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Abstract: Recently, task offloading in the Internet of Drones (IoD) is considered one of
the most important challenges because of the high transmission delay due to the high
mobility and limited capacity of drones. This particularity makes it difficult to apply the
conventional task offloading technologies, such as cloud computing and edge computing,
in IoD environments. To address these limits, and to ensure a low task offloading delay, in
this paper we propose PSO BS-Fog, a task offloading optimization that combines a particle
swarm optimization (PSO) heuristic with fog computing technology for the IoD. The pro-
posed solution applies the PSO for task offloading from unmanned aerial vehicles (UAVs)
to fog base stations (FBSs) in order to optimize the offloading delay (transmission delay
and fog computing delay) and to guarantee higher storage and processing capacity. The
performance of PSO BS-Fog was evaluated through simulations conducted in the MATLAB
environment and compared against PSO UAV-Fog and PSO UAV-Edge IoD technologies.
Experimental results demonstrate that PSO BS-Fog reduces task offloading delay by up to
88% compared to PSO UAV-Fog and by up to 97% compared to PSO UAV-Edge.

Keywords: Internet of Drones; fog computing networks; particle swarm optimization; task
offloading in IoD; unmanned aerial vehicles

1. Introduction
The Internet of Drones (IoD) has recently emerged as a prominent area of research,

attracting considerable interest from both civilian and military researchers. This field
combines drones, also known as unmanned aerial vehicles (UAVs), with the Internet of
Things (IoT), to facilitate various applications that include smart agriculture, environmental
disaster management, video surveillance, and smart city initiatives, among others [1].

Fog computing is an extension of cloud computing that allows IoT devices to access
nearby distributed computing and storage resources in order to support various delay-
sensitive IoT applications, leading to lower latency for accessing IoT services, along with
quicker processing of IoT requests [2].

The existing IoD technologies aim to integrate drones with the IoT to enhance connec-
tivity, reliability, scalability, stability, data storage and processing, as well as security for
real-time IoD applications [3]. These IoD technologies can be classified into four categories:
IoD cloud computing, IoD edge computing, IoD fog computing, and IoD cellular net-
works. The primary objectives of IoD solutions include ensuring connectivity and coverage,
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scalability, reliability, stability, low latency, control of UAVs, data storage and processing,
reduction in energy consumption, and security. Moreover, IoD solutions tackle various
challenges to achieve these objectives, such as optimizing UAV trajectory, task offloading,
and routing optimization.

IoD cloud computing aims to ensure a high capacity of computation and storage
for data collected by UAVs by transferring these data to cloud servers. These servers
are characterized by their high capacity for data processing and storage. However, IoD
cloud computing cannot guarantee low latency due to the significant transmission time
needed to transfer data between the UAVs and the cloud server, which are often situated at
considerable distances from one another [4].

IoD edge computing and IoD fog computing technologies are designed to minimize
data transmission latency through the local processing and storage of data collected by
UAVs at the edge and fog nodes [5]. However, IoD edge computing is constrained by the
limited resources of edge nodes, restricting its ability to provide high computation capacity
and manage large volumes of data. In contrast, IoD fog computing can achieve minimal
latency while providing substantial computational and storage capabilities, as it effectively
integrates the local resources of fog nodes with those of cloud nodes [6].

Metaheuristic-based approaches, such as particle swarm optimization (PSO), are
widely used for task offloading due to their ability to explore complex search spaces and
achieve near-optimal solutions. However, these methods are not well adapted to real-
time application in fog IoD scenarios. The authors in [7] highlighted several limitations of
metaheuristic approaches in such environments. One main drawback is their relatively high
execution time, which arises from the iterative nature of these algorithms as they converge
to optimal or near-optimal solutions. In time-sensitive IoD applications, such as emergency
response or live surveillance, the delay introduced by metaheuristic computations can
offset their benefits. This issue becomes even more pronounced when handling large-scale
networks with high task densities and stringent latency requirements. In our work, we
mitigate these limitations by deploying the PSO algorithm on FBSs instead of fog UAVs,
aiming to exploit the higher FBS computing and storage capacity. Furthermore, in our
proposed task offloading optimization model for IoD fog computing, we have chosen to
apply PSO over other heuristic methods due to the following reasons [8]:

• Efficiency and simplicity: Compared to other heuristic methods such as the ge-
netic algorithms (GAs) and ant colony optimization (ACO), PSO is computationally
efficient and straightforward to implement. This is particularly important in resource-
constrained environments like the IoD.

• Suitability for continuous optimization: Task offloading involves optimizing a con-
tinuous search space (e.g., task offloading to FBS or cloud nodes), which aligns well
with the strengths of PSO in handling continuous optimization problems.

• Low computational overhead: Unlike methods such as GAs, which involve complex
selection, crossover, and mutation operations, PSO relies on simple position and
velocity updates, making it more lightweight and suitable for UAVs with limited
resources, such as battery power and computing capacity.

• Proven performance: PSO has been widely used and demonstrated effective results
in similar task offloading and resource allocation problems. Its ability to quickly
converge to near-optimal solutions makes it ideal for real-time IoD applications where
latency is critical.

In IoD networks, reducing the delay for task offloading from UAVs to fog base stations
(FBSs) represents a crucial challenge due to the limited UAV resources. To address this
issue, in this paper we propose a task offloading solution called PSO BS-Fog, which extends
the traditional fog computing, primarily composed of FBSs, by using the PSO algorithm
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to optimize both the transmission and fog computing delays. Specifically, PSO BS-Fog
allows onboard computing resources of UAVs to be integrated with the fog computing
environment, which consists of stationary FBS computational entities. Moreover, this
solution reaps the benefits of the fog computing capabilities of the base stations, including
processing, storage, as well as sensing, to enhance traditional fog computing capabilities
using UAVs.

The primary challenge addressed by our proposed model is ensuring optimized trans-
mission and computing delays, particularly for real-time sensitive applications. Therefore,
the proposed model incorporates two main aspects:

• PSO heuristic: The PSO approach is used to optimize UAV task offloading among
FBSs, ensuring minimized offloading delay.

• Three-layer architecture: The architecture consists of the following layers:

- Edge UAV layer: Acts as client layer, requiring services from the BS-Fog
infrastructure.

- FBS layer: Composed of a set of fog base stations with enhanced computing and
storage capabilities, enabling the processing of tasks offloaded from edge UAVs.

- Cloud layer: Provides cloud services that UAVs can access either directly or
through the FBS layer, offering additional computational and storage support.
This layered architecture ensures efficient resource allocation and reduced delays
for UAV tasks in fog IoD environments.

Our proposed PSO BS-Fog model is based on fog BS computing, where edge UAVs
offload their tasks to fog BS nodes for processing. In the IoD, the limited processing,
storage, and energy capacities of UAVs make stationary fog nodes (fog BS) more suitable
for this type of network, especially when handling the offloading of tasks with significant
computational demands. For this reason, we have chosen to use fog BS in our proposed
PSO BS-Fog model, and have not considered fog UAVs. While the practical usability of
fog UAVs may surpass that of fog BS in certain scenarios, the computational complexity
associated with fog UAVs is significantly higher than that of fog BS.

The rest of this paper is organized as follows. Section 2 presents the related work on
fog computing in IoD. Section 3 outlines different IoD applications. Section 4 describes
the architecture of our proposed PSO BS-Fog, along with the mathematical formulation
and algorithms of PSO BS-Fog. Section 5 presents the experimental study and discusses
the obtained results. Finally, Section 6 concludes the paper with a summary and proposes
some future research directions.

2. Related Work
Fog computing for the IoD has been explored in several recent studies. However,

despite these initial efforts, there is currently no study that proves the effectiveness of task
distribution for fog base stations based on heuristic methods (PSO, GA, etc.) against tradi-
tional task distribution methods (Uniform, Gaussian, etc.). Moreover, none of the studies in
the related work (as shown in Table 1) have compared the different IoD technologies (base
station fog computing, UAV fog computing, and UAV edge computing) for task offloading.
This comparison is necessary to determine the most suitable computing technology for task
offloading in an IoD environment.

Among the existing works, the authors of [9] introduced a framework that combines
fog computing with a swarm of UAVs to effectively manage their computational tasks,
ensuring low latency and high reliability. Additionally, they developed a genetic algorithm-
based heuristic that optimizes the allocation of tasks to minimize energy consumption
among the UAVs. The simulation results demonstrated that this algorithm can efficiently
offload and process UAV tasks while achieving minimal energy consumption and meeting
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the necessary latency and reliability standards. However, it is required to simplify the
algorithm’s complexity to enhance its practical application.

The authors of [10] investigated the challenges of UAV-based fog computing in the
context of smart industry 4.0. They introduced a framework for offloading computational
tasks, enabling ground sensors to transfer their tasks to nearby fog UAVs. Additionally,
this framework optimizes task allocation among fog UAVs, enhancing the total number of
tasks processed while considering communication constraints and computation latency.
The optimization method is based on a greedy algorithm. Simulation results indicated that
this algorithm successfully optimized task allocation, achieving an optimality gap of no
more than 7.5%. Moreover, there is potential for further enhancement of the platform by
optimizing the trajectory of the UAVs.

Table 1. Comparison of fog computing studies for IoD.
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[9] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[10] ✓ ✓ ✓ ✓ ✓

[11] ✓ ✓ ✓

[12] ✓ ✓ ✓ ✓

[13] ✓ ✓ ✓ ✓ ✓ ✓

[14] ✓ ✓ ✓ ✓ ✓ ✓

[15] ✓ ✓ ✓ ✓ ✓ ✓

[16] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[17] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[18] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[19] ✓ ✓ ✓ ✓ ✓ ✓

[20] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[21] ✓ ✓ ✓ ✓ ✓ ✓

[22] ✓ ✓ ✓ ✓ ✓

Our proposal ✓ ✓ ✓ ✓ ✓

In [11], the authors introduced a UAV-based fog computing system called UAV-Fog,
which aims to provide data storage, flexible communication, and minimal latency for
Internet of Things (IoT) applications. UAV-Fog leverages the capabilities of fog computing
alongside the mobility of UAVs to facilitate IoT applications across various locations.
Additionally, UAV-Fog provides many IoT services, including the discovery and integration
of IoT resources, broker services, location-based services, and invocation and security
services. A prototype of UAV-Fog was developed, and experimental results demonstrated
its effectiveness in reducing latency.

In [12], the authors examined the challenges related to the security, safety, and privacy
of fog UAVs within an airborne fog computing framework. Consequently, they introduced
a GPS spoofing detection technique using a monocular camera along with the UAV’s
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Inertial Measurement Unit (IMU). The experimental findings indicated that the proposed
approach outperforms the use of the IMU alone.

In [13], the authors proposed a UAV-based fog computing framework for smart
agriculture to collect data from IoT sensors. This framework offloads data to stationary
fog nodes at the network edge and enables UAVs to obtain tokens from these nodes for
battery recharging. Both an intrusion detection system (IDS) and machine learning (ML)
techniques are implemented at the stationary fog nodes to classify UAV behavior as either
normal or malicious. The system demonstrated 99.7% accuracy in detecting intrusions
and efficiently conserved energy through token-based elimination, ensuring reliable data
collection despite attacks. However, this work focused only on single-model intrusion
detection verification in IoD.

In [14], the authors introduced a method for resource allocation that optimizes radio
and computational resources within a fog-assisted IoD framework to reduce both energy
consumption and service latency. Each drone transmits its data to a fog node located at
the base station (BS). A resource allocation algorithm is developed to assign bandwidth to
drones operating in remote computing mode (RCM) and modifies the CPU frequency of
edge and fog nodes to achieve a balance between latency and energy efficiency. Simulation
results indicate that this algorithm significantly improves network performance compared
to non-optimized drone computing modes or uniformly distributed bandwidth.

In [15], the authors proposed an architecture of a UAV–Fog collaborative network
for data offloading in real-time applications to improve the quality of service required by
drones in terms of latency and throughput.

In [16], the authors focused on the dynamic task scheduling technique in fog comput-
ing, aiming to balance efficiency and energy consumption. Therefore, the authors proposed
a hybrid scheduling algorithm that combines ACO and PSO to improve task scheduling
and rescheduling, which are key challenges in controlling edge devices in fog computing
systems. The simulation results proved that the proposed method minimizes the processing
time for data and requests in fog computing compared to the ACO and PSO heuristics.

The authors of [17] proposed a task offloading model based on fog computing to
minimize energy consumption and meet task deadlines in Internet of Robotic Things (IoRT)
environments. The model’s performance was validated through extensive simulations and
compared with optimization algorithms, including the GA, PSO, the whale optimization
algorithm (WOA), and others. Simulation results showed that the proposed schema
achieved the highest energy reduction compared to the GA, ABC, and other algorithms
like ALO, WOA, PSO, and GWO.

In [18], the authors explored the impact of BS impairments on network performance
and investigated how task offloading and resource allocation can be optimized through
UAV-assisted edge computing. The authors focused on a Mixed Integer Nonlinear Program-
ming (MINLP) problem involving the joint optimization of: task offloading decisions, up-
link transmission power of the mobile vehicle, and computational resource allocation on the
UAV. Moreover, the authors decomposed the optimization problem into two sub-problems:
resource allocation (RA), which is solved using convex optimization techniques, and task
offloading (TO), which is solved using the GA to optimize the RA function. Simulation
results show that the proposed algorithm achieves the optimal solution and significantly
improves vehicle unloading benefits compared to conventional methods.

In [19], the authors addressed the multi-task offloading problem in UAV-enabled fog
computing networks by proposing a scheduling algorithm and an improved multi-task
offloading scheme based on the Fireworks Algorithm (FWA) in order to minimize the total
task delay. Simulation results demonstrated that the proposed approach outperforms the
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GA and random algorithm, offering effective optimization for multi-task offloading delays
in UAV-enabled fog computing networks.

In [20], the authors addressed the challenge of computation offloading and trajectory
planning in UAV-assisted MEC systems, where a UAV provides services for multiple User
Equipment (UE). The Joint Computation Offloading and Trajectory (JCOT) problem was
formulated to optimize UE scheduling, computation offloading ratios, and UAV trajectory.
To solve this problem, the authors proposed the KNN-DDPG algorithm with Prioritized
Experience Replay (PER). Simulation results demonstrated that KNN-DDPG achieves a
lower delay compared to the standard DDPG algorithm.

The authors of [21] proposed a hybrid GA and PSO approach to optimize task schedul-
ing in fog computing environments. By combining the GA’s exploration capabilities and
PSO’s exploitation strengths, the hybrid algorithm outperforms single algorithms (GA,
PSO) and the hybrid PWOA. The results demonstrate that the proposed algorithm opti-
mizes task allocation more effectively, enhancing system performance in terms of time
metrics (execution time, response time, and completion time).

In [22], the authors proposed a multi-objective task offloading method based on the
modified sparrow search algorithm (MOTO-MSSA) to optimize task offloading to fog nodes
(FNs) by reducing cost and response time. Extensive simulations confirm that MOTO-
MSSA significantly improves cost efficiency and response time while maintaining minimal
overhead, outperforming existing optimization methods across various scenarios.

IoD fog computing improves the storage and processing capabilities of IoD cloud
computing by extending their functionalities to IoD edge computing to minimize service
latency and provide higher computational power to end users. However, a significant
challenge in IoD fog computing is integrating UAVs at the edge computing layer with the
cloud computing layer. This integration can be achieved through a range of communication
technologies, including WiFi, WiMAX, and cellular networks, among others.

Discussion

The existing literature works on fog computing in IoD suggest integrating fog com-
puting with IoD in order to improve the connectivity, reliability, scalability, stability, data
storage and processing, and security for IoD real-time applications. In the following, we
explain and discuss the existing fog computing IoD characteristics summarized in Table 1.
• Entity type of fog nodes: Fog computing was implemented on UAV nodes (mobile

nodes) or on base stations fog (stationary nodes).
• Objectives

- Real-time latency: The network ability to guarantee a reduced transmission
delay for real-time services.

- Energy consumption: Capacity of the network to supply and manage the pow-
ered energy of UAVs and IoT ground devices.

- Reliability: Measured based on error-free operations on the network. Ideal net-
work reliability means that no errors or failures were produced in this network.

• Addressed problems

- Task offloading: The UAVs transmit their tasks towards the IoT cloud for pro-
cessing and storage.

- Task scheduling:
- Resource allocation: Proposing a resource allocation strategy in order to mitigate

collision and interference problems.
- UAV trajectory: Takes into account UAV trajectory optimization in order to

minimize the transmission delay and UAV energy consumption.
- Security: Network safety against external threats and attacks.
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- UAV collaboration: UAVs collaborate in order to accomplish a mission.

• IA technique/Metaheuristic: The IA techniques or metaheursrics used in order to
optimize transmission delays or energy consumption or to grantee reliability. In our
study, we have chosen the most used IA techniques/metaheuristics, such as PSO, AG,
AC, FAW, ML, deep learning (DL), QLMDP.
Application: The general or specific application domain of the proposed work, includ-
ing smart farming, smart industry, robotics, imagery.

As shown in Table 1, each work has specific characteristics. We can classify these works
into two categories: those based on stationary fog nodes and those based on mobile fog
nodes. In the IoD, due to the limited processing and storage capacity of UAVs, stationary
fog nodes (FBSs) are more appropriate for this type of network, especially when offloading
tasks of significant size. For this reason, we have chosen to use stationary fog nodes in our
proposed PSO BS-Fog model. Table 1 also highlights that the most commonly considered
objective in the literature is real-time latency, which is a crucial factor addressed in our
proposed model. Furthermore, the table illustrates that a primary challenge in related works
is determining how to offload multiple tasks from edge UAVs to fog nodes, a challenge that
our proposal also addresses. Additionally, the table presents various AI techniques and
metaheuristics used in the cited works. We observe that many works employed PSO and
GA metaheuristics; however, none has used PSO specifically for task offloading in fog IoD.
It is important to note that the works [16,17,21] are not within the IoD context. Given the
numerous advantages of PSO (such as its efficiency and simplicity, suitability for continuous
optimization, low computational overhead, and proven performance), our proposed work
is the first to utilize PSO for task offloading in fog IoD. Finally, Table 1 shows the application
domains of the related works. We observe that most of these works, including our proposal,
were designed for general applications rather than specific application domains.

3. IoD Applications
In the IoD literature, many solutions have been proposed for various applications,

including delivery services, surveillance, search and rescue operations, path planning,
mapping, and surveying.

3.1. Delivery Services

The use of drones for delivery services is becoming increasingly popular because
of the many benefits that UAVs offer. These benefits include quicker delivery times,
cost effectiveness, the ability to navigate geographical barriers and obstacles, and the
ability to reach areas with traffic restrictions in both urban and rural areas. In order to
adequately satisfy customer demand, businesses such as Amazon, Google, and iFood are
beginning to show interest in the possibility of using drones for delivery services [23]. In
that regard, IoD delivery services may be the best last-mile delivery option available [24].
However, the IoD presents a number of difficulties, including noise, privacy concerns,
civilian law, safety concerns, limited payload, restricted flight range, battery capacity,
and inclement weather. Moreover, as of right now, only small drones with payloads
under 2.5 kg are permitted for delivery [25].

3.2. Surveillance

The observation of a target, whether it is an individual or a group, a location, or an
activity, is referred to as surveillance [26]. This procedure includes gathering data from
both rural and urban regions using a variety of technologies and tools such as cameras,
sensors, and drones for observation [27]. For example, in smart cities, the IoD can be
used for resolving surveillance issues linked to various surveillance activities, including,
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transportation, environmental monitoring, traffic flow analysis, environmental condition
assessment, and public safety enhancement.

Drones must be equipped with antennas and passive sensors such as spectrometers,
radiometers, and cameras for surveillance missions [28]. According to [29], drones should
also be equipped with specific sensors and GPS, along with image processing techniques.

3.3. Search and Rescue Missions

The IoD is crucial for these missions because it can quickly and efficiently reach
challenging environments [30] and save time. In addition, they carry out different search
and rescue operations by providing supplies inside buildings, in addition to keeping an eye
on the situation, modeling and analyzing it, and remotely identifying survivors or other
targets. Some of the specifications for search and rescue missions are as follows: UAVs
must have integrated real-time communication systems, high-resolution imaging cameras,
sensors, and navigation systems [31].

To identify the position, condition, and environmental factors of targets, UAVs must
process adequate stability and flight capabilities, in addition to a variety of sensors. These
sensors include sonar, optical, infrared, thermal imaging, and other types. To transport
the necessary supplies and equipment, it is also necessary to have a high load capacity
and lengthy endurance.

3.4. Mapping and Surveying

Drone mapping is an alternative to traditional methods for creating 3D maps in the
IoD, making such operations more efficient, particularly in hazardous or hard-to-reach
regions. This reduces the amount of time that must be spent walking around the area,
enhancing safety.

Drones with fixed or rotary wings can be employed for mapping purposes. Be-
cause of their faster speeds and endurance, the former ones are more practical for outdoor
surveying and mapping in broad areas. However, the latter works better indoors and in
smaller spaces [32].

4. Proposed Approach
4.1. PSO BS-FOG Architecture

To enhance fog computing capabilities, a new fog computing model for the IoD named
PSO BS-Fog is proposed in this paper. Unlike conventional IoD infrastructure that typically
depends on cloud computing or edge computing, PSO BS-Fog integrates both FBSs, edge
UAVs, and cloud computing. This integration includes onboard computers on UAVs and
computing resources on FBSs, expanding the computing resources available. Consequently,
PSO BS-Fog enables drones to access computing resources of fog stationary nodes in order
to enhance computational performance while reducing latency. Moreover, the proposed
model facilitates direct access for UAVs to the FBS and cloud computing resources based on
three layers (i.e., edge layer, static fog layer and cloud layer). The proposed model ensures
improved reliability and lower latency for real-time applications. Furthermore, it supports
various computing functions, such as processing, storage, and networking.

In this proposed model, all available computing resources (base station fog and cloud)
are accessible to edge UAVs through a direct or hierarchical method. The PSO BS-Fog
model is structured as a cross-layer framework organizing infrastructure components,
as illustrated in Figure 1 and described below.
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Figure 1. Proposed PSO BS-Fog architecture.

4.1.1. Edge Layer

The edge layer is the lowest level of PSO BS-Fog and the closest to the UAVs, which
act as a general customer that requires BS-Fog services. Depending on the computational
load, the UAV determines which infrastructure component (i.e., mobile edge, stationary
fog, or cloud) is best suited to accomplish the requested tasks.

4.1.2. FBS Layer

This layer serves as an intermediary between the edge layer and the cloud layer.
Moreover, the FBS layer is composed of a set of FBSs and is capable of communicating with
the cloud Layer through the Internet, as well as with edge UAVs via a wireless connection.
The FBS is distinguished by its higher computing and storage capabilities, which allow for
the processing of tasks offloaded from UAVs because of the limited resources of edge UAVs.
In our model, we propose using a PSO heuristic to optimize tasks distribution among FBSs.

In the context of our proposed PSO BS-Fog model, we suggest that each BS-Fog
processes multiple tasks received from various concurrent drones in a simplified manner,
following the FIFO (First In, First Out) strategy.

4.1.3. Cloud Layer

The cloud layer consists of IoD data centers, which offer cloud computing services. IoD
data centers include both traditional stationary cloud data centers (static IoD cloud) and a
dynamic IoD cloud comprising computing devices from IoD entities, such as temporarily
allocated UAVs. These IoD cloud services can be accessed by UAVs either directly or
through the stationary fog layer. This model leverages the benefits of the traditional
IoD cloud and extends them to IoD entities. The PSO BS-Fog model is augmented by
incorporating a temporary IoD cloud that utilizes IoD computing resources.

In our proposed model, we assume the following assumptions underlying the integra-
tion of FBSs, cloud computing, and UAVs:

• Connectivity: UAVs have stable wireless connections to FBSs and cloud servers, either
directly or hierarchically via the FBS layer. This ensures task offloading can occur
efficiently despite UAV mobility.
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• Heterogeneous resources: FBSs provide intermediate computational and storage
resources with lower latency compared to traditional cloud servers, while the cloud
layer offers extensive computational capacity when tasks exceed FBS capabilities.

• Task characteristics: Tasks generated by UAVs are latency-sensitive and resource-
demanding, which necessitates dynamic selection between the edge, fog, and cloud
layers to balance delay and performance.

• PSO-based optimization: The PSO heuristic assumes that tasks can be distributed
dynamically across available resources (FBSs and cloud) to minimize latency while
leveraging the strengths of each layer.

By combining FBS and cloud resources, our model capitalizes on the proximity of
fog computing for low-latency processing and the scalability of cloud computing for more
complex tasks. These assumptions reflect practical IoD environments where UAVs operate
in resource-constrained and dynamic scenarios.

4.2. PSO BS-FOG Formulation

In the context of our proposed PSO BS-Fog model, the content of a task typically
depends on the application but generally involves data to be processed. These data can
include raw information from sensors, images, video streams, or user inputs. For example,
in a surveillance system, drones offload their video streams to the base station (BS), and this
video stream becomes part of the task that needs to be processed.

The main challenge in task offloading within IoD fog computing is the optimization of
offloading delay, which includes both transmission and computing delays. This section is
divided into four subsections. The first subsection presents the channel model that affects
the calculation of these delays. The second subsection details the computing model, which
is based on the channel model to calculate transmission and computing delays. The third
subsection introduces the PSO heuristic model employed to optimize these calculated
delays. Finally, the last subsection describes our proposal for integrating the presented
models to effectively optimize both transmission and computing delays.

Task offloading to various FBSs and the task scheduling in one FBS are the crucial
challenges in IoD networks based on FBSs. For the first challenge, we have proposed an
algorithm which is based on PSO heuristics to produce optimal task offloading solutions
that provide minimal transmission and fog computing delays. For the second challenge, we
have used a scheduling algorithm that calculates the transmission and computing delays
of each task, and after that it calculates the maximum delay of all tasks allocated only in
one FBS [19].

4.2.1. PSO BS-Fog Channel Model

Figure 2 represents the PSO BS-Fog channel model. To achieve connectivity over
expansive geographic regions, the communication range between aerial nodes and ground
devices must be calculated. To maintain network quality, it is essential to calculate path loss
to determine the optimal path for UAVs, ensuring uninterrupted data delivery between
nodes. The overall path loss (considered as free space) from UAV to ground FBS is calculated
using Equations (1) and (2) [15]:

L[dB] = PL( f reespace) + PL(excess) (1)

L[dB] = 20log10(
4πd fc

c
) + L0 (2)

In Equation (1), the total path loss is formulated to compute the attenuation along the
path from air devices (UAV) to the FBS, where fc is the channel frequency, c is the speed of
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the light, di is the distance between UAVj and FBSi (as shown in Figure 2), and L0 is the
excess path loss including line of sight (LoS) for direct communications, and non-line-of-
sight (NLoS) for indirect communication [15]. The total received power by FBS devices
with respect to the air devices, considering path loss and the range, is given by Equation (3),
as in [15]:

Pr(i)di(t) = Pt(j)
Gλ

(4πdi)2L[dB]di

(3)

Figure 2. PSO BS-Fog channel model.

In this context, Pr(i) represents the power received by FBSi, which depends on the
distance di(t), while Pt(j) denotes the power transmitted by the air device UAVj. G is the
gain of the transmitter (UAV) Tx and the receiver Rx (FBSs) antennas measured in dB, λ is
the wavelength of the signal, and L[dB]di

is the total path loss between the air device and
ground device.

From Equation (3), the transmitted power Ptj from the air devices UAVj and the
ground devices is used to calculate the signal-to-noise ratio (SNR). Therefore, the SNR(i) is
calculated using Equation (4) as in [19]:

SNR(i) =
Pt(j)/L[dB](di)

n0
(4)

where L[dB] is the total path loss, and n0 is the noise power. The maximum transmission
data rate Ti from air device to ground device can be expressed by Equation (5) as shown
in [19]:

Ti = B.log2(1 + SNR(i)) (5)

In this context, B represents the channel bandwidth.
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4.2.2. PSO BS-Fog Computing Model

Initially, we define the vector indicating the size of each task as S = {S1, S2, . . . , Sj, . . . , Sn}.
Next, we can determine the transmission delay Trans(i, j) associated with offloading Task j

to the FBSi using the transmission rate Ti as follows [19]:

Trans(i,j) =
Sj

Ti
(6)

The processing time of FBSi depends on the CPU frequency fi of the FBSi. The CPU
cycles required to process each bit of data are represented as αi, while P(i,j) refers to the
computing delay associated with Task j in the FBSi, and P(i,j) can be calculated using the
following equation [19]:

P(i,j) =
Sj.αi

fi
(7)

4.2.3. Algorithmic Structure of Standard PSO

PSO employs a swarm of particles that update their positions and velocities in each
iteration to conduct a search for optimal solution. Each particle moves towards its own
previous best position (pbest) and the global best position (gbest) within the swarm algo-
rithm [33]. Thus, one has:

pbest(i, t) = arg min︸ ︷︷ ︸
k=1,...,t

[ f (Pi(k)], i ∈ {1, 2, ..., Np} (8)

gbest(t) = arg min︸ ︷︷ ︸
k

[ f (Pi(k)] (9)

where i is the index of the particle, f represents the fitness function, t is the current iteration
number, Np is the total number of particles, and P denotes the position of the particle. P
and the velocity V of particles are updated by the following equations [33]:

Vi(t + 1) = ωVi(t) + c1r1(pbest(i, t)− Pi(t)) + c2r2(gbest(t)− Pi(t)) (10)

Pi(t + 1) = Pi(t) + Vi(t + 1) (11)

where ω is the inertia weight used to balance the global exploration and local exploitation,
r1 and r2 are uniformly distributed random variables within range [0, 1], and c1 and c2 are
positive constant parameters called “acceleration coefficients”.

4.3. PSO BS-Fog Algorithms

The general proposed PSO BS-Fog algorithm is presented in Algorithm 1. The UAV
executes the pseudo-code shown in this figure when it wants to offload tasks to a set of
FBSs. Before generating a set of a population of particles (NPopulation), Step 1 consists of
the problem definition, which defines the cost function that represents the total offloading
delay for each FBS generated by the algorithm shown in Algorithm 2. After the first step,
Step 2 initializes a vector of NPopulation cost, velocity, best position, and best cost. Step 3
applies the PSO heuristic Equations (8)–(11) in order to find the best position of each task,
and it calculates the task cost that represents the offloading delay (transmission and fog
computing delay). Finally, Step 4 generates the minimal delay of all offloading tasks.
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Algorithm 2 shows the pseudo-code of the total delay calculation algorithm for of-
floading tasks in the proposed PSO BS-Fog. This code is applied in Step 3 of the PSO
BS-Fog algorithm (Algorithm 1) to calculate transmission delay and fog computing delay
for all offloading tasks to a single FBS. Step 1 of this code calculates the data rate based on
Equations (1)–(5). Following this, Step 2 calculates the transmission delay and fog comput-
ing delay of each offloading task based on Equations (6) and (7) and then generates the
total task offloading delay, which is defined as the maximum of all task offloading delays.

Algorithm 1 Proposed PSO BS-Fog algorithm
Inputs: Number of fog base stations (NFBS), number of offloading tasks (NTasks), Iteration

number (NIt), Population number (NPopulation), Inertia Weight (w), Local acceleration

coefficient (c1), Global acceleration coefficient (c2).

Outputs: Optimized tasks offloading total delay for all fog base stations (Best_Cost)

Step 1. Problem Definition

CostFunction = Total delay for all fog base stations (Algorithm 2)

Step 2. Initialize a vector of NPopulation particles that contains for each case the interested

particles data: position, cost, velocity, best position, and best cost.

for i=1: NPopulation

Step 2.1. Initialize randomly (within the interval [1, NFBS]) the position of each particle of

the population i (NTasks particles)

Step 2.1. Initialize randomly the velocity of each particle of the population i

Step 2.2. Evaluation CostFunction of each particle of the population i

Step 2.3. Update local Best of each particle of the population i

Step 2.4. Update Global Best of all NTasks particles of the population i

end

Step 3. PSO Main Loop

for it=1: NIt

for i=1: NPopulation

Step 3.1. Update the velocity of each particle of the population i by Equation (10)

Step 3.2. Update the position of each particle of the population i by Equation (11)

Step 3.3. Evaluation CostFunction of each particle of the population i

Step 3.5. Update local Best of each particle of the population i

Step 3.6. Update Global Best of all NTasks particles of the population i

end

end

Step 4. Generate best cost of all populations.



Drones 2025, 9, 23 14 of 21

Algorithm 2 New total delay calculating algorithm of offloading tasks for single fog
Base Station
Inputs: Task sizes vector (S), Radius, Channel Bandwidth (B), UAVs Altitude (H), BS-Fog

CPU cycles ( ), BS-Fog CPU frequency (fi), UAV Transmitting power (Pt), Noise power (n0)

Output: Total delay of all tasks(Total_Delay)

Step 1. Calculate Data Rate (T)

Step 1.1. Calculate free space propagation and communication Range

lambda = physconst(’LightSpeed’)/fc;

Range = round(hypot(H,Radilambdaus));

Step 1.2. Calculate Packet Loss, SNR and T

L = fspl(Range, lambda);

SNR = (Pt/L)/n0;

T = B * log2(1+SNR);

Step 2. Calculate total delay (Total_Delay)

Step 2.1. Calculate transmission Delay (Trans) and fog computing delay (F)

Trans = S/T;

F = (S*α)/fi;

Step 2.2. Calculate total transmission Delay (Total_TDelay)

and total fog computing delay (Total_Fdelay)

TmTotal = Trans(1);

TpTotal = Trans(1);

for i = 1:(length(S)-1) TotalTDelay = TmTotal + Trans(i+1);

TotalFdelay = TpTotal + F(i);

if (TmTotal>TpTotal);

TpTotal = TmTotal;

end

end

Total_Delay = TpTotal + P(length(S));

5. Performance Evaluation
In this section, we present the experimental results to evaluate the performance of our

proposed PSO BS-Fog for task offloading in IoD.

5.1. Simulation Setup

To measure the performance of PSO BS-Fog for task offloading in the IoD, we have
conducted several simulations performed on MATLAB R2016a version. The simulation
parameters are listed in Table 2. We examined a scenario involving various types of smart
devices, UAV-Edge, UAV-Fog nodes, and FBSs.
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Table 2. General simulation parameters.

Parameter Value

Radius 500
Channel bandwidth (B) 0.2 MHz
BS-Fog number (NFBS) {1, . . . , 10}
UAV altitude (H) 360 m
Distribution of the fog nodes Uniform Distribution
Dimension of the tasks Generated within the range [1 kbit, 200 kbit]
TASK number (Ntasks) {50, . . . , 450}
BS-Fog CPU cycles (Ccpu) 2000 cycle/bit
UAV transmitting power (Pt) 10 dBm
BS-Fog CPU frequency ( fi) 2.4 × 109 cycle/s
Noise power (n0) −105 dBm
PSO population number (NPopulation) 100
Iteration number (NIt) 100
Inertia Weight (w) 1
Local acceleration coefficient (c1) 1.5
Global acceleration coefficient (c2) 2.0

We compared the following task distribution methods under FBS in the IoD:

• PSO BS-Fog: Our proposed solution, which utilizes PSO for task offloading to FBSs
and provides optimized minimal delay;

• Uniform: A traditional uniform distribution method that allocates tasks among FBSs
in a uniform way;

• Gaussian: A traditional Gaussian distribution method that allocates tasks among FBSs
based on a Gaussian distribution;

• Pareto: A Pareto distribution method that allocates tasks among FBSs based on the
Pareto function.

5.2. Experimental Results

Figure 3 shows the Best Delay (in seconds) as a function of the FBS number (NFBS),
varying from 1 to 10 (with the number of offloaded tasks fixed at 100). As illustrated in this
figure, as the NFBS increases, the Best Delay for all offloading methods decreases due to the
higher FBS capacities in terms of storage and processing. Moreover, the figure demonstrates
that our proposed BS-Fog, based on the PSO heuristic, achieves significantly lower delays
compared to the Uniform, Gaussian, and Pareto offloading methods. For example, when
NFBS equals 6, BS-Fog achieves a Best Delay of 0.0015 s, while the other traditional methods
have a Best Delay around 0.18 s. This represents a delay reduction of approximately
99.17%. By utilizing the PSO heuristic, BS-Fog provides an optimal task offloading solution,
minimizing both transmission and processing delays.

Figure 4 presents the Best Delay achieved by each offloading method as a function of
task number (TN), with NFBS fixed at 5. As shown in this figure, when the TN increased,
the Best Delay for all offloading methods also increased. Specifically, using the proposed
algorithm, as the number of tasks increased from 50 to 450, the Best Delay increased from
0.1 s to 0.22 s. This increase is due to the higher number of tasks being offloaded, which
leads to greater delays in processing. Moreover, Figure 4 illustrates that our proposed PSO
BS-Fog achieves a lower Best Delay compared to the other methods. This is attributed to
the PSO heuristic’s ability to generate optimal task offloading solutions. For a task number
of 250, the best delay achieved by the PSO-based BS-Fog is 0.11 s, while other distribution
methods such as Uniform, Gaussian, and Pareto show Best Delays ranging from 0.27 s
to 0.36 s.
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Figure 3. Variation in Best Delay with number of fog base stations for various task offloading methods.

Figure 4. Variation in Best Delay with task number for various task offloading methods.

The Best Delay achieved by each IoD technology (PSO BS-Fog, PSO UAV-Fog, and PSO
UAV-Edge) as a function of the number of nodes (i.e., BS number for PSO BS-Fog, UAV
number for PSO UAV-Fog and PSO UAV-Edge) is presented in Figure 5, with the number
of offloaded tasks fixed at 100. As shown in this figure, when the NFBS for PSO BS-
Fog (respectively the UAV number for PSO UAV-Fog and PSO UAV-Edge) increases,
the Best Delay decreases due to the higher processing and storage capacities of these nodes.
Moreover, Figure 5 demonstrates that our proposed PSO BS-Fog achieves a significantly
lower Best Delay compared to PSO UAV-Fog and PSO UAV-Edge technologies. For example,
when the number of nodes is six, and the number of tasks is 100, the Best Delay using
PSO BS-Fog is 0.05 s, whereas using PSO UAV-Fog results in a delay of 0.35 s, and PSO
UAV-Edge shows a delay of 2 s. This means that PSO BS-Fog achieves a delay reduction of
approximately 85.7% compared to PSO UAV-Fog and 97.5% compared to PSO UAV-Edge.
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Figure 5. Variation in Best Delay with number of nodes for IoD technologies.

Figure 6 presents the variation in Best Delay with task number (TN) for IoD tech-
nologies, with NFBS or UAV-Fog number fixed at five. As shown in this figure, when
TN increases, all IoD technologies (PSO BS-Fog, PSO UAV-Fog, and PSO UAV-Edge) ex-
perience higher Best Delays due to the limited capacities of the nodes. However, PSO
BS-Fog achieves a significantly lower Best Delay compared to both PSO UAV-Fog and
PSO UAV-Edge. For example, when the number of tasks is 200, the Best Delay using the
proposed PSO BS-Fog method is 0.1 s, while using PSO UAV-Fog results in a delay of 0.9 s
and using PSO UAV-Edge results in a delay of 5 s. This means that PSO BS-Fog achieves a
delay reduction of approximately 88.9% compared to PSO UAV-Fog and 98% compared
to PSO UAV-Edge. This difference is primarily due to the higher processing and storage
capacities of the fog base stations (FBSs) in PSO BS-Fog.

Figure 6. Variation in Best Delay with number of tasks for IoD technologies.

Figure 7 illustrates the variation in Best Delay as a function of the transmission data
rate (DR) for IoD technologies, with NFBS or UAV number fixed at five. It is important to note
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that the variation in the data rate affects all the parameters mentioned in Equations (2)–(6).
The results show that the PSO BS-Fog method achieves a lower Best Delay compared to
both PSO UAV-Fog and PSO UAV-Edge. This is primarily due to the higher computing
capacities of fog base stations (FBSs) compared to the limited computing capabilities of
UAVs, which allow PSO BS-Fog to process tasks more efficiently and with reduced delay.

Figure 7. Variation in Best Delay with data rate for IoD technologies.

Figure 8 illustrates the variation in Best Delay as a function of UAV altitudes, with the
number of FBSs or UAVs fixed at five and the number of tasks set to 100. As shown in this
figure, the proposed PSO BS-Fog achieves a lower Best Delay compared to PSO UAV-Fog
and PSO UAV-Edge due to the superior computing capabilities of FBSs compared to those
of FUAVs and edge UAVs.

Figure 8. Variation in Best Delay with UAV altitudes for IoD technologies.
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6. Conclusions
In this paper, we have proposed PSO BS-Fog for task offloading optimization in

IoD networks. The proposed solution utilizes the PSO heuristic to optimize UAV task
dispatching among fog base stations (FBSs) to minimize offloading delay (transmission
delay and fog computing delay). The simulation results demonstrated that PSO BS-Fog
achieves better performance in terms of task offloading delay compared to traditional
offloading methods (i.e., Uniform distribution, Gaussian distribution, and Pareto dis-
tribution). Moreover, the simulation proved that PSO BS-Fog achieves a significantly
lower Best Delay compared to existing IoD technologies (i.e., PSO UAV-Fog and PSO
UAV-Edge) due to the higher storage and processing capacities of FBSs. For example,
when the number of tasks is 200, PSO BS-Fog achieved a Best Delay of 0.1 s, PSO UAV-
Fog showed a delay of 0.9 s, and PSO UAV-Edge had a delay of 5 s, representing a delay
reduction of approximately 88.9% compared to PSO UAV-Fog, and 98% compared to
PSO UAV-Edge. The experimental results highlight the influence of the number of nodes,
the number of tasks, and the transmission data rate on offloading delay, which is affected
by the range and channel conditions.

As future work, we aim to design a hybrid task offloading solution integrating PSO
BS-Fog, PSO UAV-Fog, and PSO UAV-Edge, leveraging the strengths of these IoD tech-
nologies. Additionally, we plan to incorporate energy consumption into the optimization
framework, exploring energy-aware strategies to balance delay and power usage. We
will also address security concerns by integrating secure communication protocols and
authentication methods to protect against risks like data interception and hijacking. Lastly,
we intend to compare our approach with AI techniques for task offloading, dynamic task
allocation, and real-time decision-making under unpredictable conditions. For instance,
we plan to compare our approach with machine learning techniques such as reinforcement
learning and deep learning to assess the trade-offs and benefits of both PSO-based and
ML-driven methods for task offloading in the IoD.
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