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Abstract: In this study, the design of an adaptive neural network-based fixed-time control system for a
novel coaxial trans-domain hybrid aerial–underwater vehicle (HAUV) is investigated. A radial basis
function neural network (RBFNN) approximation strategy-based adaptive fixed-time terminal sliding
mode control (AFTSMC) scheme is proposed to solve the problems of the dynamic nonlinearity,
model parameter perturbation, and multiple external disturbances of coaxial HAUV trans-media
motion. A complete six-degrees-of-freedom model for a continuous water–air cross-domain model
is first established based on the hyperbolic tangent transition function, and, subsequently, based
on a basic framework of FTSMC, a fixed-time and fast-convergence controller is designed to track
the target position and attitude signals. To reduce the dependence of the control scheme on precise
model parameters, an RBFNN approximator is integrated into the sliding mode controller for the
online model identification of the aggregate uncertainties of the coaxial HAUV, such as nonlinear
unmodeled dynamics and external disturbances. At the same time, an adaptive technique is used
to approximate the upper bound of the robust switching term gain in the controller, which further
offsets the estimation error of the RBFNN and effectively attenuates the chattering effect. Based
on Lyapunov stability theory, it is proven that the tracking error can converge in a fixed time. The
effectiveness and superiority of the proposed control strategy are verified by several sets of simulation
results obtained under typical working conditions.

Keywords: coaxial HAUV; trans-media motion; fixed-time sliding mode control; adaptive technique;
RBFNN; online model identification

1. Introduction

Since the Age of Great Navigation, people have come to realize that the ocean covers
71% of the Earth’s surface, and there is a huge amount of unexplored area. The vast
ocean area is rich in biological resources, renewable resources, mineral resources, and other
unexplored energy resources; it has become an important strategic resource affecting the
global economy and has attracted increasing attention from all countries. The complex
and changeable marine environment has a great impact on the implementation of human
production and development activities. With the increasing maturity of modern electronic
information technology, various types of marine development and monitoring equipment
have emerged, such as marine unmanned aerial vehicles (UAVs) [1], unmanned underwater
vehicles (UUVs) [2], unmanned surface vehicles (USVs) [3], and ocean observation buoys
(OBs) [4,5], and other types of unmanned equipment have provided great convenience

Drones 2024, 8, 745. https://doi.org/10.3390/drones8120745 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8120745
https://doi.org/10.3390/drones8120745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-9699-7068
https://doi.org/10.3390/drones8120745
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8120745?type=check_update&version=2


Drones 2024, 8, 745 2 of 33

to researchers. The above-mentioned ocean observation equipment can only perform
tasks in a single working medium; however, the increasing demand for multi-domain and
cross-domain tasks means that the need for observation equipment capable of carrying
out such tasks is becoming increasingly urgent [6]. A type of hybrid aerial–underwater
vehicles (HAUVs) with a water–air amphibious operation capability has emerged. The
unique multi-media maneuverability of HAUVs gives them strong potential for military
and civil applications [7], and it has attracted extensive attention from scholars in recent
years. Researchers from various countries have conducted active research on HAUVs and
obtained fruitful research results [8,9].

The idea of combining a submarine and an aircraft appeared in the science novel
Master of the World by Jules Verne in 1904 [10]. By 1934, the Soviet Union had begun the
development of a manned HAUV program, codenamed LPL [11,12]. This was followed by
the development of the RFS-1 [13] and CONVAIR [14] prototypes. Since then, aeronautical
design experience has been applied to the study of HAUVs, and, as a result, HAUV
configurations have been designed using conventional structures such as fixed-wing,
multi-rotor, and flapping-wing configurations. Meanwhile, there is also a composite
wing structure scheme combining fixed-wing and multi-rotor structure designs, as well
as combining vertical takeoff and landing (VTOL) capabilities with the characteristic of
long endurance [6–9]. However, the complex structure design and weight of the power
system are great challenges for this HAUV design. For bionic-designed HAUVs, the typical
cross-domain modes are flapping wings [15], squirting water, or jets [16,17]. This short and
intense cross-domain maneuvering strategy also leads to the threat of water lapping against
the structure of the body. This short and rapid jump action brings great challenges in
terms of controller design [18]. Multi-rotor HAUVs based on closed-loop feedback control
and with VTOL capabilities have won the favor of a great number of researchers for their
significant advantages in flexibility and control stability, and researchers have achieved
significant research results [19,20].

With a variety of prototypes being developed, HAUV controller designs have emerged
in recent years. The classical proportion differentiation/proportion integration differentia-
tion (PD/PID) linear control strategy has been widely used in previous studies due to its
simple structure and convenient engineering application [21–24]. To further improve the
working characteristics of classical linear controllers, an improved PID control strategy is
gradually being derived. Active disturbance rejection control (ADRC)-based strategies [25]
and Fuzzy P+ID [26] have also been applied to HAUV systems. In addition, [27] proposed
an improved PID controller that combines an intelligent genetic algorithm (GA) and a
radial basis function neural network (RBFNN) to address the height control problem of
cross-domain processes. The limitation of the poor robustness of linear controllers cannot
be completely overcome by the above improvement; thus, with the progress of control
technology, the nonlinear control strategy has come to be widely used in HAUV control.
In particularly, sliding mode control (SMC) is widely used in the controller design of
various robot systems due to its insensitivity to model perturbation and strong robustness
to external interference [28]. In the literature [29], a classic SMC controller was designed
for a tilt HAUV, and the effectiveness of this method was verified in terms of altitude and
attitude control. Ma et al. developed an adaptive sliding mode control (ASMC) strategy
for double-layer HAUVs [30]. Bi et al. modeled and analyzed the cross-media process
of Nezha series HAUVs and designed a second-order SMC controller [31]. To improve
the response speed of the HAUV control system, the authors also designed an adaptive
finite-time fast terminal sliding mode controller (AFTSMC) for coaxial HAUVs in their
previous work [32]. Many scholars have also attempted to develop other nonlinear con-
trollers, such as an adaptive dynamic surface control (ADSC) strategy [33], a dynamic
surface architecture combined with a nonlinear disturbance observer (NDO) scheme [34],
nonlinear dynamic inverse (NDI) [35], and an MPC-SMC cascade controller [36]. Many of
the above works have carried out effective explorations of cross-media movement, but, in
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practice, cross-domain movement control strategies still face many unknown difficulties
and challenges [18].

The above-mentioned controller settlement time involved in HAUV cross-domain
control depends on the initial state. In the actual process of crossing the water–air in-
terface, the time window for the operation of cross-media motion is very short, and a
controller stability time that is too long may lead to the failure of the cross-domain ma-
neuver. Therefore, the idea of finite-time control is introduced into the controller design
for HAUVs [32]. In the literature [37], a finite-time controller based on a backstepping
framework was designed and approached the unknown hydrodynamic parameters by
integrating a reinforcement learning neural network. With more stringent requirements on
system reaction time, the finite-time control method was further developed into fixed-time
control, which, to date, has been widely adopted in mature equipment such as spacecraft,
UAVs, and AUVs [38,39]. Based on the above literature research and encouragement, it
is a good choice to use the design framework of a fixed-time sliding mode controller to
solve cross-medium maneuvering control under multiple interference conditions. However,
a basic SMC controller is designed by assuming that the exact model parameters of the
HAUV system are known, excluding the dynamic characteristics of the model, complex
hydrodynamic effects, etc. [40]. The existing SMC methods usually design an adaptive law
to approximate the gain of the discontinuous control part to enhance the robustness of the
system [41], while the compound uncertainty caused by environmental disturbance and
model parameter perturbation in the cross-domain process may lead to system chattering
due to the overestimation of parameters. The radial basis function neural network (RBFNN)
is one of the most popular intelligent computing methods; it has a strong online learning
ability and can realize the approximation of nonlinear continuous functions with arbitrary
precision [42]. To date, control based on neural networks has been widely used in the
trajectory tracking control of robot systems [43]. The RBFNN approximator is used to esti-
mate and compensate for the lumped uncertainties caused by the complex hydrodynamic
characteristics and time-varying parameters of HAUVs in cross-domain maneuvering,
and the adaptive technique is introduced to further offset the residual estimation error.
The combined action of the RBFNN and adaptive law further improves the stability and
robustness of the system. Based on the above research scheme, a neural network-based
adaptive fixed-time terminal sliding mode controller (NNAFTSMC) is designed and ap-
plied to the cross-domain maneuvering control of coaxial HAUVs facing multiple complex
ocean disturbances and parameter uncertainty.

Inspired by previous research results, the main advantages of the control algorithm
designed in this study can be summarized as follows:

(1) The external force of the whole trans-media process is analyzed in detail. A continuous
approximation function based on the hyperbolic tangent function is introduced into the
dynamic model to establish a continuous dynamic model, which avoids the instability
caused by a sudden change in model parameters.

(2) Compared with the existing HAUV control strategy, the fixed-time control idea ensures
that the trajectory tracking error converges within a predetermined time and improves
the response speed of the control system.

(3) An adaptive sliding mode controller based on the RBFNN approximator is designed.
On the one hand, the nonlinear model and hydrodynamic term of coaxial HAUVs are
identified online using the RBFNN approximator. On the other hand, by combining
the adaptive algorithm, the composite robustness of the system is improved, and the
inherent chattering phenomenon of SMC is effectively weakened.

The remainder of this paper is organized as follows: In Section 2, the workflow of
a coaxial HAUV prototype is given, and the kinematics and dynamics of the system are
modeled. In Section 3, the design process of an adaptive fixed-time sliding mode controller
using an RBFNN to approximate the nonlinear part of the coaxial HAUV is detailed, and
the fixed-time stability of the system is demonstrated using the Lyapunov stability theory.
The stability and fastness of the proposed method are verified in simulations, and the
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simulation results are compared and analyzed in Section 4. The conclusions and outlooks
for future work are given in Section 5.

2. Dynamics Modeling of a Coaxial HAUV
2.1. Coaxial HAUV Overview

A novel coaxial HAUV system is proposed, as shown in Figure 1. This coaxial HAUV
can pass smoothly between air and water, and it can be operated from a support ship or
deployed by aircraft. The HAUV is designed to operate in two main modes. When it is
equipped with an auxiliary float, it can assume the role of a drifting buoy; at this time, it
has enough buoyancy to float freely without additional energy consumption to maintain
the floating state, and it can also carry out dynamic positioning on the water surface to
perform the task of formation array. When the float is discarded, the HAUV is in a negative
buoyancy state; at this time, it can dive underwater and perform underwater maneuvering
through the power system, perform underwater sampling and underwater maneuvering
tasks, and, when necessary, repeatedly perform cross-media operations requiring entry
into and exit out of the water.
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Figure 1. Structure diagram of coaxial HAUV.

Figure 2 shows the most typical working state of a coaxial HAUV, that is, the full-flow
cross-domain maneuver operation process. When the coaxial HAUV needs to return for
recovery, it first rises from the water using the propeller, leaves the water and enters the
air, and then quickly returns to land on the oceanographic survey ship or changes the
mission area to perform landing operations and re-enters the water to perform the mission.
Coaxial HAUVs can carry different measuring devices to perform multiple tasks, and,
when multiple coaxial HAUVs work together, they can maintain measurement formations
to ensure measurement accuracy.
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2.2. Pre-Preparation

In order to facilitate further dynamics model analysis and controller design, some
useful assumptions, definitions, notations, and lemmas are presented here.

Notation [44]. In this paper, for vector x = [x1, x2, · · · , xn]
T, ∥x∥ denotes the Euclidean or

2-norm of x, |x|r =
[
|x1|r, |x2|r, · · · , |xn|r

]T, sigr(x) = [sigr(x1), sigr(x2), · · · , sigr(xn)]
T,

sigr(xi) = |xi|rsign(xi), where sign(·) is a signum function, and r represents the scalar constant.

Lemma 1 [45]. For any bounded initial state x(0), if there exists a continuous positive definite
Lyapunov functionV(x)satisfying the condition.

.
V(x) = −αV(x) + β
k1∥x∥ ≤ V(x) ≤ k2∥x∥

(1)

where k1, k2: Rn → R are class κ functions, and α > 0, β > 0 are positive constants, then x(t) is
semi-globally uniformly terminally bounded, and x(t) achieves asymptotic stability.

Lemma 2 [46]. Consider the existence of the following nonlinear continuous system:
.
x =

f (x),x(0) = 0, f (0) = 0,x ∈ Rn. If there is a positively definite Lyapunov functionV(x)that
satisfies the relation

.
V(x) = −αV(x)

m
n − βV(x)

p
q + ∆ (2)

where α > 0, β > 0, 0 < ∆ < +∞, and m, n, p, q are positive odd numbers that satisfy m < n
and p > q, then, the system is practically fixed-time stable, and V(x) will converge to the following
compact set in fixed time:

Ω =

{
V(x) ∈ R|V(x) ≤ min

{(
∆

α(1 − ι)

) n
m

,
(

∆
β(1 − ι)

) q
p
}}

(3)

where 0 < ς < 1, and the convergence time T is approximated using T ≤ Tmax = 1
α(1−m/n) +

1
β(p/q−1) .

Lemma 3 [47]. If it exists, a scalar system takes the following form:

.
y = −αyl1 − βyl2 (4)

where α > 0,β > 0,0 < l1 < 1, and 1 < l2. Then, system (4) is fixed-time stable, and the
convergence time is approximated using the following equation:

T ≤ Tmax =
1

l1(1 − l1)
+

1
l2(l2 − 1)

(5)

Lemma 4 [48]. For any constant χ > 0, the following inequality holds:

|x| ≤ xtanh
(

x
χ

)
+ χκ (6)

where κ = 0.2785.

Lemma 5 [49]. The form of the RBFNN-based online approximator is as follows: for any nonlin-
ear continuous function f (x), there exists a vector of ideal weights W such that the function is
approximated in the following form:

f (x) = WTh(x) + ε, 0 < |ε| ≤ ε (7)
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where W = [W1, W2, · · · , Wm]
T and x = [x1, x2, · · · , xn]

T are the weight and input vectors;
m and n indicate the numbers of nodes and inputs; ε and ε denote the estimation error (ε is
sufficiently small under the condition of the ideal weight parameter) and its upper bound; and
h(x) = [h1(x), h2(x), · · · , hm(x)]T is a Gaussian basis function vector defined as follows:

hi(x) = exp

(
−∥x − ci∥2

2b2
i

)
, i = 1, · · · , p (8)

where ci is the ith center vector, and bi is the width value of the ith neural network Gaussian basis
function, which is used to control the smoothness of the interpolation function. In this type of basis
function, the closer the input is to the center, the larger the output value obtained.

Linear combinations of Gaussian functions can be used to approximate any continuous
nonlinear function with arbitrary precision. In addition, neurons with Gaussian basis
functions have a selective response; that is, they have a high activation characteristic for
inputs close to the center of the neuron and a low activation characteristic for inputs far
from the neuron. This characteristic reduces the amount of computation and improves the
learning rate of the neural network. Therefore, the RBFNN chooses the Gaussian function
as the basic function.

The neural ideal weight network‘s ideal weight W is unknown and needs to be
estimated. By setting Ŵ as the estimate of the ideal weight of the neural network, we can
obtain an estimate of f̂ (x):

f̂ (x) = ŴTh(x) (9)

In the literature, extensive research has found that, if accurate approximation values
of weight parameters are obtained, then nonlinear functions can be approximated with a
minimum error. The above is the action mechanism of the universal approximation of the
RBFFNN approximator.

Assumption 1. The mass of the coaxial HAUV is uniformly distributed on a cylindrical, watertight
body structure, which is symmetric with respect to the three coordinate planes. Violent maneuver-
ing is not considered during trans-media maneuvering, and the complex coupled hydrodynamic
coefficients and higher-order hydrodynamic coefficients are neglected.

2.3. Multimodal Dynamics Modeling

In this section, a dynamic model of the coaxial HAUV is established. The coaxial
HAUV has a coaxial rotor structure mounted on a vector platform, and horizontal motion
is achieved by adjusting the coupled pitch and roll angle, which is realized by tilting the
vector platform to change the direction of the vector thrust. The whole system has only four
inputs: the thrust generated by the two rotors and the triaxial directional torque generated
by the vector platform and the rotors. It can be seen that the coaxial HAUV is a typical
underdriven highly coupled system.

The HAUV is generally regarded as a rigid body when establishing the coordinate
system, and the kinetic equations are established based on rigid body dynamics and
kinematics. As shown in Figure 3, the inertial coordinate system is RE{oexeyeze}, and the
body-fixed coordinate system is RB{obxbybzb}. The origin of RB is set at the center of gravity
of the HAUV body. The position and attitude vectors in the coordinate system RE are
denoted by η1 =

[
x y z

]T and η2 =
[
ϕ θ ψ

]T. ν1 =
[
u v w

]T and ν1 =
[
p q r

]T
are the linear and angular velocity vectors in the coordinate system RB.

J1 =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

, J2 =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (10)
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J =
[

J1 03×3
03×3 J2

]
(11)

where, s(·), c(·), and t(·) denote the sine, cosine, and tangent functions, respectively. J is
the transformation matrix. J1 is the transformation matrix of the position loop and J1 is an
orthogonal matrix, so it satisfies J−1

1 = JT
1 . J2 is the transformation matrix of the attitude

loop. Thus, the kinematic equations of the HAUV can be written as follows [50]:{ .
η = Jν
M

.
ν + Cνν + Dνν + gν = τν + τdν

(12)

where M = MRB + MA is the mass (in physics) matrix; C = CRB + CA is the Coriolis force
matrix; Dν = Dνa + Dνw is the damping matrix; gν is the restoring force matrix, including
gravity and buoyancy; τν is the control force matrix; and τdν is the generalized uncertainty
matrix.
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2.3.1. Description of Transition-State Switching Trans-Media

Define a switching function k. The switching coefficient is appended to the hydrody-
namic parameters as a product factor to make the hydrodynamic parameters change with
the switching coefficient. k = 1 indicates that the HAUV is in an underwater state. The
hydrodynamic effect is 1. In this case, the body is only subject to hydrodynamic action.
k = 0 indicates that the HAUV is in a flying-in-air state. This means that the HAUV body is
completely exposed to the air and is only affected by aerodynamic action. ks ∈ (0, 1) means
that the HAUV body is partially submerged in water and partially exposed to air and thus
subjected to a combination of hydrodynamic and aerodynamic action.

The changing trend of the additional variables is characterized by setting the switching
coefficient, which links the processes of the HAUV‘s underwater and air maneuvers. The
existing switching coefficients mainly have step forms ksign and linearized forms klin [51].
The two switching functions are discontinuous, which can easily cause the model to mutate
and make the controller unstable. Inspired by continuous sliding mode control, a switching
function based on the hyperbolic tangent function ktanh is introduced into the dynamic
model to make the transition smoother while satisfying the model variation accuracy as
much as possible.

kstep = 1/2(1 − sign(z))

klin =


0, z ≥ h/2
1/2(1 − 2z/h),−h/2 < z < h/2
1, z ≤ −h/2

ktanh = 1/2(1 − tanh(z/µ))

(13)
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Here, h is the altitude of the coaxial HAUV; z is the altitude of motion in the inertial
coordinate system of the vehicle; and 0 < µ < 0 is the parameter to be designed, which
can adjust the slope of the transition coefficient. Let ks = ktanh represent the approximate
pattern of the hydrodynamic change in the coaxial HAUV; ksa = 1 − ks indicates the
switching coefficient of the air resistance coefficient, which describes the trend of influencing
factors in the air. Obviously, the trend of dynamics in the air is the opposite of that of the
hydrodynamic change process. Figure 4 shows the variation trend of different switching
coefficients with height.
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Next, the cross-media dynamic evolution process of the parameters and variables in
the model (12) is analyzed.

2.3.2. Added Mass

Considering the approximate symmetry of the HAUV, the mass matrix and the mo-
ment of inertia matrix are both principal diagonal matrices and can be expressed as fol-
lows [29]:

M = MRB + MA (14)

where M = MRB + MA is the mass matrix; MRB= diag
(
m, m, m, Ix, Iy, Iz

)
and MA are the

nominal (when drying the body) mass matrix and the additional mass matrix, respectively.
The coaxial HAUV carries some of the water near its body with it during underwater ma-
neuvering, which is the cause of additional mass. The additional mass matrix can be approx-
imated in the form of a principal diagonal matrix MA = −ksdiag

(
X .

u, Y .
v, Z .

w, K .
p, M .

q, N.
r

)
.

M is a diagonal matrix, which can be expressed as a partitioned matrix: M =

[
M11 03×3
03×3 M22

]
.

2.3.3. Coriolis and Centripetal Forces

The Coriolis force comes from the inertia of an object’s motion. From the definition
of the Coriolis force, it can be seen that this is an inherent property of moving objects.
However, as the parameters of the physical model in the trans-media process of the coaxial
HAUV are time-varying, the Coriolis force is also time-varying, which can be expressed as
follows [37]:

Cv = CRB + CA (15)

CRB =



0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq
−mw 0 mu −Izr 0 Ix p
mv −mu 0 Iyq −Ix p 0



CA =



0 0 0 0 −Z .
wW Y .

vV
0 0 0 Z .

wW 0 −X .
uU

0 0 0 −Y .
vV X .

uu 0
0 −Z .

wW Y .
vV 0 −N.

rr M .
qq

Z .
wW 0 −X .

uu N.
rr 0 −K .

p p
−Y .

vV X .
uu 0 −M .

qq K .
p p 0



(16)
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where Cv represents the Coriolis force matrices, and CRB and CA are the nominal and
additional Coriolis force matrices, respectively. Obviously, the matrix CA is related to the
additional mass of the coaxial HAUV and the current motion state, and, when the added
mass disappears, CA also returns to 0.

2.3.4. Resistance and Resistance Moment

As the density of water is much higher than that of air, the drag effect of vehicles
driving in water is very significant. Coaxial HAUVs are also affected by drag moments
when they change their attitude in water. It is generally accepted that the drag force and
drag moment are proportional to the square of the linear and angular velocities of the
underwater motion [34]. [

fd
τd

]
= −Dv(ν1, ν2)

[
ν1
ν2

]
(17)

Dv =Dw + Da

=ksdiag
(

Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|, Mq|q||q|, Nr|r||r|
)

+ksadiag
(

Xu|u|a|u|, Yv|v|a|v|, Zw|w|a|w|, Kp|p|a|p|, Mq|q|a|q|, Nr|r|a|r|
]) (18)

Here, Dw and Da are the damping coefficient matrices of the coaxial HAUV in water and
air, respectively, and D is the combined damping coefficient.

2.3.5. Restoring Force and Restoring Moment

In the inertial coordinate system, the direction of gravity of the coaxial HAUV in
water is opposite to the positive direction of the ze-axis, but the direction of buoyancy is
the same as the positive direction of the ze-axis. The magnitude of the buoyancy force is
obtained from Archimedes’ principle, and, as the origin of the body-fixed coordinate system
coincides with the center of gravity of the coaxial HAUV, gravity does not produce torque.
The effects of gravity and buoyancy on the coaxial HAUV are expressed as follows [31]:

fg =−mgJT
1
[
0 0 1

]T

=−mg
[
− sin θ sin ϕ cos θ cos ϕ cos θ

]T

τg =
[
0 0 0

]T

(19)

fb =ksρwVgJT
1
[
0 0 1

]T

=ksρwVg
[
− sin θ sin ϕ cos θ cos ϕ cos θ

]T

τb =rb × fb

(20)

where ρw is the density of water, V is the volume of the HAUV‘s watertight chamber,
and g is the acceleration of gravity. The center of the buoyancy coordinates is defined
as rb =

[
xb yb zb

]T. Based on the above analysis, the restoring force is expressed as
a vector:

gν = −
[

fg + fb
τg + τb

]
(21)

Remark 1. It is worth noting that, according to the basic ship principle, the stability of a floating
body is closely related to the height of the initial metacenter, and the position of the center of buoyancy
is dynamic during the cross-domain process of the coaxial HAUV, which makes the recovery moment
difficult to quantify. The special elongated structure of the coaxial HAUV causes a minimal change
in the horizontal position of the center of buoyancy during its trans-domain motion. The simplified
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rule of change in the position of the center of action of the wind force and the center of buoyancy is
given here.

zb =


0, z > h/2

kszb0 − (h/2 + z)/2,−h/2 ≤ z ≤ h/2
zb0, z < −h/2

(22)

zw =


0, z > h/2

h/2 − (h/2 + z)/2,−h/2 ≤ z ≤ h/2
0, z < −h/2

(23)

Here, zb0 is the vertical coordinate value of the center of gravity in the body-fixed coordinate system
under fully submerged conditions.

The position of the center of action of the wind force and the center of buoyancy in the
body coordinate system can be approximated using mathematical calculations.

rb =
[

zb sin(θ) −zb sin(ϕ) zb
]T

rw =
[
−zw sin(θ) zw sin(ϕ) zw

]T (24)

2.3.6. Control Forces and Moments

HAUV prototypes with a single power system typically use aerial propellers, as
experimental studies have shown that aerial propellers can achieve underwater propulsion
to a certain extent. The two propellers of the coaxial HAUV are fixed to a vector tilt device,
and the vector platform controls the output of force and torque by controlling the tilt angle.
The control input can be expressed as follows [32,52]:

τp =

Tx
Ty
Tz

 = R
(
δx, δy

) 0
0

kαω2
1 + σkβω2

2

 (25)

R
(
δx, δy

)
=

cosδy −sinδysinδx −sinδycosδx
0 cosδx −sinδx

sinδy cosδysinδy cosδxcosδy

 (26)

τΘ =

u2
u3
u4

 =

 −dsinδx
(
kαω2

1 + σkβω2
2
)

−dsinδycosδx
(
kαω2

1 + σkβω2
2
)

γαω2
1 + γβω2

2

 (27)

where kα and are the lift coefficients of the upper and lower propellers, respectively. σ is the
lower propeller lift loss coefficient. d is the length from the lift center to the center of mass.
R
(
δx, δy

)
is the mapping transformation matrix of the propeller thrust to the body-fixed

coordinate system. δx and δy indicate the angles of declination of the vector tilting device.

Remark 2. From the point of view of actual flight control, the oscillating turn angle of the vector
tilting platform is so small that we can approximate it as cos δx ≈ 1,cos δy ≈ 1, sin δx ≈ δx ≈ 0,
sin δy ≈ δy ≈ 0. In this case, the control input can be rewritten to consider only the main factors.
The Tx and Ty values are small compared to the Tz value such that the effects of Tx and Ty can be
ignored. For convenience, Tz is redefined as u1.

u1 = Tz =
(

kαω2
1 + σkβω2

2

)
cos δx cos δy (28)

Through the above directions, the force generated by the action mechanism can be
rewritten in the following vector form:

τν =
[
τT

p τT
Θ

]T
=
[
0 0 u1 u2 u3 u4

]T (29)
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τp and τΘ are the actual control inputs of the position and attitude subsystems,
respectively. It is obvious that the position subsystem has only one control input to control
the 3-degree-of-freedom (DOF) translational motion, which is a typical underactuated
system; meanwhile, the attitude subsystem is a fully driven system. For the whole coaxial
HAUV system, the translational motion depends on the cooperative change in the attitude
angle. The coaxial HAUV system is a typical underdriven, strongly coupled motion system,
which leads to great challenges when designing a controller for it.

2.3.7. Analysis of Mathematical Model of Multiple Interference

Coaxial HAUVs are relatively small in size and are highly susceptible to internal and
external disturbances, which prevent them from following the intended trajectory while
navigating. The compound disturbances of wind, waves, and currents in the external
environment play an even more decisive role in affecting coaxial HAUVs with a light mass
and a small volume. In this section, the wind, wave, and current disturbances are modeled
and discussed, and the proposed disturbance mathematical model is used in a simulation;
this makes the simulation experiments closer to the actual situation and thus increases their
research value.

1 Sea breeze disturbance

Sea wind can cause a coaxial HAUV to yaw while traveling. Sea wind can both set off
waves and generate corresponding forces and moments on the coaxial HAUV body, thus
changing the trajectory of the coaxial HAUV. Sea wind interference can be divided into
average (constant) wind interference and pulsating wind interference, but only the effect of
constant wind is considered in practice. Additional disturbance forces on coaxial HAUVs
are caused by constant wind disturbance Fwind and Mwind can be described as follows:

Fwind = −Cdwind ◦ |vr| ◦ vr
Mwind = rw × Fwind

(30)

◦ is the Hadamard product (elemental multiplication) [34]. The constant wind is
assumed to have a constant inertial reference velocity vw ∈ R3; then, the relative velocity
of the coaxial HAUV in the wind is vr = v1 − vw. The wind acts on the geometric center
of the coaxial HAUV body exposed to the air, that is, the center of wind pressure action,
which is represented as rw ∈ R3, and Cdwind represents the wind damping coefficient.

2. Ocean current interference

From the perspective of time, ocean currents can be divided into steady flow and
unsteady flow, and, from the perspective of geography, they can be divided into uniform
flow and non-uniform flow. The effect of the current is similar to that of the sea breeze,
and its magnitude is proportional to the square of the relative velocity. In general, ocean
currents are slowly time-varying, and the force Fc and moment Mc generated by the current
can be expressed as follows:

Fc = −Cdc ◦ |vrc| ◦ vrc
Mc = rb × fc

(31)

Ocean currents are generally considered to be constant and uniform; assuming that
they have a constant inertial reference speed vc ∈ R3, vrc = v1 − vc is the relative velocity
of the coaxial HAUV in the current and Cdc represents the water damping coefficient.

3. Ocean wave interference

Wave disturbances are complex; generally formed by natural conditions such as wind,
tsunamis, and tides; and may change with seasonal variations, water area, wind strength,
etc. From the study of near-surface waves, it can be seen that irregular waves can be
regarded as the superposition of a large number of uniformly small waves, and, among
these small waves, the ones that have the main influence on the motion of the HAUV are
the long peaked random waves with a period between 5–20 s. In order to simplify the
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problem, wave interference caused by a single-frequency micro-amplitude long peak wave
with a fixed direction (propagating along the X- and Y-axes of the inertial system) can be
considered the main concern. In this context, linear wave theory (i.e., Airy Theory) may
be preferred. Wave interference caused by single-frequency micro-amplitude long peak
waves with a fixed direction is considered. It is assumed that these waves are regular waves
concentrated in the xe-axis and ye-axis directions [34].

The wave corresponding velocity potential functions Γx and Γy are expressed
as follows

Γx = ∑N
i=1

gAxi
ωxi

ekxiz sin(kxix − ωxit + φxi)

Γy = ∑N
i=1

gAyi
ωyi

ekyiz sin(kyiy − ωyit + φyi)
(32)

where N, Aji, ωji, k ji, and φji(j = x, y) are the total number of waves, wave amplitude,
wave frequency, wave number, and phase. A simple dispersion relation is satisfied between
the wave number and the circular frequency of a wave, i.e., k ji = w2

ji/g [31].
The transverse and vertical velocities of the wave in the xe-axis and ye-axis directions

and the corresponding accelerations are given by the following equation:

ux = ∂Γx
∂x , wx = ∂Γx

∂z , uy =
∂Γy
∂y , wy =

∂Γy
∂z

.
ux = ∂ux

∂t ,
.

wx = ∂wx
∂t ,

.
uy =

∂uy
∂t ,

.
wy =

∂wy
∂t

(33)

The scale of the proposed coaxial HAUV is very small compared with that of the long
peak waves in the ocean, so the effect of the vehicle on the incident wave pressure field can
be neglected. In addition, a significant feature of coaxial HAUVs is that the submerged part
of the body changes in the process of cross-domain maneuvering, which leads to the wave
action of the body also changing. Therefore, the wave loads encountered by the coaxial
HAUV can be calculated according to the following equation [37]:

Fwave,x =
∫

Lz
(ρwCmπR2 .

ux +
1
2 ρwCdRux|ux|)dz

Fwave,y =
∫

Lz
(ρwCmπR2 .

uy +
1
2 ρwCdRuy|uy|)dz

(34)

Mwave = rb × Fwave

Fwave = JT
1
[

Fwave,x Fwave,y 0
]T (35)

where Lz is the length of being submerged.

Remark 3. As the external environment affects the motion of the coaxial HAUV, mathematical
models of wind, waves, and currents are developed, and they are added to the simulation experiments
for motion control. Based on a detailed analysis of the various external forces and moments applied to
the system in the previous subsection, they can be classified as follows: The first category consists of
the active control forces that need to be regulated by the controller, i.e., the control forces and control
moments τv; the second category consists of external forces that can be measured or approximated,
such as Coriolis forces Cv, restoring forces gv, and damping forces Dv; and the third category
consists of terms that are not practically measurable or are extremely expensive to model accurately,
such as the wind disturbance forces Fwind and Mwind, the wave disturbance forces Fwave and Mwave,
and the current-generated forces Fc and Mc. The third type of external forces can be approximated
using empirical formulas, but it is very difficult to obtain real-time information about the marine
environment with limited accuracy [33].

2.4. Modeling of Coaxial HAUV Cross-Domain Maneuvering Dynamics

HAUVs, as newly emerging marine amphibious robots, are subjected to external forces
similar to underwater robots and drones, depending on the environmental medium and
navigation state. They are affected by the three generalized forces and corresponding
torques analyzed above. The coaxial HAUV can be modeled as a hybrid system (consisting
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of an underwater model, an air model, and a transition-state model) in which the dynamics
of the HAUV change depending on the ambient medium (air or water).

Referring to relevant experience with underwater robots, translating the above
model (12) into an inertial coordinate system gives the following [50]:{ .

η =
.
η

Mη
..
η+ Cη

.
η+ Dη

.
η+ gη = τη + τdη

(36)

The transformed variables satisfy the following relationship: Mη = J−TMJ−1,

Cη = J−T
(

C − MJ−1
.
J
)

J−1, Dη = J−TDJ−1, gη = J−Tgν , τdη = J−Tτdν , τη = J−Tτν .
Further simplification and rewriting of (36) gives the form of the following second-

order state space equation: { .
η =

.
η

..
η = f + u + d

(37)

where f = −M−1
η

(
Cη

.
η+ Dη

.
η+ gη

)
represents the hydrodynamically relevant nonlin-

ear function transferred to the inertial coordinate system, containing the mass matrix,
Coriolis force term, damping term, and restoring force term; u = M−1

η τη = M−1
η J−Tτν

indicates the control inputs transferred to the inertial system; and d = M−1
η τdη , d =[

dx dy dz dϕ dθ dψ

]T represents the aggregate uncertainty of the system, including
the model parameter jumping change, variate linearization approximation errors, and
difficult-to-calculate fluid disturbance forces and moments.

Assumption 2 [53]. With reference to near-surface motion marine robots, the ensemble uncertainty

arising from the marine environment and model lumped uncertainty d =
[
dT

p dT
Θ

]T
and its

derivatives are bounded; that is, there exists an unknown positive constant D, satisfying ∥d∥ ≤ D.
Further analysis can consider that the elements of d under each DOF di, i = x, y, · · · , ψ sat-
isfy |di| ≤ Di and that Di is the uncertainty upper bound of the corresponding DOF.

Remark 4. Referring to the control logic of coaxial UAVs, the coaxial HAUV is a 6-DOF motion sys-

tem with four control inputs τν =
[
τT

p τT
Θ

]T
. τp =

[
0 0 u1

]T and τΘ =
[
u2 u3 u4

]T are
the control inputs for the position and attitude subsystems, respectively. After transforming the
dynamical equations into the inertial coordinate system, the control inputs of the position subsystem
in the inertial system are up = M−1

η1 J−T
1 τp, where Mη1 = J−T

1 M11J−1
1 .

The HAUV system is decomposed into a cascade of inner and outer ring systems and
up =

[
ux uy uz

]T is defined as a virtual control law. The variation in the attitude angle
of the coaxial HAUV causes the total lift to produce a horizontal component in the inertial
coordinate system, which allows the coaxial HAUV to produce a horizontal maneuver. By
giving the desired yaw angle ψd and after acquiring the virtual control law up, the total lift
u1 and the desired pitch angle θd and roll angle ϕd can be obtained by inversely solving the
following [54]: 

u1 = τp(3), τp = JT
1 Mη1up

θd = arctan
(

ux cos ψd+uy sin ψd
uz

)
ϕd = arctan

(
(ux sin ψd−uy cos ψd) cos θd

uz

) (38)

3. Design of Fixed-Time Composite Robust Controller

In this section, we present the design of an RBFNN-based adaptive fixed-time sliding
mode controller (NNAFTSMC) for the coaxial HAUV. Firstly, a fixed-time terminal sliding
mode control (FTSMC) scheme is proposed to design the basic controller. It should be
emphasized that, although the dynamics of the HAUV were analyzed during the modeling
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phase, it is extremely difficult to obtain effective model parameters in real time to construct
the dynamic characteristics of HAUVs. Next, six RBFNN approximators are used to identify
the 6-DOF nonlinear dynamic functions online. On this basis, the adaptive algorithm is used
to estimate the weight parameters of the RNFNN and the controller‘s robust switching terms.

3.1. RBFNN Approximation Algorithm

Because of the excellent performance of the RBFNN in nonlinear function approximation,
it is widely used in nonlinear function estimation in the control field. The RBFNN has an
outstanding local approximation ability, can effectively avoid local minima, and has faster
learning convergence. In this paper, except for the mass matrix in Equation (14), which is
known due to it being relatively easy to obtain, the remaining hydrodynamic parameters
are unknown by default and are identified online using the RBFNN. At the same time, its
network structure is shown in Figure 5.

Any continuous function can be accurately identified using the RBFNN, and the lumped
uncertainty of the coaxial HAUV can be approximated using the RBFNN technique. The
RBFNN can well approximate the nonlinear function of Equation (32), which is composed
of time-varying hydrodynamic parameters and external perturbations, that is, F = f+ d; the
relationship shown in the following equation is satisfied:

F = WTh + ε (39)

Assumption 3. From the conclusion of assumption 2, the total uncertainty of the set gener-
ated by the marine environment and model hydrodynamics is bounded. Further, by using the
RBFNN to approximate the nonlinear function F, theoretically, the approximation error ε can be
arbitrarily small. ε satisfies ∥ε∥ ≤ εmax, |εi| ≤ εimax, i = 1, 2, · · · , 6, and εimax is the maximum
reconstruction error at each DOF.
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3.2. RBFNN-Based Adaptive Fixed-Time Sliding Mode Controller Design
3.2.1. Fixed-Time Sliding Mode Controller Designing

In this section, a basic fixed-time sliding mode controller is proposed to ensure that
the system converges to the desired position at a fixed time. The controller should output
effective control signals to track the reference trajectory under complex working conditions.
When designing the reference trajectory, it is necessary to make the trajectory as smooth,
bounded, and derivable as possible. The desired position and attitude are expressed as
ηd =

[
ηT

1d ηT
2d
]T, η1d =

[
xd yd zd

]T, η2d =
[
ϕd θd ψd

]T. For the convenience of
describing the error control process, the control error is defined as e = η− ηd.

Control objective: The goal is to design the control input τv such that

lim
t→+∞

(
e
.
e

)
= 012×1 (40)

The fixed-time fast terminal sliding surface is selected for the position and attitude
loop as follows:

s =
.
e + k1e + k2tanh(e) + k3sigγ(e) (41)
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where k1, k2, and k3 are the matrices of the parameters of the sliding mode surface to be
designed, respectively. k1, k2, and k3 are six-dimensional positive definite diagonal matrices,
and γ > 1.

Through a simple mathematical calculation, the time derivative of the sliding mode
surface s is calculated as follows:

.
s =

..
e + k1

.
e + k2

(
1 − tanh(e)Ttanh(e)

) .
e + k3γsigγ−1(e)

.
e

=
(
f + u + d − ..

ηd
)
+ H

(
e,

.
e
) (42)

where H
(
e,

.
e
)
=
(

k1 + k2

(
1 − tanh(e)Ttanh(e)

)
+ k3γsigγ−1(e)

) .
e.

By letting
.
s = 0, the equivalent control law can be obtained, combining the isokinetic

reaching law and the exponential convergence law to obtain a controller for the attitude
and position loop, respectively, as follows:

u =
..
ηd − F̂ − H

(
e,

.
e
)
−ε̂sign(s)− c1sig

p
q (s)− c2sig

m
n (s)− c3s (43)

where F̂ = ŴTh is the estimated value of F; ε̂ is an estimate of the upper bound of the
reconstruction error; c1 > 0, c2 > 0, and c3 > 0 are the parameters to be designed for the
reaching law; and p, q, m, and n are positive odd numbers and satisfy 0 < p < q, m > n > 0.

Remark 5. It is worth noting that the solved controller is not the real control input. Consider that
the control inputs in the inertial system satisfy the relationship u = M−1

η τη = M−1
η J−Tτν; then,

the actual control input should be solved as follows:

τν = JTMηu (44)

3.2.2. Adaptive Law Design

The robustness of the control system can be further improved by selecting the appro-
priate robust switching gain; therefore, the adaptive law is designed to compensate for the
remaining neural network approximation error ε. The ideal weight coefficients of neural
networks W are difficult to obtain intuitively; therefore, the weight coefficient needs to
be obtained by using adaptive technology. Ŵ and ε̂ are the estimated values of W and ε,
W̃ = W − Ŵ and ε̃ = ε − ε̂ are defined as the respective estimation errors. The adaptive
law under each DOF is designed as follows [55]:

.
Ŵ =

[ .
Ŵ1

.
Ŵ2 · · ·

.
Ŵ6

]
.

Ŵi = γ1
(
sihi − µ1Ŵi

)
, i = 1, 2, · · · , 6

(45)

.
ε̂ =

[ .
ε̂1

.
ε̂2 · · ·

.
ε̂6

]T

.
ε̂i = γ2(|si| − µ2 ε̂i), i = 1, 2, · · · , 6

(46)

where γ1, γ2, µ1, and µ2 are the designed positive definite coefficient matrices. Subscript
i = 1, 2, · · · , 6 indicates six DOFs, such as x, y, · · · , ψ.

3.3. Stability Proofs and Analyses

Theorem 1. Consider the coaxial HAUV system. If NN fixed-time controller (43) and adaptive
laws (45) and (46) are adopted, then the sliding mode surface will asymptotically reach a neighbor-
hood of 0. s, W̃i, ε̃i is consistently terminal-bounded in this case.
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Proof of Theorem 1. The Lyapunov function is designed as follows:

V1 =
1
2

sTs +
1
2

tr
{

W̃
T

γ−1
1 W̃

}
+

1
2γ2

ε̃Tε̃ (47)

By solving the time derivative of Equation (47),

.
V1 =sT .

s − 1
γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

=sT
(..

e + k1
.
e + k2

(
1 − tanh(e)Ttanh(e)

) .
e + k3γsigγ−1(e)

.
e
)

− 1
γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

=sT(f + u + d − ..
ηd + H

(
e,

.
e
))

− 1
γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

=sT(F + u − ..
ηd + H

(
e,

.
e
))

− 1
γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

=sT
(

u + WTh + ε − ..
ηd + H

(
e,

.
e
))

− 1
γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

(48)

By substituting controller (43) u into
.

V1, the following can be obtained:

.
V1 =sT

( ..
ηd − ŴTh − H

(
e,

.
e
)
+ WTh + ε − ..

ηd + H
(
e,

.
e
)

− ε̂sign(s)− c1sig

p
q (s)− c2sig

m
n (s)− c3s

− 1
γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

=sT

W̃
T

h + ε − ε̂sign(s)− c1sig

p
q (s)− c2sig

m
n (s)− c3s


− 1

γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

(49)

By substituting the adaptive laws (45) and (46) into the above equation, we obtain the
following:

.
V1 =sT

W̃
T

h + ε − ε̂sign(s)− c1sig

p
q (s)− c2sig

m
n (s)− c3s


− 1

γ1

6

∑
i=1

W̃
T
i

.
Ŵi −

1
γ2

6

∑
i=1

ε̃i
.
ε̂i

≤
6

∑
i=1

siW̃
T
i hi +

6

∑
i=1

|si|ε̃i − c1∥s∥
p + q

q − c2∥s∥
m + n

n − c3∥s∥2

− 1
γ1

6

∑
i=1

W̃
T
i
(
γ1sihi − γ1µ1Ŵi

)
− 1

γ2

6

∑
i=1

ε̃i(γ2|si| − γ2µ2 ε̂i)

≤−c1∥s∥
p + q

q − c2∥s∥
m + n

n − c3∥s∥2 + µ1

6

∑
i=1

W̃
T
i Ŵi + µ2

6

∑
i=1

ε̃i ε̂i

(50)
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Here, the results and properties of the term µ1
6
∑

i=1
W̃

T
i Ŵi + µ2

6
∑

i=1
ε̃i ε̂i are discussed.

According to the relevant conclusion of Young’s inequality W̃
T
i Ŵi, ε̃i ε̂i terms satisfy the

following inequality:

W̃
T
i Ŵi =W̃

T
i

(
Wi − W̃i

)
≤
(

W̃
T
i W̃i/2 + WT

i Wi/2 − W̃
T
i W̃i

)
≤−W̃

T
i W̃i/2 + WT

i Wi/2

ε̃i ε̂i ≤−ε̃2
i /2 + ε2

i /2

(51)

According to the conclusion obtained from the above analysis, Equation (50) can be
further simplified and rewritten as follows:

.
V1 ≤−c1∥s∥

p + q
q − c2∥s∥

m + n
n − c3∥s∥2 − µ1

2

6

∑
i=1

W̃
T
i W̃i −

µ2

2

6

∑
i=1

ε̃2
i

+
µ1

2

6

∑
i=1

WT
i Wi +

µ2

2

6

∑
i=1

ε2
i

≤−c3∥s∥2 − µ1

2

6

∑
i=1

W̃
T
i W̃i −

µ2

2

6

∑
i=1

ε̃2
i + ∆1

≤−2c3

(
1
2

sTs
)
− µ1γ1

(
1

2γ1

6

∑
i=1

W̃
T
i W̃i

)
− µ2γ2

(
1

2γ2

6

∑
i=1

ε̃2
i

)
+ ∆1

≤−ρ1V1 + ∆1

(52)

where ∆1 =
µ1

2

6
∑

i=1
WT

i Wi +
µ2

2

6
∑

i=1
ε2

i , ρ1 = min{2c3, µ1γ1, µ2γ2}. On the basis of Lyapunov

theorem and Lemma 1, s, W̃i, ε̃i is consistently terminal-bounded. Further, considering that
s is defined in terms of vectors, it can be concluded that the control error is also bounded.
It can be concluded that the designed controller can guarantee that the global system
is bounded and asymptotically convergent, but it cannot guarantee the achievement of
fixed-time convergence.

Next, the actual fixed-time stability of the global system is proven.
As the domain of the Gaussian function belongs to the interval [0, 1], the activation

function h is also bounded.
According to the above analysis, W̃

T
h is bounded and satisfies the

following relationship: ∥∥∥W̃
T

h
∥∥∥ ≤

∥∥∥W̃
∥∥∥∥h∥ (53)

As an adaptive strategy is adopted to approximate the upper bound of the neural
network error ε to ensure the robustness of the controller, the adaptive parameter ε̂ will con-
tinue to increase until it completely cancels out the approximation error; then, it can be as-
sumed that there exists an adaptive parameter ε̂ such that the following relationship holds:∥∥∥W̃

T
h + ε

∥∥∥ ≤ ∥ε̂∥ (54)

□

Theorem 2. Considering system (37), Equation (41) is chosen as the terminal sliding mode surface,
Equation (43) is the controller, and (45) and (46) are the adaptive update laws. Then, the sliding mode
surface reaches a region close to 0 at a fixed time T1. Once the sliding mode surface satisfies s = 0,
the actual control error also converges to 0 at a practically fixed time T2.
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Proof of Theorem 2. The proof process is divided into two steps: the first step is to show
that the arrival phase can reach 0 at a fixed time T1, and the second step is to show that the
tracking error in the sliding phase reaches 0 at a practically fixed time T2. The Lyapunov
function is constructed as follows:

V2 =
1
2

sTs (55)

By taking the derivative of Equation (55) and substituting controller (43) u into (56),
one obtains

.
V2 =sT .

s

=sT
(..

e + k1
.
e + k2

(
1 − tanh(e)Ttanh(e)

) .
e + k3γsigγ−1(e)

.
e
)

=sT(f + u + d − ..
ηd + H

(
e,

.
e
))

=sT(f + d − ..
ηd + H

(
e,

.
e
)
+

..
ηd − F̂ − H

(
e,

.
e
)
− ε̂sign(s)

− c1sig
p
q (s)− c2sig

m
n (s)− c3s

)
=sT

(
F̃ + ε − ε̂sign(s)− c1sig

p
q (s)− c2sig

m
n (s)− c3s

)
=sT

((
W̃

T
h + ε

)
− ε̂sign(s)− c1sig

p
q (s)− c2sig

m
n (s)− c3s

)
≤∥s∥

∥∥∥W̃
T

h + ε
∥∥∥− ∥s∥∥ε̂∥ − c1∥s∥

p+q
q − c2∥s∥

m+n
n − c3∥s∥

(56)

By taking into account the properties of the adaptive gain, we obtain the following:

.
V2 ≤−c1∥s∥

p+q
q − c2∥s∥

m+n
n − c3∥s∥

≤−c1∥s∥
p+q

q − c2∥s∥
m+n

n

≤−2
p+q
2q c1

(
1
2

sTs
) p+q

2q
− 2

m+n
2n c2

(
1
2

sTs
)m+n

2n

≤−ρ21V
p+q
2q

2 − ρ22V
m+n

2n
2

(57)

where ρ21 = 2
p+q
2q c1, ρ22 = 2

m+n
2n c2.

According to Lemma 3, it can be assumed that, in the reaching phase, the sliding mode
surface s can converge to the neighborhood of 0 at a fixed time T1, T1 = 1

ρ21(1−(p+q)/(2q)) +
1

ρ22((m+n)/(2n)−1) .
Once s = 0 is reached, we can obtain the following:

.
e = −k1e − k2tanh(e)− k3sigγ(e) (58)

In order to prove the sliding phase fixed-time stability of the coaxial HAUV system, a
Lyapunov function is chosen as follows:

V3 =
1
2

eTe (59)
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Solving the derivatives of V3 yields the following:

.
V3 =eT .

e

=eT(−k1e − k2tanh(e)− k3sigγ(e))

=−k1∥e∥2 − k2eTtanh(e)− k3∥e∥
γ+1

2

≤−k1∥e∥2 − k2∥e∥+ 6k2κ − k3

(
∥e∥2

) γ+1
2

≤−k2V
1
2

3 − k3V
γ+1

2
3 + ∆3

(60)

where ∆3 = 6k2κ, κ = 0.2785.
According to Lemma 2, in the sliding phase, e can converge to the 0 neighborhood in a

practically fixed time T2, T2 = 1
k2(1−1/2) +

1
k3((γ+1)/2−1) .

In summary, the fixed-time stability of the coaxial HAUV global system is proven, and
the system state can converge at a fixed time of T = T1 + T2 to 0. Above, the stability-proof
process of the designed controller in a fixed time is completed.

□

4. Simulation and Discussion

In the previous section, the effectiveness of the NNAFTSMC algorithm for coaxial
HAUV cross-domain control was proven in a theoretical analysis. Therefore, the main
work presented in this section aimed to verify the stability and effectiveness of the afore-
mentioned controller based on control algorithm simulations. Two different cross-media
motion test items were included in the simulation. The first test project aimed to control the
coaxial HAUV to achieve a complete water–air amphibious movement; the second experi-
ment project aimed to test the cross-domain tracking effect of different control algorithms
controlling the coaxial HAUV.

The most typical cross-domain action was selected—climbing out of water—to test
the effect of the proposed control strategy under the conditions of marine environment
disturbance and parameter perturbation. The parameters of the coaxial HAUV model used
in our simulations are shown in Table A1 in Appendix A. In addition, specific simulation
experimental parameters were selected: the fourth-order Runge–Kutta solution method
was adopted, and a fixed step size was selected in the solution process, which was set to
0.005.

Meanwhile, the design parameters of the position and attitude loop controllers, adap-
tive law, and RBFNN were as follows:

Controller design parameters: k1p = 1.5, k1Θ = 2.5, k2p = k2Θ = 1.5, k3p = k3Θ = 1.0,
γp = γΘ = 5/3, c1p = c1Θ = 0.5, c2p = c2Θ = 0.5, c3p = 1.5, c3Θ = 4.5.

The adaptive law design parameters for the RBFNN were µ1p = 0.02, µ1Θ = 0.05,
γ1p = [8, 8, 24]T, γ1Θ = [100, 100, 100]T. The number of nodes in the hidden layer of the
RBFNN was set to j = 13, and the center node vector of the Gaussian basis function was
denoted as c =

[
c1, c2, · · · , cj

]
. The c values were taken as shown in Equation (61), and

their gains were γp = 3.05 and γΘ = 1.55. The widths of the neurons were bp = 6 and
bΘ = 5.

c = γ×

 −3.0,−2.5,−2.0,−1.5,−1.0,−0.5, 0, 0.5, 1.0, 1.5, 2, 2.5, 3.0
−3.0,−2.5,−2.0,−1.5,−1.0,−0.5, 0, 0.5, 1.0, 1.5, 2, 2.5, 3.0
−3.0,−2.5,−2.0,−1.5,−1.0,−0.5, 0, 0.5, 1.0, 1.5, 2, 2.5, 3.0

 (61)

The adaptive law design parameters for the robust switching term are γ2p =

[2.5, 2.5, 2.5]T, γ2Θ = [1.5, 1.5, 1.5]T, µ1p = 0.05, µ1Θ = 0.02. In this study, subscripts
(·)p and (·)Θ are parameters in the position and attitude loops, respectively.

Due to the large difference in the external disturbance force (moment) during coaxial
HAUV maneuvering in water–air media, it is difficult to accurately identify the marine
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environment and apply it to modeling in practice. The multiple disturbances caused by
wind, waves, and currents are analyzed. The effectiveness of controller design can be
improved by applying the empirical formula of marine environment simulations given
by scholars to simulation research. It is assumed that the disturbances τdv = dr + dw to
the system are superposition forms of random function dr and generalized disturbance dw
(wind, waves, and current action).

The random function dr is set such that

drx = 1.3sin(0.1πt) + 0.3cos(0.13πt) + 0.1ksrand(1)
dry = 1.3cos(0.12πt) + 0.3sin(0.12πt) + 0.1ksrand(1)
drz = 1.3sin(0.13πt) + 0.3cos(0.1πt) + 0.1ksrand(1)
drϕ = 0.3cos(0.13πt) + 0.1ksrand(1)
drθ = 0.3sin(0.12πt) + 0.1ksrand(1)
drψ = 0.3cos(0.1πt) + 0.1ksrand(1)

(62)

The parameter settings for generalized interference dw are given in Table A2 in Ap-
pendix A.

In addition, on the basis of the new controller designed in this study, two other
controllers are designed for a comparative study: one uses the conventional adaptive linear
sliding mode control (LSMC) law, and the other uses the conventional PID control law.

The conventional adaptive sliding mode control (ASMC) law is designed as follows:

τν = JTMηu
u =

..
ηd − f − k1

.
e − D̂sign(s)− c3s

(63)

.
D̂i = γ1

(
|si| − µ1D̂i

)
, i = 1, 2, · · · , 6 (64)

Remark 6. The hyperbolic tangent function tanh(si/ξi), ξi ∈ (0, 1) is used to substitute the sign
function sign(si) in weak chattering. It is worth noting that the smaller the ξi value, the closer the
properties of the hyperbolic tangent function to the sign function.

The parameters of linear sliding mode control laws (63) and (64) of the controller for
the control group are chosen as k1p = 1.5, k1Θ = 2.5, c3p = c3Θ = 1.5. The adaptive law
design parameters for the robust switching term are γ1p = γ2Θ = 2.5, µ1p = µ1Θ = 0.02.

The conventional PID control law is designed as follows:

τν = JTMηu
u = −kpe − kI

∫
edt − kd

.
e

(65)

The controller parameters for classical PID control law (65) are selected as kpp = kpΘ =
20, kIp = kIΘ = 10, kdp = 5, kdΘ = 10.

It should be noted that the control parameters of the above controllers were determined
using the trial-and-error method to obtain near-optimal control parameters.

4.1. Coaxial HAUV Spiral Upward Cross-Domain Maneuvering Control with the NNAFTSMC

In the following simulation, the main consideration is testing the control effect of the
designed adaptive neural network robust controller on the coaxial HAUV take-off cross-
ing the water surface. The initial position of the HAUV is set to

[
x0, y0, z0,

.
x0,

.
y0,

.
z0
]T

=

[0.2, 1.8,−2.1, 0, 0, 0]T, and the initial attitude state is set to
[
ϕ0, θ0, ψ0,

.
ϕ0,

.
θ0,

.
ψ0

]T

= [0, 0, π/6, 0, 0, 0]T. To further evaluate the performance of the designed NNAFTSMC
method, sensor measurement noise effects are added to all states. Gaussian noise is selected
as sensor noise, and its characteristics are shown in Figure 6.
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The desired value of the cross-domain maneuvering trajectory selected for leaving
water is shown in Equation (66):

xd = 2sin(0.1πt), (m)
yd = 2cos(0.1πt), (m)
zd = 0.1t − 2.0, (m)
ψd = 0.01, (rad)
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Some simulation results for Case 1 are provided in Figures 7–12. Figures 7 and 8
show the tracking response of the position loop after employing the proposed controller.
It can be clearly seen that the proposed composite robust controller performs well, even
in the presence of sensor noise. The tracking evolution results of the three channels of
the translational motion over time are given in Figure 7, which shows that each channel
achieves good tracking results. However, the presence of sensor noise causes obvious
fluctuations in the tracking curve near the reference trajectory. Figure 8 demonstrates the
3-D spiral climb effect. The coaxial HAUV trajectory starts from underwater, traverses the
wavy water surface, and spirals up into the air, and the whole process demonstrates a good
space-tracking effect. Figure 9 shows the attitude-tracking effect of the proposed inner-loop
controller. In Figure 9a, it can be observed that the controller can drive the coaxial HAUV
to accurately track the desired attitude angle. The desired angle fluctuates due to noise.
In addition to the noise superimposed on the state, the jump of the angle tracking is more
obvious in Figure 9b. Figure 10 shows the evolution effect of the tracking error of the
position and attitude, and it is clear that the error, despite large fluctuations in the initial
state, is quickly able to reach the set boundaries and stabilize. However, by comparing
Figure 10a,b, it can be seen that the noise causes the control error to jump frequently around
0. Figure 11 illustrates the online approximation results of the employed RBFNN for the
unknown nonlinear function against the setup value. Figure 12 shows the norm of the
error between the observed result and the value of the unknown nonlinear function set
using the RBFNN. By combining the results of Figures 11 and 12, it can be seen that, despite
the large discrepancy between the initial value of the neural network approximator and
the total uncertainty, the neural network is still able to obtain accurate approximations
quickly, and the above shows that the proposed neural network approximator can provide
reliable uncertainty function estimates for controller design. Noise deteriorates the results
of the RBFNN’s online identification of nonlinear functions, and the reconstruction ability
or accuracy of the neural network decreases.
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Figure 13 shows the evolution of the adaptive law parameters of the designed con-
troller‘s robust switching terms over time. It can be seen that the reconstruction ability of the
neural network decreases and that the adaptive parameters become larger to enhance the
robustness of the controller. The adaptive law and the RBFFNN approximator complement
each other and enhance the robustness of the system. Figure 14 shows the evolution of the
norm of the weight coefficients under each degree of freedom of the designed RBFFNN
approximator over time. It is worth noting that noise seems to have a weak effect on
the weight coefficient results over time, and the values of the weight coefficient norm are
similar. If the exact state quantity can be obtained, the RBFNN will achieve more accurate
online identification and reduce the dependence on model parameters in the subsequent
stages. Figure 15 shows the variation in the control signal. During the 50 s simulation, in
the initial stage, the coaxial HAUV receives buoyancy compensation, and the lift output
is small; in the later stage, the coaxial HAUV enters the air from the water, the buoyancy
disappears, and the total lift has to overcome the effect of gravity, so the output value
becomes larger. Sensor noise makes the state variable fluctuate at a high frequency, which
further causes the controller’s solution results to fluctuate. This is very bad for the actuator.
This is why real flight controllers need to incorporate various efficient filtering algorithms
to avoid the effect of noise on the control signal.

Drones 2024, 8, x FOR PEER REVIEW 24 of 37 
 

Figure 6. Sensor measurement noises of the coaxial HAUV. 

 
Figure 7. Tracking results of the coaxial HAUV in x, y, and z channels for Case 1. 

 
Figure 8. The 3D view position tracking results in Case 1. 

Figure 8. The 3D view position tracking results in Case 1.



Drones 2024, 8, 745 23 of 33
Drones 2024, 8, x FOR PEER REVIEW 25 of 37 
 

(a) Sensor noise absence 

(b) Sensor noise presence 

Figure 9. Attitude angle tracking results in Case 1. 

(a) Sensor noise absence 

Figure 9. Attitude angle tracking results in Case 1.

Drones 2024, 8, x FOR PEER REVIEW 25 of 37 
 

(a) Sensor noise absence 

(b) Sensor noise presence 

Figure 9. Attitude angle tracking results in Case 1. 

(a) Sensor noise absence 

Drones 2024, 8, x FOR PEER REVIEW 26 of 37 
 

(b) Sensor noise presence 

Figure 10. Attitude angle tracking error evolutionary results in Case 1. 

(a) Sensor noise absence 

(b) Sensor noise presence 

Figure 11. Attitude angle tracking results in Case 1. 

Figure 10. Attitude angle tracking error evolutionary results in Case 1.



Drones 2024, 8, 745 24 of 33

Drones 2024, 8, x FOR PEER REVIEW 26 of 37 
 

(b) Sensor noise presence 

Figure 10. Attitude angle tracking error evolutionary results in Case 1. 

(a) Sensor noise absence 

(b) Sensor noise presence 

Figure 11. Attitude angle tracking results in Case 1. Figure 11. Attitude angle tracking results in Case 1.

Drones 2024, 8, x FOR PEER REVIEW 27 of 37 
 

(a) Sensor noise absence 

(b) Sensor noise presence 

Figure 12. Identification of evolution of nonlinear functions of RBFNN in position and attitude loops 
in Case 1. 

Figure 13 shows the evolution of the adaptive law parameters of the designed con-
trollerʹs robust switching terms over time. It can be seen that the reconstruction ability of 
the neural network decreases and that the adaptive parameters become larger to enhance 
the robustness of the controller. The adaptive law and the RBFFNN approximator com-
plement each other and enhance the robustness of the system. Figure 14 shows the evolu-
tion of the norm of the weight coefficients under each degree of freedom of the designed 
RBFFNN approximator over time. It is worth noting that noise seems to have a weak effect 
on the weight coefficient results over time, and the values of the weight coefficient norm 
are similar. If the exact state quantity can be obtained, the RBFNN will achieve more ac-
curate online identification and reduce the dependence on model parameters in the sub-
sequent stages. Figure 15 shows the variation in the control signal. During the 50 s simu-
lation, in the initial stage, the coaxial HAUV receives buoyancy compensation, and the lift 
output is small; in the later stage, the coaxial HAUV enters the air from the water, the 
buoyancy disappears, and the total lift has to overcome the effect of gravity, so the output 
value becomes larger. Sensor noise makes the state variable fluctuate at a high frequency, 
which further causes the controller’s solution results to fluctuate. This is very bad for the 
actuator. This is why real flight controllers need to incorporate various efficient filtering 
algorithms to avoid the effect of noise on the control signal. 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Figure 12. Identification of evolution of nonlinear functions of RBFNN in position and attitude loops
in Case 1.
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4.2. Comparative Simulation of Control Effects of Different Control Algorithms

In the following simulations, the main aim is to test the control effectiveness of the
designed NNAFTSMC and the conventional ASMC and PID controller in achieving the
cross-domain process of the coaxial HAUV. The controller parameters and the initial
position of the coaxial HAUV are stated in the previous section. As the main purpose is to
test the effects of different controllers, noise is not considered in this section.

For a quantitative comparative analysis, the tracking performance of the three con-
trollers involved in this study can be quantitatively analyzed using the mean absolute
error (MAE) and root mean square error (RMSE). The MAE and RMSE are defined in the
following equations:

MAE =
1
n

n
∑

i=1
|e|

RMSE =

√
1
n

n
∑

i=1
e2

(67)

where e is the amount of error, thus denoting the number of discrete errors in the control
evolution process. RMSE vs. MAE: The RMSE is equivalent to the L2 paradigm, and the
MAE is equivalent to the L1 paradigm. The higher the number, the more the calculation
is related to larger discrete values and ignores smaller values, which is why the RMSE is
more sensitive to outliers (i.e., if there is a predicted value that is very different from the
true value, then the RMSE will be large).

Some simulation results of the three different controllers are given in Figures 16–23
to further illustrate the superiority of the designed adaptive neural network sliding mode
controller through the control effects of the different controllers. Figures 16–19 show
the tracking response results of the position and attitude loops obtained using the three
controllers. It can be seen that the three controllers used are capable of realizing the trans-
media trajectory tracking process of the coaxial HAUV. This further validates the results of
previous scholars who achieved trans-domain motion through PID control algorithms and
ASMC algorithms. However, the tracking effect achieved by the PID controllers is found
to deviate the furthest from the preset trajectory, as shown in the comparative tests and
results in Figures 16–19, demonstrating the limitations of classical PID controllers in facing
the control problem under such time-varying parameters and multivariate disturbance
conditions. Figures 20 and 21 show the evolutionary effect of the tracking error on position
and attitude; it is clear that the adaptive neural network sliding mode controller (NNASMC)
achieves the best steady state for the control error and that its convergence speed is superior
to that of the ASMC. The upper limit of the final settling time of the NNASMC is 4.97 s,
which is consistent with the actual stabilizing effect of the control error. The results show
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that the controller designed in this study achieves the fastest convergence speed. The MAE
data in Table 1 show that the NNASMC obtained the smallest MAE parameter in each
degree of freedom, which means that the designed controller has the best performance
in terms of stabilizing the control error to zero. However, the NNASMC is rather less
effective than the ASMC in terms of RMSE data performance for the roll and pitch channels.
The reason for this phenomenon is that the underdriven peculiarity of the coaxial HAUV
causes the pitch and roll angles to originate from the virtual control signals of the position
loop, and the fluctuating process of the RBFNN approximator’s approximation in the
initial stage leads to more fluctuations in the desired attitude angle, which further causes
fluctuations in the control error. As the introduction of the RBFNN approximator relaxes
the requirement of accurate data for the model parameters of the complex hydrodynamic
process, and the fluctuation phenomenon disappears rapidly as the approximator rapidly
approximates the unknown nonlinear function in the model, the above phenomenon is
within the acceptable range.
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Table 1. Performance in comparative simulations.

(ITEM TYPE) xe ye ze ϕe θe ψe TOTAL

MAE (NNAFTSMC) 0.0020 0.0030 0.0024 0.0108 0.0048 0.0026 0.0256
MAE (ASMC) 0.0034 0.0092 0.0057 0.0174 0.0159 0.0200 0.0717
MAE (PID) 0.0110 0.0168 0.0376 0.0345 0.0394 0.0288 0.1680
RMSE (NNAFTSMC) 0.0107 0.0157 0.008 0.0650 0.0415 0.0269 0.0295
RMSE (ASMC) 0.0102 0.0210 0.0149 0.0307 0.0274 0.0613 0.0392
RMSE (PID) 0.0157 0.0242 0.0467 0.0699 0.0984 0.0609 0.0776

Figure 22 shows the evolution of the switching term adaptive law parameter over time
for the NNASMC and ASMC. It can be seen that the switching term adaptive parameter
first increases and then converges to a bounded constant, but the adaptive parameter of the
NNASMC is larger than that of the ASMC. The main reason for this phenomenon is that the
RBFNN approximator does not achieve an accurate approximation of the model‘s nonlinear
function in the initial stage, which results in the robustness of the whole system being
borne by the switching term; however, after the approximator achieves effective online
identification, the switching term parameter of the NNASMC decays fast and is smaller
than the switching term adaptive law parameter of the ASMC, which indeed attenuates
the jitter effect effectively. The evolution results of the different controllers in solving the
control inputs are shown in Figure 23. The evolution trends of the control inputs solved
using the different controllers are similar; however, the designed NNASMC achieves the
most accurate control signal in terms of the control effect.

5. Conclusions and Outlook

In this study, the discrete dynamics model of a coaxial HAUV is combined with a
relatively accurate continuous dynamic model based on smooth switching coefficients. The
resulting model unifies the description of three states, namely, air flight, underwater motion,
and trans-media, and the smooth and continuous switching coefficients prevent abrupt
model changes. In order to solve the coaxial HAUV trans-media motion control problem
with complex marine environment disturbances and model uncertainties, an adaptive fixed-
time sliding mode controller based on the RBFNN approximation strategy is designed.
The system convergence time of this controller does not depend on the initial state, and it
can achieve error convergence in a fixed time, thus realizing the fast trans-domain high-
precision motion of the coaxial HAUV. The nonlinear function is approximated online using
the RBFNN; thus, the priori upper bound of the total uncertainty is not considered. At
the same time, the estimation error of the neural network is eliminated by combining the
adaptive law, which further enhances the robustness of the control system. The influence
of sensor noise on the controller effect is tested in simulations. The simulation results
show that the designed controller can realize cross-domain tracking error control under the
influence of noise. However, noise decreases the identification ability of the RBFNN and
causes the control error to fluctuate significantly. Through a quantitative analysis of the
MAE and RMSE, the effectiveness and superiority of the proposed scheme in dealing with
the cross-domain control problem of coaxial HAUVs are verified in comparison with the
traditional PID control algorithm and ASMC algorithm.

Although the above work is limited to theoretical modeling analyses and controller
design at this stage and the testing of the designed controllers on actual prototypes has not
yet been carried out, it serves as a reference for the development of HAUVs and the design
of the same type of HAUV controllers. In future work, the design and manufacture of a
prototype will be completed as soon as possible, and experimental methods will be used
to test the reliability of the controller in real application scenarios. In order to achieve the
safety of cross-domain flight in complex sea states, more complex input constraints will be
considered, such as efficiency loss, input saturation, and status filtering. In addition, the
control input quantization mechanism is also an interesting research topic.
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Appendix A

Table A1. Model system parameters applied in simulation.

Parameter Symbol Numerical Value Parameter Symbol Numerical Value

m/kg 7.4 Xu|u|, Xu|u|a/N · (m/s)−2 −8.82, −0.001

Ix/kg · m2 0.232 Yv|v|, Yv|v|a/N · (m/s)−2 −8.82, −0.001

Iy/kg · m2 0.232 Zw|w|, Zw|w|a/N · (m/s)−2 −4.73, −0.0005

Iz/kg · m2 0.342 Kp|p|, Kp|p|a/N · (m/s)−2 −0.62, −0.0006

X .
u/kg −2.24 Mq|q|, Mq|q|a/N · (m/s)−2 −0.62, −0.0006

Y .
v/kg −2.24 Nr|r|, Nr|r|a/N · (m/s)−2 −0.32, −0.0003

Z .
w/kg −1.24 R, H/m 0.06, 0.5

K .
p/kg · m2 −0.083 rB/m (0, 0, 0.05)

M .
q/kg · m2 −0.083 ρw/kg · m−3 1025

N .
r/kg · m2 −0.051

Table A2. Wind, wave, and current parameters applied in the simulation.

Parameter Numerical Value Parameter Numerical Value

Ax1/m 0.001 Ay1/m 0.07
Ax2/m 1 Ay1/m 0.04

ωx1/rad · s−1 1 φx1/rad 0
ωx2/rad · s−1 10 φx2/rad 0
ωy1/rad · s−1 2 φy1/rad 0
ωy2/rad · s−1 7 φy2/rad 0

Cdw/N · (m/s)−2 0.1 Cm 0.8
Cdc/N · (m/s)−2 0.03 CD 0.8

vw/m · s−1 (0.1, 0.1, 0) vc/m · s−1 (−0.5, −0.5, 0)
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