | 46.5 | 7.7 | |
PHT3 | 935.4 | 15.8 | 1109.2 | 4.9 | 21.5 | 1.2 | 41.0 | 7.7 | |
Wrought [53,69] Out-of-envelope PM | AMS 5662 [69] 5663 [53] | 862 | - | 1000 | - | 12 | - | 15 | - |
LPBF [17] Out-of-envelope PM round specimens | PHT1 | 862 | - | 1026 | - | 7.9 | - | - | - |
LPBF [38] Flat specimens | PHT1 | 915 | - | 1025 | 5.5 | - | - | - | |
LPBF [68] Out-of-envelope PM round specimens | PHT1 | 773 | 992 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarafan, S.; Wanjara, P.; Pelletier, R.; Atabay, S.E.; Gholipour, J.; Soost, J.; Amos, R.; Patnaik, P. Elevated-Temperature Tensile Behavior and Properties of Inconel 718 Fabricated by In-Envelope Additive–Subtractive Hybrid Manufacturing and Post-Process Precipitation Hardening. J. Manuf. Mater. Process. 2024, 8, 297. https://doi.org/10.3390/jmmp8060297
Sarafan S, Wanjara P, Pelletier R, Atabay SE, Gholipour J, Soost J, Amos R, Patnaik P. Elevated-Temperature Tensile Behavior and Properties of Inconel 718 Fabricated by In-Envelope Additive–Subtractive Hybrid Manufacturing and Post-Process Precipitation Hardening. Journal of Manufacturing and Materials Processing. 2024; 8(6):297. https://doi.org/10.3390/jmmp8060297
Chicago/Turabian StyleSarafan, Sheida, Priti Wanjara, Roger Pelletier, Sila Ece Atabay, Javad Gholipour, Josh Soost, Robert Amos, and Prakash Patnaik. 2024. "Elevated-Temperature Tensile Behavior and Properties of Inconel 718 Fabricated by In-Envelope Additive–Subtractive Hybrid Manufacturing and Post-Process Precipitation Hardening" Journal of Manufacturing and Materials Processing 8, no. 6: 297. https://doi.org/10.3390/jmmp8060297
APA StyleSarafan, S., Wanjara, P., Pelletier, R., Atabay, S. E., Gholipour, J., Soost, J., Amos, R., & Patnaik, P. (2024). Elevated-Temperature Tensile Behavior and Properties of Inconel 718 Fabricated by In-Envelope Additive–Subtractive Hybrid Manufacturing and Post-Process Precipitation Hardening. Journal of Manufacturing and Materials Processing, 8(6), 297. https://doi.org/10.3390/jmmp8060297