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Abstract: The limited coverage of terrestrial base stations and the limited transmission distance and
onboard resources of satellite communications make it difficult to ensure the quality of communication
services for marine users by relying only on satellites and terrestrial base stations. In contrast, UAVs,
as flexible mobile communication nodes, have the capacity for dynamic deployment and real-time
adjustment. They can effectively make up for the communication blind spots of traditional satellites
and ground base stations in the marine environment, especially in the vast and unpredictable
marine environment. Considering the mobility of maritime users, one can effectively reduce the
communication delay and optimize the deployment scheme of UAVs by predicting their sailing
trajectories in advance, thus enhancing the communication service quality. Therefore, this paper
proposes a communication coverage model based on mobile user route prediction and a UAV
dynamic deployment algorithm (RUDD). It aims to optimize the coverage efficiency of the maritime
communication network, minimize the communication delay, and effectively reduce the energy
consumption of UAVs. In this algorithm, the RUDD algorithm employs a modified Long Short-Term
Memory (LSTM) network to predict the maritime user’s trajectory, utilizing its strengths in processing
time-series data to provide accurate predictions. The prediction results are then used to guide the
Proximal Policy Optimization (PPO) algorithm for the dynamic deployment of UAVs. The PPO
algorithm can optimize the deployment strategy in dynamic environments, improve communication
coverage, and reduce energy consumption. Simulation results show that the proposed algorithm
can complement the existing satellite and terrestrial networks well in terms of coverage, with a
communication coverage rate of more than 95%, which significantly improves the communication
quality of marine users in areas far from land and beyond the reach of traditional networks, and
enhances network reliability and user experience.

Keywords: dynamic deployment of UAVs; communication coverage; maritime communication;
route prediction

1. Introduction

In recent years, with the rapid growth of China’s ships, offshore platforms, buoys, and
other marine activities and facilities, the demand for low-latency, high-reliability commu-
nications at sea has become increasingly strong [1–3]. Satellite networks, as an important
means of communication, can provide a wide range of network connectivity for marine
users, which to a certain extent meets the needs of maritime communication. However,
satellite signals are affected by weather, ocean reflections, and multi-path interference,
which can easily lead to unstable signal quality and thus affect the communication experi-
ence. Meanwhile, due to the long signal transmission distance of satellite communication
and the limited satellite on-board payload (e.g., antenna, power, etc.), these factors lead to
significant challenges in terms of transmission rate, latency, and reliability of satellite com-
munication in the marine environment [4,5]. On the other hand, although terrestrial base
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stations can provide high-speed networks for some sea areas, their coverage is extremely
limited. In particular in open sea areas and areas far from land, the coastline of marine
areas is long and variable, and terrestrial base stations cannot provide continuous coverage.
Meanwhile, for high-speed moving targets such as ships and offshore platforms, the fixed
deployment of base stations cannot meet their real-time changing communication needs [6].
In this case, relying only on terrestrial networks as well as satellite networks to provide
maritime services has certain limitations in terms of coverage, communication capacity,
and computational resources, and thus it is difficult to meet large-scale, highly reliable, and
low-latency maritime communication needs.

In this context, UAV-assisted communication has gradually become an effective pro-
gram. With the characteristics of flexibility and high mobility, UAVs can dynamically adjust
their flight altitude and position according to real-time demand in the marine environment,
thereby covering the blind areas that it is difficult to cover with traditional communication
networks. Compared with satellites and terrestrial base stations, drones can be rapidly
deployed to specific areas to provide high-quality localized communication coverage, espe-
cially in hot spots where communication needs are more concentrated, such as sea areas
far from land and near offshore platforms [7,8]. UAVs are also able to adjust flight routes
and altitudes according to real-time communication needs, reducing signal attenuation
and ensuring communication quality. In addition, UAVs can increase the line-of-sight
(LOS) transmission range of the airborne base station so that it can communicate more
effectively with ships, buoys, and other equipment on the sea surface, further improving
the communication quality and network reliability [9,10]. On this basis, there is an urgent
need to develop more efficient network architectures and deployment schemes for better
performance in massive maritime data transmission and task processing.

In the maritime network environment, due to the mobility of ships and the limitation
of UAV communication coverage, UAVs need to adjust their flight position and altitude in
real time to ensure that they can maintain a stable communication connection with ships. In
this case, it is particularly important to accurately predict the ship’s route. By predicting the
ship’s trajectory, UAVs can plan their flight paths and adjust their positions in advance, thus
optimizing the deployment and scheduling of UAVs. This not only helps to improve the
response speed of UAVs in complex marine environments but also ensures the continuity
and stability of communication coverage [11]. Automatic Identification Systems (AISs) can
monitor ship dynamics and can obtain real-time information on the transmitted positions of
hundreds of thousands of ships around the world [12]. These data can be used to effectively
predict the ship’s trajectory and provide UAVs with positional information for some time
in the future. As a result, the UAV can make real-time adjustments more flexibly, thus sig-
nificantly improving the response speed and stability of maritime communication signals,
and ensuring the UAV’s communication coverage capability under complex sea conditions.

This paper explores the potential benefits of UAVs in enhancing maritime coverage,
with a focus on coordinating UAVs with existing satellites and ground base stations through
route prediction to enable dynamic deployment and improve the overall performance of
maritime communication networks. The main contributions of this paper are as follows:

1. We propose a deep learning algorithm-based voyage trajectory-prediction model for
predicting the voyage trajectory of the user’s vessels, which enables communication
nodes to sense the user position more accurately, thereby optimizing the deployment
scheme and ultimately achieving dynamic and precise coverage.

2. We designed a RUDD algorithm based on route prediction. The algorithm takes
into account the computational resources, communication coverage, latency of the
communication nodes, the limitations of the UAVs’ battery capacity, and the mobility
of the user, aiming to maximize the network coverage, reduce the total latency of the
system to process the communication tasks, and reduce the energy consumption of
the UAV to enable dynamic deployment.

3. We design simulation experiments to demonstrate that the RUDD algorithm signifi-
cantly outperforms other basic algorithms in reducing total system cost, improving
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communication coverage, and reducing system delay. We also test the algorithm un-
der different system model parameters to evaluate its performance. Simulation results
show that the proposed algorithm has better stability and confirms its applicability in
marine IoT scenarios.

The rest of the paper is structured as follows. Section 2 discusses related work.
Section 3 describes the system model and problem formulation. Then, Section 4 presents
the design of the RUDD program process. In Section 5, the experimental performance is
evaluated. Section 6 presents the conclusion.

2. Related Work

Near-Earth orbit (LEO) satellites play an important role in maritime communications,
and many references in the literature have conducted specific studies on the satellite-wide-
area coverage problem. For example, ref. [13] analyzes the average backhaul capacity
of terrestrial satellite terminals using stochastic geometry and queuing theory and pro-
poses a multi-layer LEO satellite constellation deployment scheme that takes satellite
mobility into account and supports seamless global coverage. To address the saturation
problem in available LEO space and meet the ultra-low latency requirements of future 6G,
ref. [14] adopts a decomposition-aggregation approach combined with an elite strategy
genetic algorithm to minimize satellite size and maximize average coverage, ensuring
high robustness and reliability. To address issues such as the limitations of a single satel-
lite deployment model, insufficient channel model accuracy, and limited communication
coverage, ref. [15] proposes a multi-layer satellite deployment strategy. By deploying
satellites on multi-layer concentric spheres, this strategy significantly enhances both the
model’s pervasiveness and the coverage capability of the satellite communication system.
Meanwhile, the Shadow Rice Fading (SR) model is introduced to characterize the channel
between satellites and terrestrial gateway stations, which improves the accuracy of the
channel model. Although some progress has been made with existing satellite-deployment
strategies, these methods usually do not take into account the deployment of drones to
supplement coverage. When satellites are deployed on a large scale to extend coverage, it is
not only costly but also results in higher losses during signal transmission and lower trans-
mission rates, making it difficult to meet the demand for low latency and high reliability in
maritime communications.

The mobility and flexibility of UAVs enable them to provide essential communication
services to users in the edge areas of the cell as well as to users with higher requirements for
communication quality. Several research papers have focused on applications and studies
that rely on UAVs alone for coverage. For example, ref. [16] investigates the problem of
3D path planning for UAVs with cellular network connectivity and proposes a multi-step
dueling DDQN-based algorithm for coverage maximization. Ref. [17] mainly explores the
system performance of UAV-assisted networks in urban environments, focusing on the
radiation gain of directional antennas. By deriving the network coverage probability based
on stochastic geometric theory, the signal transmission efficiency and coverage range were
significantly improved. Ref. [18] proposed a distributed algorithm based on the virtual
Coulomb force and Voronoi diagram with two mobility schemes and redundant UAV
dormancy strategy to minimize the number of UAVs, improve communication coverage,
and save energy. Ref. [19] investigates the coverage utility and energy multi-objective
optimization problem in multi-UAV communication scenarios and proposes an improved
multi-objective Gray Wolf optimization algorithm. The algorithm optimizes the number,
position, and speed of UAVs to maximize the coverage utility and minimize energy con-
sumption through role determination and hybrid solution initialization strategies. Ref. [20]
investigates the multi-UAV base station deployment problem considering constraints such
as movement speed, energy consumption, and communication coverage radius and pro-
poses an algorithm called Dense Multi-Intelligent Body Reinforcement Learning, which
aims to maximize the communication coverage of the vehicle-mounted network. For the
problem of UAV swarms performing full coverage of an area, ref. [21] proposes a path-
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planning algorithm realized by information exchange between UAV swarms and adopts
the parallel line full coverage path to provide an effective solution for UAV swarms’ full
coverage path planning in a simple area. To solve the problem of wireless emergency
communication in maritime emergency communication networks, ref. [22] proposed a
wireless emergency communication relay system based on a tethered UAV platform, which
accounts for significant advantages in rapid and flexible deployment and long-time spatial
coverage. Ref. [23] investigated the deployment of UAVs to optimize coverage quality
after a disaster or during episodic events. A decentralized deployment algorithm based
on weighted Voronoi cells is proposed, aiming to minimize the average distance between
UAVs and users while maintaining the connectivity between UAVs and fixed base stations
to improve coverage performance.

Although UAVs are playing an increasingly important role in communication coverage,
a single UAV coverage solution may not be able to provide stable and long-lasting services
in some scenarios due to energy constraints, coverage limitations, and other issues. For this
reason, combining UAVs with communications from satellites and traditional base stations
to build a synergistic and complementary multilevel communication network will be able
to address the limitations in existing research. Much of the literature examines how UAVs
can be deployed into existing satellite–ground integrated networks to improve maritime
network coverage. For example, considering the impact of the distance between oceanic
surface stations and the coastline on the coverage performance, ref. [24] investigates a wide-
range maritime communication architecture based on SAGSIN, which analyzes the random
distribution of oceanic surface stations on the ocean surface and improves the coverage
probability of oceanic surface stations. Ref. [25] proposed a hybrid satellite–UAV–terrestrial
network based on NOMA technology with a joint power allocation scheme to maximize
the rate and coverage of the offshore network. Ref. [26] combines the advantages of wide
coverage of satellites with the high capacity of shore-based systems and deploys UAVs
to enhance the coverage of a hybrid satellite–terrestrial offshore communication network,
while jointly optimizing the UAV trajectory and flight transmit power. Ref. [27] describes
a hybrid satellite–UAV–terrestrial network for maritime communications that achieves
extensive coverage and energy efficiency at sea by coordinating different communication
links. While these studies consider factors such as energy consumption, communication
latency, and coverage, they mostly ignore the computational resource constraints of the
UAVs themselves and the dynamic mobility of maritime users.

Considering the impact of maritime user mobility on the deployment of communi-
cation nodes, prediction algorithms have been introduced to forecast ship trajectories,
enabling more effective dynamic deployment. Many studies have focused on trajectory-
prediction algorithms for ships. For example, ref. [28] investigated how to predict ship
trajectories in the inner harbor of Busan port using AIS data and deep learning techniques,
solving the problem of irregular intervals of AIS data through linear interpolation, and im-
proving the accuracy of route prediction in a complex port environment. Ref. [29] proposed
a bi-directional data-driven trajectory-prediction method based on AIS spatio-temporal
data, constructed an encoder–decoder network driven by forward and reverse integrated
historical trajectories, and predicted ship trajectories by fusing the characteristics of the
sub-networks. Ref. [30] proposed a multi-gated attention encoder–decoder network that
significantly improves the accuracy of ship trajectory prediction. The scheme combines the
LSTM network with Gated Recurrent Units and an attention mechanism and enhances the
generalization ability and robustness of the model by introducing a soft-threshold residual
structure to handle sparse features. Ref. [31] proposes a deep learning-based framework for
ship trajectory prediction, consisting of two models: Differential Long Short-Term Memory
(DLSTM) and Enhanced DLSTM with Reference Trajectory Correction (Ref-DLSTM). These
models are used for cases without and with reference trajectories, respectively, effectively
reducing prediction errors. Ref. [32] proposes a ship trajectory-prediction algorithm called
Deep Bidirectional Information Empowerment, which utilizes an integrated network and
attention mechanism. It combines the strengths of bidirectional long short-term memory
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and bidirectional gated recurrent unit networks, optimizing the weights of both network
units through the attention mechanism to enhance prediction accuracy and efficiency. Con-
sidering the multi-density distribution characteristics of trajectory data, a multi-density
adaptive trajectory-clustering algorithm is proposed in ref. [33], which determines the
input parameters adaptively and introduces a trajectory direction identification mechanism
to make it perform better in dealing with complex trajectory-clustering problems. To ad-
dress the heterogeneity of vessel motion patterns, ref. [34] proposes a generalized vessel
trajectory-prediction method based on clustering. This method uses historical AIS data to
cluster route patterns for each vessel type, considering spatial and heading attributes as
well as environmental factors, thereby improving the accuracy and computational efficiency
of trajectory prediction. To overcome the reliance on historical position data while ignoring
key factors like speed and heading in voyage trajectory prediction, ref. [35] proposes a
novel ship trajectory-prediction model based on a sequence-to-sequence structure. This
model integrally considers multifaceted ship information and improves prediction accuracy
through a multi-semantic encoder and a type-oriented decoder.

User ships are mobile when operating at sea, and route prediction for mobile users
can effectively anticipate their future locations. This aids in the efficient deployment of
communication nodes and enables dynamic coverage for less computationally demanding
or non-urgent tasks. The lack of existing research in this area will affect the effectiveness
of dynamic coverage to a certain extent. Therefore, the research in this paper focuses on
studying a model that can realize the prediction of ship trajectories, and at the same time
can improve the coverage of communication as well as the UAV flight trajectory, reduce the
communication delay, and improve the quality of service for users.

3. System Modeling
3.1. Network Model

We consider a network architecture consisting of mobile users, UAVs, terrestrial base
stations (TBSs), and satellites. TBSs are deployed in coastal areas to provide communication
services to users in coastal waters. The broadband coverage of TBSs is usually limited due to
high non-line-of-sight path loss. Outside the TBS coverage area, satellites deployed in space
orbit provide communication links. Ships equipped with expensive high-gain antennas
can be guaranteed broadband service. However, for low-end ships without high-gain
antennas, it is still difficult to enjoy broadband service even within the satellite coverage
area. To fill this gap, we use drones to provide broadband services. More specifically, if
a mobile user requires a high-rate communication service (e.g., videoconferencing) from
ts to te, the communication request will be sent from the mobile user to the nearest TBS
and then transmitted to the central processor. The central processor selects an idle UAV
and prepares the idle UAV to serve the mobile user. The UAV will fly along the optimized
trajectory to serve the user from ts to te. After completing the high-speed communication
service, the mobile user will associate with the nearest TBS at the moment te, and the UAV
will return to the coast. Consider a target coverage area with network services from an
LEO satellite, a terrestrial base station, and m drones, and there are n user ships in the
area, which are serviced with m ∈ {1, 2, 3, · · · , M}, and n ∈ {1, 2, 3, · · · , N}, as shown in
Figure 1. The satellite serves as the main base station, which mainly handles computing and
communication tasks for the more concentrated users at sea. Each UAV is equipped with a
computational processor that can handle simple computational tasks. The transmission
time is time-slotted, and it is assumed that one information-transmission cycle is divided
into T time slots, each denoted by t, where t ∈ {1, 2, 3, · · · , T}. The user moves at a speed
of uspeedn

, which satisfies 0 ≤ uspeedn
≤ Vmax, where Vmax denotes the maximum speed of

vessel movement.
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Figure 1. Maritime communication network model.

3.2. Network Communication Model

At the t-th time slot, the position of the m-th UAV can be expressed as:

wm(t) = (xm(t), ym(t), h) (1)

xm(t + 1) = xm(t) + cos θ cos ϕdm(t) (2)

ym(t + 1) = ym(t) + sin θ cos ϕdm(t) (3)

where xm(t) denotes as the horizontal coordinate of the m-th UAV at t time slots and ym(t)
denotes the vertical coordinate of the m-th UAV at the time of t time slots, and h denotes
the height of the m-th UAV from the sea surface at the time of t time slots. In this paper, the
altitude of the flight varies between h1 and h2. xm(t + 1) denotes the horizontal coordinate
of the m-th UAV at t + 1 time slots, and ym(t + 1) denotes the vertical coordinate of the
m-th UAV at t + 1 time slots. dm ∈ [dmin, dmax] denotes the distance flown by the drone at a
one-time slot. dmax denotes the maximum flight distance of the drone in a one-time slot.
θ ∈ [0, 2π] denotes the horizontal flight direction.

The linear distance between UAV m and user n is as follows, where xn(t) denotes the
horizontal coordinate of user n at t time slots, and ym(t) denotes the vertical coordinate of
user n at t time slots:

L(m,n)(t) =
√

hm(t)2 + (xm(t)− xn(t))2 + (ym(t)− yn(t))2 (4)

In our model, it is assumed that the satellite and terrestrial base station TBS are
relatively stationary within the shorter time slot Tset. At the moment t, the position of the
satellite is denoted as (xLeo(t), yLeo(t), hLeo(t)), and the position of the ground base station
is denoted as (xtbs(t), ytbs(t)). The straight-line distance between the satellite, ground base
station, and user n is denoted as:

LLeo,n(t) =
√

hLeo(t)2 + (xLeo(t)− xn(t))2 + (yLeo(t)− yn(t))2 (5)

Ltbs,n(t) =
√
(xtbs(t)− xn(t))2 + (ytbs(t)− yn(t))2 (6)
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Assuming that there is no mission migration between UAVs, satellites, and base
stations, and that the minimum channel capacity C and bandwidth B of each device are
known, we can find the minimum signal-to-interference-plus-noise-ratio (SNR) according
to Shannon’s formula:

ζUAV,min(t) = 2
CUAV,min(t)

BUAV(t) − 1 (7)

ζleo,min(t) = 2
Cleo,min(t)

Bleo(t) − 1 (8)

ζtbs,min(t) = 2
Ctbs,min(t)

Btbs(t) − 1 (9)

Assume that all UAVs share the same frequency band, so the UAVs interfere with
each other in downlink transmissions [36]. Meanwhile, it is assumed that the transmit
power Pt from all UAVs to the user and the channel gain G0 = (GtGr)

rα
UAV,max

are the same, so the

signal-to-noise ratio ς can also be expressed as the following equation, where n2 denotes
the noise power at the receiving end:

ζ =
PUAV,tG0

(M − 1)PUAV,tG0 + n2 (10)

Therefore, the maximum coverage radius of the UAV can be derived as:

rUAV,max(t) =
[

PUAV,tGUAV,tGUAV,r[1 − (M − 1)ζUAV,min(t)]
ζUAV,min(t)n2

] 1
α

(11)

Since this system assumes that there is only one satellite and base station and they are
in separate frequency bands, the interactions between the UAV, satellite, and base station
are negligible when calculating the signal-to-noise ratio. Therefore, we can find out the
SNR ς = PtGtGr

rα
maxn2 , and the maximum coverage radius of the satellite and the base station are,

respectively:

rleo,max(t) =
(

Pleo,tGleo,tGleo,r

ζleo,min(t)n2

) 1
α

(12)

rtbs,max(t) =
(

Ptbs,tGtbs,tGtbs,r

ζtbs,min(t)n2

) 1
α

(13)

In each time slot, if the distance L(m,n)(t) between user n and UAV m is less than or
equal to the communication coverage radius rUAV,max of UAV, a communication link can
be established. Similarly, a communication link can be established if the distance LLeo,n(t)
between user n and the satellite is less than or equal to the communication coverage radius
rleo,max of the satellite. A communication link can be established if the distance Ltbs,n(t)
between user n and the TBS is less than or equal to the communication coverage radius
rtbs,max of the terrestrial base station.

3.3. Time-Delay Model

Due to the limited computational resources of each device, when the computational
resources of satellites and base stations are insufficient to meet the computational needs of
users, UAVs are required to perform auxiliary computations. However, a non-negligible
delay is generated in the process of providing communication and computation services to
users, so this section focuses on the delay model in the maritime communication scenario.

Assuming that at the t-th time slot, if the maritime user n is within the communica-
tion coverage of both the satellite and the base station, and both of them have sufficient
computational resources, the user equipment will prioritize establishing a communication
connection with the satellite, if the satellite resources are insufficient, it will choose the base
station to communicate; if the base station also fails to satisfy the demand, the equipment
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will try to communicate with the nearest UAV. When the mission ends, the device will re-
cover the amount of computation required for that user’s mission. In marine environments,
the flight delay and transmission delay are affected by environmental factors such as wind
speed, humidity, and airflow, which are assumed to be represented by a discount factor
ω ∈ (0, 1). Additionally, the complexity of the computational task is represented by a factor
k (k > 0).

When the amount of computation required an for a user task is less than the computa-
tional power aleo,ava available to the satellite, the user device will establish a communication
connection with the satellite. Assume that the channel transmission rate between the satel-
lite and user n is rleo,n(t). The amount of data to be transmitted by user device n is qLeo,n,
and the amount of task data that can be processed by the satellite per second is fLeo. Then
the total delay of the satellite can be expressed as Equation (14):

dLeo,n(t) = dtrans leo,n(t) + dcomp leo,n(t), (14)

where the task transmission time dtrans leo,n(t) and computational delay dcomp leo,n(t) can
be expressed as Equations (15) and (16), respectively:

dtrans leo,n(t) =
qLeo,n

ω · rLeo,n(t)
, (15)

dcomp leo,n(t) =
k · qLeo,n

fLeo
, (16)

Similarly, when the amount of computation required an for a user task is less than the
computational power atbs,ava available at the base station, the user device will establish a
communication connection with the base station. The total delay between the base station
and the associated user n can be expressed as Equation (17), where the task-transfer time
dtrans tbs,n(t) and computational delay dcomp tbs,n(t) are given by Equations (18) and (19),
respectively:

dtbs,n(t) = dtrans tbs,n(t) + dcomp tbs,n(t), (17)

dtrans tbs,n(t) =
qtbs,n

ω · rtbs,n(t)
, (18)

dcomp tbs,n(t) =
k · qtbs,n

ftbs
, (19)

When the amount of computation required an for a user task is less than the compu-
tational power am,ava available to UAV m, the user device will establish a communication
connection with UAV m. For the flight delay dfly m,n(t) between UAV m and user device n,
which is affected by the maritime environment, it can be expressed as Equation (20):

dfly m,n(t) =
Lm,n(t)
ω · dm

, (20)

Therefore, the total delay between UAV m and the associated user n can be expressed
as Equation (21):

dm,n(t) = dtrans m,n(t) + dfly m,n(t) + dcomp m,n(t), n ∈ µ, (21)

where the mission transfer time dtrans m,n(t) and computational delay dcomp m,n(t) can be
expressed as Equations (22) and (23), respectively:

dtrans m,n(t) =
qm,n

ω · rm,n(t)
, (22)

dcomp m,n(t) =
k · qm,n

fm
, (23)
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Finally, we define the total system delay dtotal(t) as Equation (24). Assuming that the
quality of service (QoS) delay metric for user n is α, it needs to satisfy the threshold α to
meet the demand of user n. Otherwise, the current device cannot satisfy the demand of
user n:

dtotal(t) =


dLeo,n(t), if connected to satellite
dtbs,n(t), if connected to base station
dm,n(t), if connected to UAV

(24)

3.4. Energy-Consumption Model

Since UAVs are limited by battery capacity, in the case of high energy consumption,
UAVs may find it difficult to fulfill their tasks. Therefore, this subsection mainly describes
the energy-consumption model of UAVs. The total energy consumption Em,n(t) of UAV m
providing services to user n can be expressed as the sum of the flight energy consumption
and the hover energy consumption, as shown in Equation (25):

Em,n(t) = Efly m,n(t) + Ehover m,n(t), (25)

Considering that the UAV is in a hovering state when providing computational re-
sources for user requests, the hovering energy consumption Ehover m,n(t) of the UAV can
be calculated as follows, where Phover m(t) is the power consumption of the UAV when
hovering, muav is the mass of the UAV, g is the gravitational acceleration, ρenv is the air
density in the marine environment, and A is the total swept area of the rotor blades of
the UAV:

Phover(t) =

√
(muav · g)3

2 · ρenv · A
, (26)

Ehover m,n(t) = Phover(t) ·
(
dtrans m,n(t) + dcomp m,n(t)

)
, (27)

According to the user position obtained from the user trajectory-prediction model in
Section 4.1, after solving for the optimal position of the UAV, the flight energy consumption
of the UAV moving to that position can be calculated by the following equation. Here,
Pfly(t) is the UAV flight power consumption, and β is the air resistance experienced by the
UAV in the marine environment:

Pfly(t) = Puav hover(t) + β · d3
m, (28)

Efly(t) = Pfly(t) · dfly m,n(t), (29)

3.5. Formulation of the Problem

A user can establish a connection with a device when the user is located within the
communication range of the respective device, and the required computation does not
exceed the available computational capacity of the device, while satisfying the delay and
energy-consumption constraints (i.e., the maximum delay limit dmax and the UAV battery
capacity limit Emax). The establishment of a connection between a device and a user can be
represented as follows:

Xn =

{
1, if L ≤ rmax and an ≤ aava and dtotal(t) ≤ dmax and Em,n(t) ≤ Emax

0, else
(30)

To evaluate the coverage of the overall network deployment, a parameter Q is defined
to quantify the coverage performance of the entire system as follows:

Q =
1
N

N

∑
n=1

Xn (31)
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In order to optimize mobile communication network coverage and ensure efficient
collaboration between satellites and terrestrial base stations for comprehensive communi-
cation support for the maritime user community, this study designs a dynamic deployment
strategy for UAVs. This strategy aims to provide reliable and immediate communication
support for users in emergency situations or for those who cannot be covered by conven-
tional networks. Based on a comprehensive consideration of the computational resources of
each communication node, the coverage connectivity and communication delay for mobile
users, and the battery capacity of the UAV, the objective is to minimize the total system
cost and maximize user communication coverage. The optimization problem is modeled
as follows:

P1 max
N

∑
n=1

Xn − λ

[
M

∑
m=1

(
Efly,m,n(t) + Ehover,m,n(t)

)
+

N

∑
n=1

dtotal(t)

]
s.t. C1 : L ≤ rmax,

C2 : dtotal(t) ≤ dmax,

C3 : Efly m,n(t) + Ehover m,n(t) ≤ Emax,

C4 : an ≤ aava,

C5 : Xn ∈ {0, 1}, ∀n

(32)

4. Proposed Algorithm

In this section, we formulate the dynamic UAV-deployment problem based on route
prediction. The goal is to predict the sailing trajectory of a user ship by a reinforcement
learning algorithm and dynamically deploy UAVs to maximize user coverage based on the
sailing trajectory under constrained energy consumption, latency, and computation. We
propose a dynamic UAV-deployment scheme for changing user dynamics that combines
deep reinforcement learning algorithms for route prediction as well as for UAV deployment.

4.1. Ship Trajectory-Prediction Algorithm Based on Improved LSTM

To improve the accuracy of ship route prediction, this section proposes an LSTM
model optimized based on the Sparrow Search Algorithm (SSA) for optimal prediction of
AIS datasets. The LSTM performs well in dealing with time-series prediction tasks (e.g.,
ship route prediction), whereas by mimicking the behavior of sparrow foraging, the SSA
can be optimized in a complex, high-dimensional search space hyperparameters of LSTM.
Therefore, combining SSA with LSTM can automatically optimize the hyperparameters to
improve the prediction performance of the model.

The AIS dataset contains data such as latitude, longitude, heading, and speed of differ-
ent numbered vessels at each moment in the past period, so we performed preprocessing
operations on the AIS dataset. First, we performed feature selection and extracted the four
features of latitude, longitude, speed (Sog), and heading (Cog) from the ship trajectory data
as the input feature matrix x, and the target value y was set to be the latitude and longitude
of the next time step. Then, the input data Xt = [Xt−N , Xt−N+1, . . . , Xt−1] and output data
Yt = [latt, lont] are constructed into a time series, and the data of the past N time steps are
used to predict the target value of the next time step, to capture the temporal features and
dynamics. To avoid the impact of magnitude differences between feature values on model
training, we use min-max normalization to scale the input features and target values into
the interval [0, 1].

When inputting the input features into the input layer of the LSTM, we converted
them into a 3D tensor that can represent the feature data for multiple time steps, i.e.,
[number of samples, time step N, number of features], where the number of samples rep-
resents the number of time series samples that can be created for the entire dataset, and the
number of features is represented as four features (latitude, longitude, speed, and heading)
for each time point. In the hidden layer, the LSTM unit processes the input data through
a memory and forgetting mechanism to capture the long-term dependencies in the time
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series. Considering the model performance, training efficiency, and avoiding the risk of
overfitting, two LSTM hidden layers are used in the model, and the number of neurons in
the first and second layers is set to h1 and h2, respectively, which will be optimized by the
SSA. The LSTM updates the hidden state through the gating structure, and the state of the
hidden layer’s output at the last time step, ht, is denoted by Equation (33), where Whid is
the weight matrix of the hidden layer, bhid is the bias term, and f is the nonlinear activation
function of the LSTM. In the output layer, the model maps ht to the predicted longitude
and latitude, which is calculated as in Equation (34), where Wout is the weight matrix of the
output layer and bout is the bias term.

ht = f (Whid · Xt + bhid) (33)

Yt = Wout · ht + bout (34)

Finally, we use the mean square error to measure the difference between the predicted
and true values of the model, continuously minimize the loss function, and update the
weights and biases through the Adam optimizer to improve the prediction accuracy. To
prevent overfitting, we introduce L2 regularization in the training process of LSTM net-
works. The complexity of the model is limited by adding a penalty term λ proportional to
the sum of squares of the weights to the loss function, which improves the generalization
performance of the model and reduces the risk of overfitting on the training data, and the
formula is specified as follows:

Ltotal = Lloss + λ(∥Whid∥2 + ∥Wout∥2) (35)

Here, we optimize the hyperparameters of the LSTM, i.e., the learning rate, epoch, and
the number of hidden layer neurons. First, the SSA algorithm requires the initialization of
a population, where each individual represents a set of hyperparameter combinations to be
optimized, and the locations of these individuals are randomly generated within the upper
and lower ranges [lb, ub]. Each individual’s performance is evaluated by a fitness function
(i.e., mean square error), where a smaller fitness value indicates that the hyperparameter
combination is more effective. We categorize the updating strategies of individual positions
into three categories; in each iteration, the top 50% of individuals update their positions
using strategy 1, i.e., the individual positions are close to the current optimal individual,
with the updating Equation (36), where xbest(t) is the position of the current optimal
individual, and ϵ is a uniformly distributed random number within the interval of [−1, 1],
which is used to increase search diversity and avoid falling into local optimality. For the
last 50% of individuals, update strategy 2 is used to generate new positions through a
global random search, and the update formula is Equation (37), where Lj and Uj are the
upper and lower limits of the j-th dimension, and αj is a random number in the interval
[0, 1]. After each position update, the algorithm performs boundary processing to ensure
that the position x(i,j) of each dimension stays within the upper and lower limits [Lj, Uj],
which is handled by Equation (38).

xi(t + 1) = xbest(t) + ϵ · |xi(t)− xbest(t)| (36)

xi(t + 1) = Lj + αj · (Uj − Lj) (37)

x(i,j)(t + 1) =


Lj, if x(i,j)(t + 1) < Lj

Uj, if x(i,j)(t + 1) > Uj

x(i,j)(t + 1), otherwise

(38)

After each policy update, the algorithm will recalculate the fitness value of each
individual and record the fitness of the current optimal individual. At the end of several
iterations, the algorithm outputs the individual with the smallest fitness value, i.e., the
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optimal hyperparameter combination. The specific pseudo-code of the algorithm is as
Algorithm 1:

Algorithm 1 Optimization of the LSTM model for ship route prediction using the SSA
algorithm

1: Input ship data (latitude, longitude, SOG, COG)
2: Initialize the LSTM model hyperparameter spaces lb and ub;
3: Initialize population size, number of iterations, individual position population;
4: The fitness MSE was calculated for each individual in the population;
5: for each episode do
6: Find the current optimal individual xbest;
7: For the top 50% of individuals, the individual’s position was adjusted using the

Equation (36) update strategy;
8: For the latter 50% of individuals, the location was updated using a global random

search via the Equation (37);
9: Performs boundary processing by the Equation (38) in the updated position;

10: Reassess the fitness of each individual in the population;
11: end for
12: Output the optimal individual, i.e., the optimal LSTM hyperparameter combination;
13: Constructing the model: Define an LSTM model with 2 hidden layers and compile the

model using the Adam optimizer and MSE loss function.
14: Training LSTM models using optimal hyperparameter combinations;
15: Predicting the next trajectory of a vessel using a trained LSTM model;
16: Evaluate the prediction accuracy and calculate the mean square error;

4.2. UAV Dynamic Deployment Algorithm

Traditional UAV-deployment methods only consider the limitations of the UAV’s
energy consumption and latency, without taking into account the mobility of the user nodes
and the UAV’s computational resources. Therefore, in this section, a deep reinforcement
learning algorithm is used to deploy drones dynamically. Trajectory prediction is used
to understand the user distribution in advance so that decision-makers can make better
decisions to maximize the coverage with less delay and energy consumption. At each time
slot, the agent collects ship prediction data, dynamically assigns drones, and develops
deployment strategies based on predicted device locations as well as task volumes.

We convert the UAV-deployment problem into a Markov Decision Process (MDP)
problem, defined by the tuple (S, A, p, r), where the state space S and action space A are
continuous. Specifically, the Markov chain is denoted by (st, at, s(t+1), rt), where each
parameter consists of an output state st ∈ S at moment t, an action at ∈ A, an output state
s(t+1) ∈ S at moment t + 1, and a reward rt ∈ r. The output state st is received from the
environment to the intelligent agent at moment t. The intelligent agent uses an internal
policy function to compute the probabilities of each action and selects an action at based
on these probabilities. Applying action at to the environment yields state s(t+1). Finally,
the environment will combine the action at, the state transitions, and the reward function
to compute the reward value rt under action at and return it to the intelligent agent so
that the agent can optimize its future action strategy based on the reward situation. The
complete trajectory of the interaction process with the environment can be represented by
Equation (39):

τ = {s0, a0, s1, a1, . . . , st, at} (39)

The state space S consists of (3M + 6) states, where M represents the number of
available drones. Based on the trajectory-prediction algorithm described in Section 4.1, we
can predict the movement trajectories of uncovered users over some time. At the moment
t, by performing K-means clustering analysis on the user coordinates, we can determine
the location of the user’s aggregation center point at that moment, whose 3D coordinates
correspond to three states in the state space. In addition, the other three states describe the
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decision effects at moment t, including the total number of covered users, the accumulated
delay, and the overall energy consumption, respectively. Meanwhile, 3M represents the
remaining battery capacity, available computing resources, and the distance of the UAVs
relative to the center point of the user distribution at moment t, respectively, for M UAVs.
The action space A consists of 3M consecutive action variables, each of which represents
the amount of adjustment of the coordinates of the M UAVs in the 3D space at the moment
t. Together, these action variables determine the change of the UAV’s position at the next
moment, thus enabling efficient optimization of user coverage.

The reward function is designed as:

rtotal(t) = σ
N

∑
n=1

Xn + ς
∑N

n=1 Xn

∑M
m=1

(
Efly m,n(t) + Ehover m,n(t)

) + τ
∑N

n=1 Xn

dtotal(t)
(40)

where σ, ς, and τ are the moderating factors used to regulate the reward weights of each
component. As the number of covered users increases, the inverse of the average energy
consumption and the inverse of the average delay decrease with the increase in users. To
achieve the reduction of delay and energy consumption while maximizing the number of
covered users, the larger this reward function, the better the performance of the algorithm.

The traditional strategy gradient approach leads to unstable training due to the exces-
sive magnitude of strategy updates, while trust domain strategy optimization (TRPO) has a
high computational complexity despite the introduction of constraints. PPO simplifies the
implementation of strategy updates by introducing the clip mechanism, and at the same
time effectively restricts the magnitude of the strategy updates to avoid strategy collapses
during the training process. The PPO algorithm mainly employs the strategy gradient
approach to avoid strategy collapses during the training process by maximizing the expec-
tation of the dominance function to optimize the strategies, and to guide the intelligent
agent to take actions that can improve the coverage and reduce the delay. In particular, it
calculates the ratio of the probability of the old and new strategies and introduces the CLIP
function to ensure that the new strategy improves within the scope of not deviating from
the old strategy while limiting the update magnitude. The strategy objective function is
computed as in Equation (41), and the ratio of the old and new strategy probabilities rt
is as in Equation (42), where πθ(at|st) is the output probability of the strategy under the
parameter θ, and πθold

(at|st) is the output probability of the old strategy.

L(θ) = Et
[
min

(
rt(t)Aπθold (st, at), clip(rt(t), 1 − ϵ, 1 + ϵ)Aπθold (st, at)

)]
(41)

rt(t) =
πθ(at|st)

πθold
(at|st)

(42)

The input of the value network is the current state st and the output is the value of the
current state. The loss function of the value is mainly used to train the value network to
minimize the difference between the value function and the actual return. The closer its
predicted state value is to the actual return advantage estimate Aπθold , the more accurate
it is, where the value loss function is as in Equation (43), and the dominance function
Aπθold is as in Equation (44), where Vθv(st) is the output of the value network, V̂t(st) is
the target value, and r(t) denotes the instantaneous reward at the moment of time t. To
encourage strategies to explore different actions and to prevent them from converging to a
deterministic strategy too early and thus losing the ability to explore the environment, we
employ entropy regularization, which is shown in Equation (45).

Lvalue(θv) = Et

[
(Vθv(st)− V̂t(st))

2
]

(43)

Aπθold =
T

∑
t′=t

(γλ)t′−t
(

r(t) + γVθv(s(t+1))− Vθv(st)
)

(44)
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S(πθ) = −∑
a

πθ(at|st) log πθ(at|st) (45)

The total loss function of the whole algorithm is a weighted summation of three parts,
namely, the strategy objective function, value loss, and entropy regularization term. By
appropriately adjusting the weights of these three parts, the total loss function can guide the
algorithm to find the optimal balance between convergence, accuracy, and the exploratory
nature of the strategy, and its formula is shown in Equation (46).

Ltotal(θ) = L(θ)− c1Lvalue(θv) + c2S(πθ) (46)

The specific pseudo-code of the algorithm is as Algorithm 2:

Algorithm 2 Reinforcement learning model for maritime communication service coverage
using RUDD algorithm

1: Initialize the strategy network π and the value network V;
2: Initialize the experience cache pool D;
3: Initialize the optimized LSTM model to predict vessel trajectories;
4: Initialize the communication service coverage optimization algorithm PPO;
5: for each episode do
6: Initialize the environment state s, set the initial state to contain information about

the satellite, the UAV, and the ground base station, as well as information about the
relative position of the UAV and the target vessel;

7: for each step do
8: Adopting the current policy π, action a is selected according to state s;
9: Performing action a, the environment returns a new state s′ and reward r;

10: Store the experience (s, a, r, s′, relative positions of ships and UAVs, number of
covered ships, time delay) in D;

11: Update status s←s’;
12: end for
13: Update the policy network π and the value network V using the data in the cache

pool D;
14: Sample a batch of data from D;
15: Calculate the advantage function Aπθold for each action;
16: Updating the strategy network to maximize expected reward and entropy and

reduce action bias;
17: Update the value network to minimize the value function error;
18: Empty cache pool D;
19: Predicting the next position of the target vessel using the LSTM model
20: The predicted locations are fed into the PPO algorithm to optimize the communica-

tion service coverage;
21: Update the policy network π to consider the optimization results of the PPO

algorithm;
22: end for

5. Simulation Results and Discussion

In this section, we show the results of evaluating the performance of the proposed
algorithm through simulation experiments. We provide a detailed evaluation and analysis
of the convergence of the algorithm under different hyperparameter settings. We also
compare the performance of the proposed algorithm with other Deep Reinforcement
Learning (DRL) algorithms in terms of system cost, communication coverage, and delay
performance. The experimental results show that our algorithm enables more accurate route
prediction and can achieve about 95% user coverage in marine environments while ensuring
that the average latency of user response is around 1 s. The algorithm is implemented in the
Visual Studio Code (VSCode) environment, using the Python programming language and
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integrating TensorFlow and PyTorch, two popular deep learning frameworks, to improve
the execution efficiency and performance of the algorithm.

5.1. Assessment of Route-Prediction Performance

Figure 2 shows the performance of different algorithms in route prediction. From the
figure, we can see the difference between the actual trajectory and the predicted trajectory
of each model, as well as the prediction accuracy of each algorithm. Figure 2a compares the
performance of the Multilayer Perceptron algorithm (MLP), LSTM, and SSA-LSTM in actual
trajectory prediction. The MLP model has a larger prediction error, whereas the LSTM is
the next closest, and the SSA-LSTM has the closest prediction result to the actual trajectory,
which demonstrates significant accuracy and stability. Since MLP cannot process time-series
data, it is unable to capture the time dependence and dynamic changes in the trajectories.
As a result, the deviation between the predicted and actual trajectories of MLP is large, as
shown in Figure 2b. With the change of trajectory, the error of MLP gradually increases,
which has some limitations in complex trajectory prediction. Compared with MLP, LSTM
can capture the long and short-term dependencies in the time series through the memory
unit and gating mechanism, which is adaptive to the trajectory data, but still has deviations
in the rapidly changing regions. As shown in Figure 2c, the performance of LSTM without
hyper-parameter optimization is improved but not stable enough. SSA optimizes the
hyper-parameters of LSTM to work in the best configuration, which significantly improves
the prediction accuracy. As shown in Figure 2d, the prediction results of SSA-LSTM
almost completely overlap with the actual trajectories with small errors, showing excellent
performance. Overall, the SSA-optimized LSTM model outperforms the MLP and the
unoptimized LSTM in terms of prediction accuracy and stability and can better adapt to
complex trajectory dynamics and achieve higher accuracy.

As shown in Figure 3, the figure demonstrates the trend of the mean square error
(MSE) of different algorithms with the number of training rounds (epochs) during the
training process. In the initial phase, the MSE of all algorithms decreases rapidly. LSTM has
a higher initial error but converges quickly after a few epochs. SSA-LSTM has the fastest
decrease in MSE in the starting phase and stabilizes at a low level quickly, indicating that
SSA-LSTM can find better model configurations at an early stage and converges quickly.
In the intermediate stage, the MSE of MLP changes relatively smoothly, but with small
fluctuations and slower accuracy improvement. LSTM is affected by noise or training
data when capturing nonlinear variations in the data, which results in larger fluctuations
in its MSE. In contrast, SSA-LSTM is more adaptive to the data after hyperparameter
optimization, significantly reduces the error, and remains stable; thus, SSA-LSTM has
the lowest and smoother MSE at this stage. After 100 epochs, all the algorithms tend to
be stable. SSA-LSTM has the smallest MSE and almost closes to zero, and has higher
prediction accuracy after training. The MSE of MLP and LSTM is still higher than that of
SSA-LSTM in the later stage, and the MSE of LSTM is slightly higher than that of MLP.
Overall, SSA-LSTM algorithms have the lowest error in all stages and are suitable for
subsequent ship prediction, which is suitable for the subsequent prediction of ship routes.

5.2. Performance Evaluation of UAV Dynamic Deployment Algorithms

In this section, we evaluate the performance of the proposed RUDD algorithm through
simulation tests. In the simulation experiments, we compare the proposed RUDD algorithm,
PPO alone, Deep Deterministic Policy Gradient (DDPG) algorithm, and Random policy
(Random) algorithm for the network coverage, the latency of the user to receive the service,
and the average energy consumption of the UAVs for completing the service. The main
simulation parameters of the RUDD algorithm are shown in Table 1.
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Figure 2. (a) Comparison of trajectories predicted by each algorithm; (b) MLP algorithm trajectory-
prediction graph; (c) LSTM algorithm trajectory-prediction graph; (d) SSA-LSTM algorithm trajectory-
prediction graph.

In this experiment, the parameters we chose include the number of mobile devices,
the number of UAVs, the discount factor γ, the decay factor λ, the number of training
rounds, the Critic learning rate, and the Actor learning rate in Aπθold . The number of
mobile devices will determine their initial distribution and location, which determines the
complexity of the task and the system load, and setting it to [10, 15, 20, 25, 30] can test the
adaptability and robustness of the algorithm under different densities of user scenarios.
The number of drones is fixed at 3, which determines the service capacity and coverage,
thus placing restrictions on the computational capacity, energy consumption, and coverage
of the whole algorithm. The discount factor γ can determine how much importance the
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algorithm attaches to future rewards, while the decay factor λ can be used to control the
balance between the variance and bias of the dominance estimation, and setting them to
0.95 and 0.9, respectively, can make the algorithm pay more attention to long-term rewards.
The algorithm tends to converge at around 200 training rounds and thus is set to 200.
The Critic network learning rate can be used to update the value function quickly, and
the Actor-network learning rate can be used to avoid the model instability caused by a
too fast strategy update. Setting them to 0.02 and 0.01, respectively, can help the smooth
optimization of the strategy, which can improve the robustness of the algorithm.

Figure 3. Comparison of the trend of prediction error of each algorithm with the number of train-
ing rounds.

Table 1. Main simulation parameters.

System Parameters Value Range

Number of mobile devices [10, 15, 20, 25, 30]
Number of UAVs 3
Discount factor γ 0.95

Decay factor λ 0.9
Training episode 200

Critical learning rate 0.02
Actor learning rate [0.001, 0.002, 0.01, 0.1]

As shown in the comparison of the total reward curves of the four algorithms in
Figure 4, the PPO algorithm performed more stably and had relatively higher rewards than
the Random and DDPG algorithms. The PPO used a restrained update mechanism, which
ensured smoothness during training by limiting the magnitude of each policy update,
thus avoiding excessive policy fluctuations. The Random strategy, due to the lack of a
learning mechanism, did not perform significantly better as the number of training times
increased and thus performed relatively poorly. In this experimental setting, the DDPG’s
reliance on empirical playback and unconstrained policy updates results in its vulnerability
to noise and outdated data during training. As a result, the DDPG algorithm fluctuates
and struggles to converge in reward values as the number of training sessions increases.
Compared to these three, RUDD adds a prediction algorithm on top of PPO, which enables
the UAV to predict the distribution of users in advance, thus optimizing policy updates and
making appropriate action choices. As a result, the UAV can formulate the best deployment
method before the task execution, which not only ensures coverage but also effectively
reduces flight delay and energy consumption. This makes RUDD show strong adaptability
and stability during the training process, and thus the reward value after final convergence
is the largest. The RUDD algorithm can predict environmental changes more accurately
in complex and dynamic marine environments, thus realizing the dynamic deployment
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of UAVs, and improving the stability and the effectiveness of mission execution under
uncertain and dynamic conditions.

Figure 4. Comparison of total reward values for different models.

As shown in Figure 5, in the same sea area, with the increase in user density, although
the UAV can reach the coverage condition more easily, the coverage rate of users also shows
a decreasing trend due to the relative increase in the number of users distributed at the
edge. The PPO algorithm shows relatively strong stability in the change of coverage under
different numbers of users, and its coverage decreases from 95% with 10 users to about 80%
with 30 users. Despite the decrease, the performance is better compared to the Random and
DDPG algorithms. The PPO algorithm can maintain a high coverage rate more stably with
the increase in the number of users and has relatively good adaptive ability. In contrast,
the Random algorithm, due to the lack of policy optimization, cannot respond effectively
in the face of more users, resulting in a significant drop in its performance. As a result,
Random performs poorly when the number of users increases, and its coverage gradually
decreases to about 72% with the increase in users. Due to the interference of noise, the
DDPG algorithm’s policy update is more unstable, and its coverage performance is worse
as the number of users increases, dropping from 90% to less than 70%. RUDD adds a
prediction algorithm to the PPO, which can optimize the policy in advance, making it able
to maintain a higher coverage in the face of the dynamically changing marine environment
of the users, and showing great stability and adaptability. As a result, the RUDD algorithm
has strong robustness as the coverage rate only drops from about 98% to 85% even with the
increase in the number of users.

As shown in Figure 6, within the same sea area, as the user density increases, the UAVs
can meet the coverage requirements with relative ease, which in turn leads to a reduction in
the total flight delay. This results in a decreasing trend in the average user delay. In different
user size scenarios, both DDPG and Random algorithms show a significant decreasing
trend as the number of users increases. However, under the constraints of UAV computing
power, battery capacity, and coverage area, although the latency of these two algorithms
decreases rapidly, due to the limitations of the algorithms themselves, their latency is still
higher than that of the RUDD algorithm and the PPO algorithm when the number of users
reaches 30. Meanwhile, the PPO algorithm can achieve the best effect of the algorithm
more stably by its effective control of the magnitude of policy updates. Based on PPO,
we introduce a prediction algorithm, which allows UAVs to quickly make deployment
strategies based on the distribution state of users. As a result, the RUDD algorithm has
the best performance among all the algorithms, with an average response delay of 1s and
the smallest curve variation, which significantly improves the overall execution efficiency
and stability. The low-latency performance of the RUDD algorithm ensures that the UAV
achieves fast response and stable coverage in maritime communication, which greatly
improves the safety and efficiency of maritime operations.
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Figure 5. Coverage change graph for different numbers of users.

Figure 6. Comparison of the average latency with different numbers of users.

As shown in Figure 7, as the number of users increases, the flight energy consumption
and hover energy consumption decrease due to the decrease in the average delay of users.
Thus, the average energy consumption of users also shows a decreasing trend. When
comparing the average energy consumption under different numbers of users, the RUDD
algorithm can adjust the strategy in advance and optimize the energy allocation due to the
prediction mechanism, thus effectively reducing the energy consumption while ensuring
coverage. As a result, it has the best performance among the four algorithms, with the
average energy consumption of users remaining stable at around 710 mAh. In contrast, the
PPO algorithm has a relatively stable performance in terms of energy consumption, but due
to the lack of the ability to adjust the strategy in advance, its energy consumption is slightly
higher than that of RUDD, with an average energy consumption of about 800 mAh at about
30 users. With DDPG and Random algorithms it is difficult to effectively control energy
consumption in dynamic environments since the algorithm’s strategy is not reasonably
limited. Both of them show an obvious decreasing trend, but the uncertainty of strategy
selection leads to their energy consumption always being higher. The average user energy
consumption of the DDPG and Random algorithms is reduced to 850 mAh and 825 mAh,
respectively, when the number of users is 30. Therefore, when applied to offshore scenarios,
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the RUDD algorithm can efficiently optimize energy utilization, and significantly improve
the economy and durability of UAV operations.

Figure 7. Comparison of average energy consumption for different numbers of users.

6. Conclusions

In this paper, we propose a dynamic deployment scheme for maritime UAVs based on
route prediction, aiming to improve the communication coverage of mobile users under
the constraints of UAV battery capacity, coverage, and computational resources. With an
improved LSTM algorithm, we accurately predict the route distribution of maritime users,
thus optimizing the deployment strategy. Combined with the PPO algorithm, this study
innovatively utilizes the route-prediction results to enable the agent to formulate UAV-
deployment strategies in advance based on the user distribution, thus effectively reducing
the latency of task processing. Simulation results show that compared with traditional
methods, the RUDD algorithm exhibits high stability in marine scenarios, the average
processing delay of the task is successfully reduced to about 1 s, and the communication
coverage is improved to more than 95%. This study provides an effective strategy for
the deployment of UAV-assisted wireless sensor networks with a wide range of practical
applications. Future research will focus on studying more complex marine environments
and exploring how to further reduce the amount of algorithmic computation in order to
further reduce the total system cost.
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