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Abstract: The examination of fungal secretomes has garnered attention for its potential to unveil the
repertoire of secreted proteins, notably CAZymes (Carbohydrate-Active enzymes), across various
microorganisms. This study presents findings on categorizing the secretome profile of CAZymes by
their function and family, derived from the filamentous fungus Trichoderma longibrachiatum LMBC
172. The cultivation was performed through submerged fermentation with three distinct carbon
sources: sugarcane bagasse, tamarind seeds, and a control simulating hemicellulose containing 0.5%
beechwood xylan plus 0.5% oat spelt xylan. The secretome analysis revealed 206 distinct CAZymes.
Each carbon source showed particularities and differences. Of these, 89 proteins were produced
simultaneously with all the carbon sources; specifically, 41 proteins using only the hemicellulose
simulation, 29 proteins when sugarcane bagasse was used as a carbon source, and only 3 when
tamarind seeds were used. However, in this last condition, there was a high intensity of xyloglucanase
GH74 production, thus reaffirming the richness of xyloglucan in the constitution of these seeds. When
evaluating the proteins found in two conditions, 18 proteins were shown between the simulation
of hemicellulose and sugarcane bagasse, 11 proteins between the simulation of hemicellulose and
tamarind seeds, and 15 proteins between sugarcane bagasse and tamarind seeds. Among the proteins
found, there are representatives of different families such as glycosyl hydrolases (GHs) that cleave
cellulose, hemicellulose, pectin, or other components; carbohydrate esterases (CEs); polysaccharide
lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary activity enzymes (AAs). These
results demonstrate the importance of analyzing CAZymes secreted by microorganisms under
different culture conditions.
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1. Introduction

The rise in agro-industrial operations has resulted in the accumulation of substantial
quantities of lignocellulosic residues sourced from diverse origins, including wood and
various agricultural byproducts globally [1–3]. Annually, approximately 146 billion tons of
waste are generated worldwide [4]. There has been a notable surge in economic interest
in these residues in recent years due to their renewability and cost-effectiveness, offering
substantial potential for chemical and bioenergy production, such as bioethanol [5–7].

Plant biomass is composed of intricately structured polymeric materials, including
proteins, lignin, holocellulose (a composite of cellulose fibers enveloped in hemicellulose-
pectin), ash, salts, and minerals [8,9]. The polysaccharide framework within the plant cell
wall represents one of the most intricate structures, with its lignocellulosic constitution
varying depending on its source [10,11]. These cell wall polysaccharides serve as energy
reservoirs, which, upon efficient extraction, can be utilized to produce second-generation
ethanol, particularly through the hydrolysis of sugarcane bagasse [12].

The process of converting lignocellulosic biomass into ethanol and other chemical
compounds often relies on a multienzyme system that operates synergistically [5,13,14].
It is crucial to investigate various microorganisms and comprehend how they secrete
enzymes relevant to these processes [15]. Consequently, examining the secretomes of
various fungi has garnered attention. These studies offer insights into the secreted proteins,
notably the CAZymes (Carbohydrate-Active enzymes), released by diverse microorganisms
cultivated under different conditions [16–19]. CAZymes encompass numerous enzyme
protein families, each classified based on protein sequence similarities and distinctive three-
dimensional folding structures [20]. They are classified between glycosyl hydrolases (GHs)
that cleave cellulose, hemicellulose, pectin, or other components; carbohydrate esterases
(CEs); polysaccharide lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary
activity enzymes (AAs). These analyses allow a better understanding of the ideal way to
obtain proteins of industrial interest, in addition to enabling the discovery of proteins not
yet described in the literature for the studied microorganisms [21].

One particularly intriguing microorganism is Trichoderma longibrachiatum, especially in
the context of biotechnology and biomass bioconversion. T. longibrachiatum is distributed
globally, with a predominant presence in warmer climates. Its colonies usually exhibit an
initial off-white colony, which later transitions to a shade of greyish green with age [22]. The
members of this clade have gained significant attention across different sectors due to their
remarkable capacity to excrete substantial quantities of proteins and metabolites [23,24]. The
enzymes produced by T. longibrachiatum are used in various industries, including food, bever-
ages, textiles, and paper, due to their ability to degrade complex plant polysaccharides [25,26].
Additionally, some strains of Trichoderma, including T. longibrachiatum, are used as biocontrol
agents, antagonizing plant pathogens and offering an eco-friendly alternative to chemical pes-
ticides [27,28]. The study of the CAZymes from the secretome of T. longibrachiatum provides
valuable insights into the molecular mechanisms of enzyme production and adaptation to
different carbon sources, essential for engineering more efficient strains and understanding
their ecological interactions. T. longibrachiatum can grow on a variety of substrates, including
agro-industrial residues like sugarcane bagasse and tamarind seeds, making it an ideal model
for biomass bioconversion studies and the development of sustainable biotechnological pro-
cesses [23,26,29,30]. Moreover, the use of T. longibrachiatum in the degradation of agricultural
residues not only adds value to these residues but also helps reduce the environmental impact
associated with their improper disposal.

Sugarcane (Saccharum sp.) is classified as a monocotyledonous grass [31,32], with
Brazil currently holding the title of the world’s largest sugarcane producer, primarily
concentrated in the central-southern region of the country [33]. Following Brazil, other
significant sugarcane-producing countries include India, China, Thailand, and Pakistan. In
2022, global sugarcane production reached a total of 1.92 billion tons, with Brazil producing
38% of the world total, India with 23%, and China producing 5%. These values make
it the third-most produced commodity worldwide [34]. Therefore, given that each ton
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of sugarcane results in approximately 270 kg of bagasse, the global sugarcane crop in
2022 generated more than 500 million tons of bagasse. This significant quantity highlights
the necessity of utilizing this abundant byproduct in countries with extensive sugarcane
production [35]. Characterized by a secondary cell wall, sugarcane bagasse typically
comprises approximately 32–45% cellulose, 20–32% hemicellulose, 17–32% lignin, and 1–9%
ash, along with other constituents [36–38].

On the other hand, tamarind (Tamarindus indica L.) is a tropical fruit tree indigenous
to equatorial Africa, India, and Southeast Asia, featuring both pulp and seeds encased
in a tough shell [39]. The biggest tamarind producers in the world are countries such as
India, Malaysia, Myanmar, Bangladesh, Sri Lanka, Thailand, the United Arab Emirates, and
South American countries. When processing 1 kg of fresh tamarind, it will give 55% pulp,
30–40% seed, 6% peel, and 5% fiber. The seed is the main and underutilized byproduct
of the tamarind pulp industry and contains approximately (70%) kernel and (30%) hard
brown testa [40–42]. The processing techniques, particularly the removal of pulp from
the pod or seeds from the pulp, as well as the handling and storage of the seed and pulp,
are traditionally practiced in the growing region or country. However, the most common
processing method involves completely removing the testa from the kernel. The testa is
separated from the kernels either by roasting or by soaking the seeds in water. Given that
the mineral content of the seed coat is higher than that of the cotyledon, it is expected that
their thermal properties and behaviors differ, resulting in varying degrees of expansion and
contraction. This difference aids in detaching the seed coat from the seed [42]. According
to Gonçalves et al. [43], tamarind seed composition includes approximately 1.82 ± 0.01%
ash, 33.07 ± 1.40% lignin, 33.31 ± 3.56% cellulose, and 10.45 ± 1.45% hemicellulose.
Additionally, these seeds boast a significant xyloglucan content, accounting for roughly
40% of their dry mass [44], making them a promising resource for CAZymes exploration.

Due to their composition, sugarcane bagasse and tamarind seeds have been employed
in cultivating microorganisms to generate microbial enzymes capable of breaking down
lignocellulosic biomass [2,19,24,26,45]. In this context, the present study unveils the catego-
rization of CAZymes by function and family within the secretome profile of the filamentous
fungus T. longibrachiatum LMBC 172. The fungus was cultured via submerged fermentation
with three distinct carbon sources: sugarcane bagasse, or tamarind seeds, or a control
simulating hemicellulose. The hemicellulose simulation was chosen to be used because
hemicellulose is the part of lignocellulose that needs a larger framework of enzymes for
degradation [46]. The global annual production of hemicellulose is approximately 60 billion
tons, making it the second-most abundant renewable component of lignocellulosic biomass,
after cellulose [47].

2. Material and Methods
2.1. Maintenance of the Fungus and Culture Medium

The fungi T. longibrachiatum LMBC 172 used in this work were isolated from tree trunks
in Ribeirão Preto, SP, Brazil. The identification and deposition with the GenBank accession
code OQ255882.1 were detailed by Contato et al. [45]. Microorganism maintenance involved
spore inoculation on potato dextrose agar medium (PDA) (Sigma-Aldrich, Saint Louis, MO,
USA), with subsequent transfers performed in glass tubes containing the same medium.
Incubation occurred at a temperature of 30 ◦C. Afterwards, the tubes were kept under
refrigeration for up to 30 days. In addition, they were cryopreserved at −80 ◦C to maintain
the strain for long periods of time.

2.2. Plant Material

The sugarcane bagasse originated from Pedra Agroindustrial S/A sugarcane mill
(Serrana, SP, Brazil) and comprised a blend of straw, leaves, and culms from various
sugarcane varieties (CTC-4, CTC-7, CTC-20, IAC95500, RB867515, and RB966928). To
sanitize the material, it was immersed in 92 ◦GL ethanol for 1 h, followed by rinsing with



Clean Technol. 2024, 6 997

distilled water. Subsequently, the material underwent drying in an oven at 50 ◦C for 3 days
and was then milled using a 25-mesh sieve knife mill (SL-32-SOLAB).

Tamarind (Tamarindus indica, Fabaceae) seeds were sourced from the campus of the Uni-
versity of Sao Paulo, Ribeirão Preto, SP, Brazil. The seeds underwent boiling in water for 1 h,
followed by drying in an oven at 50 ◦C for 3 days to ensure sanitary quality and prevent the
growth of other fungi. The seeds were milled using a 20-mesh sieve knife mill (SL-32-SOLAB).

2.3. Submerged Culture of T. longibrachiatum LMBC 172 for Protein Secretion Induction

The submerged culture procedure followed the methodology outlined by Contato
et al. [45]. A spore solution containing 106–107 spores/mL was prepared from the fungus.
The fungus was cultured in test tubes, suspended in sterile distilled water, and spore counts
were conducted using a microscope and a Neubauer chamber. This suspension was then
inoculated into 125 mL Erlenmeyer flasks containing 25 mL of Khanna medium (comprising
Khanna’s salt solution [20×]: NH4NO3 (2.0 g), KH2PO4 (1.3 g), MgSO4·7H2O (0.362 g),
KCl (0.098 g), ZnSO4·H2O (0.007 g), MnSO4·H2O (0.0138 g), Fe2(SO4)3·6H2O (0.0066 g),
CuSO4·5H2O (0.0062 g), with distilled water q.s. (100 mL) (5.0 mL); yeast extract (0.1 g);
carbon source (1.0 g); distilled water q.s. to 100 mL) [48]. The media were supplemented,
individually, with 1% (w/v) of two different lignocellulosic residues: sugarcane bagasse
and tamarind seeds. Additionally, a control simulating hemicellulose was performed,
individually, using a mixture containing 0.5% beechwood xylan and 0.5% oat spelt xylan
(Sigma-Aldrich, Saint Louis, MO, USA). The 1% (w/v) ratio of lignocellulosic residues and
hemicellulose simulation was chosen to evaluate the impact on CAZymes because this
concentration was usually reported in studies that successfully evaluated the secretome
profile of filamentous fungi [19,49,50]. After, the Erlenmeyer flasks were incubated at
30 ◦C under static conditions for up to 72 h, as optimal conditions for protein induction as
described by Contato et al. [45].

2.4. Sample Processing

The culture supernatant of T. longibrachiatum cultivated in the residues under sub-
merged conditions was harvested through filtration with Whatman filter paper Grade 1 in
a vacuum pump following a 72 h period. Subsequently, it was concentrated using ultrafil-
tration (10,000 MWCO, PES membrane, Vivaspin, Littleton, CO, USA), then washed twice
with 5 mL of 50 mM sodium acetate buffer at pH 5.0. The proteins were then subjected to
separation via SDS-PAGE electrophoresis [51].

2.5. Characterization of the T. longibrachiatum LMBC 172 by Liquid Chromatography–Tandem
Mass Spectrometry (LC–MS/MS)

For secretome LC–MS/MS analysis, 15–20 µg of total secretome proteins was loaded
onto an SDS-PAGE on 12% separation gel. The gel electrophoresis employed preparative
PAGE to isolate the protein secretomes from complex carbohydrate and phenolic species
present in the supernatant. Electrophoresis ceased once the bromophenol blue tracking
dye had migrated 2–3 cm into the separating gel. Subsequently, the gel was stained with
Coomassie blue, and the entire protein banding profile was excised for processing via
LC–MS/MS [52].

Isolated gel bands underwent reduction with Tris (2-carboxyethyl) phosphine, fol-
lowed by alkylation using 2-iodoacetamide, and overnight digestion with 8 µg/mL trypsin
in ammonium bicarbonate buffer. Peptides were extracted from the gel segments and
desalted using C18 pipet tips following the manufacturer’s guidelines (Agilent P/N
A57003100, Agilent Technologies, Santa Clara, CA, USA). The desalted peptides were
then dissolved in 0.1% aqueous formic acid and injected onto a 75-micron × 50 cm capillary
HPLC column packed with 2-micron C18 particles (Thermo P/N 164942, ThermoFisher
Scientific, Waltham, MA, USA) with a vented trap column setup. Peptide separation
was achieved using a 60 min gradient of formic acid/acetonitrile and ionization was per-
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formed in a Nanospray Flex ion source equipped with stainless-steel emitters linked to a
quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA).

Peptide ions were subjected to analysis using a “high-low” “top-speed” data-dependent
MS/MS strategy. Precursors were initially analyzed at high resolution in the Orbitrap sector,
followed by MS/MS selection in the quadrupole sector, fragmentation by HCD in the ion
routing multipole, and subsequent analysis of fragment ions in the ion trap sector.

Each sample underwent LC-MS/MS analysis twice, with the two RAW data files merged
into a single sample for database searching using MaxQuant (version v2.0.1.0, Max-Planck-
Institute of Biochemistry, Planegg, Germany) [53]. Spectra were searched against a database
containing 402,135 protein sequences obtained from the NCBI on 27 May 2022, using “Tricho-
derma” as the genus search term. Searches were annotated using Python version v3.11 (Python
Software Foundation, Wilmington, DE, USA) to annotate NCBI T. longibrachiatum IDs by
transferring annotations from related curated proteins at Uniprot (https://www.uniprot.org/
accessed on 18 December 2022). Sequences with a false discovery rate (FDR or q-value)
greater than 0.00 were removed from the analysis. Finally, we identified conserved CAZy do-
mains using Hidden Markov Model (HMM) profiles available on the dbCAN2 web platform
(https://bcb.unl.edu/dbCAN2/index.php accessed on 18 December 2022). Only domains
with e-values > 10−17 and coverage > 0.35 were considered.

3. Results and Discussion
Secretome Protein Composition

To elucidate the secretome of T. longibrachiatum LMBC 172, we gathered the culture
supernatants and subjected them to LC-MS/MS analysis. Protein identifications were con-
ducted by searching against a database of Trichoderma sequences obtained from the NCBI,
and subsequent annotation was performed on these identified proteins. Our analyses iden-
tified 206 distinct proteins on the sum of the three different conditions (supplemented with
sugarcane bagasse, or tamarind seeds, or the hemicellulose simulation) in the secretome of
T. longibrachiatum LMBC 172 (all non-anchored extracellular proteins), of which 159 pro-
teins were shown in the control simulating hemicellulose, 151 proteins when 1% sugarcane
bagasse was used for the culture, and 118 proteins when the residue used was 1% tamarind
seeds (Figure 1A). Although many proteins were coincident in the analyzed experimental
conditions, there were differences in the number of proteins found, principally due to the
use of beechwood xylan plus oat spelt xylan, simulating the constitution of hemicellulose,
where there is a strong presence of xylan [54] (Figure 1B). The sugarcane bagasse, as demon-
strated by Scarcella et al. [14], has a constitution of 159.44 ± 23.81 of xylose as the main
sugar, 11-fold more than glucose (14.08 ± 4.07), the second-most abundant non-cellulosic
monosaccharide. These values show the high content of hemicellulose in the structure of
sugarcane bagasse. The tamarind seed is rich in xyloglucan, one of the most abundant
hemicellulose polymers after xylan [44,55], thus justifying a smaller number of proteins
found in the secretome when this lignocellulosic residue was used.

As can be seen in Figure 1B, of these 206 proteins found, 89 are found in all culture
conditions (hemicellulose simulation, or sugarcane bagasse, or tamarind seeds). The
89 proteins found with the three different carbon sources and which biomass they degrade
are shown in Table 1. Among the proteins found, there are representatives of different
families such as glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or
other components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-
binding modules (CBMs); and auxiliary activity enzymes (AAs).

Taking into analysis only the use of the hemicellulose simulation, the major proteins
produced according to their iBAQ value (sum of all the peptide intensities divided by
the number of observable peptides of a protein) were endo-1,4-β-xylanases, xylan 1,4-β-
xylosidase, α-L-arabinofuranosidase, and α-galactosidase (Table 1). However, it was shown
that 41 proteins were produced when only this carbon source was used (Figure 1B, Table 2).
Most of these proteins are responsible for the degradation of xylan and its ramifications [56].

https://www.uniprot.org/
https://bcb.unl.edu/dbCAN2/index.php
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Figure 1. CAZymes from secretome analysis of T. longibrachiatum LMBC 172 in culture condition:
hemicellulose simulation, or sugarcane bagasse, or tamarind seeds. (A) Total CAZymes found.
(B) Venn plot correlating the CAZymes found in each culture condition.

Table 1. Comprehensive LC-MS/MS secretome analysis for 89 proteins found in cultures with
hemicellulose simulation, sugarcane bagasse, and tamarind seeds, classified according to which
substrates they degrade.

Degraded
Biomass

iBAQ (a)
Hemicellulose

Simulation

iBAQ (a)
Sugarcane

Bagasse

iBAQ (a)
Tamarind Seeds Protein IDs (b) Family

MS/MS View:
Identified
Proteins

Molecular
Weight (kDa) (c)

amido 4.13 × 1010 8.41 × 108 9.24 × 108 A0A2T3YUD7 GH15 glucoamylase 8

amido 1.78 × 1010 7.88 × 108 2.24 × 108 A0A2T3ZF22 GH15 glucoamylase 33

amido 1.62 × 108 1.18 × 107 1.29 × 107 A0A2T3YUB0 GH13 α-amylase 112

carboxylic ester 1.69 × 107 6.71 × 107 1.76 × 106 A0A6V8QQW9 CE1 carboxylic ester
hydrolase 36

cellulose 5.20 × 1010 3.98 × 109 1.50 × 1010 Q6QTF2 GH12 endoglucanase I 36

cellulose 2.32 × 1010 5.84 × 108 7.30 × 109 A0A6V8R3W7 GH6 exoglucanase 2 64

cellulose 1.48 × 1010 2.46 × 109 2.25 × 1010 A0A6V8QY83 GH7 exoglucanase 1 28

cellulose 5.55 × 109 3.75 × 107 6.87 × 107 A0A6V8R5D3 GH3 β-glucosidase A 26

cellulose 3.06 × 109 3.40 × 108 4.86 × 109 A0A142C169 GH7
1,4-β-D-glucan
cellobiohydro-

lase
33

cellulose 2.10 × 109 1.57 × 108 3.46 × 108 A0A2T3YQZ3 GH5 glycoside
hydrolase 45

cellulose 1.04 × 109 7.80 × 108 8.69 × 107 KAH8124777.1 CBM35 carbohydrate-
binding module 44

cellulose 4.81 × 108 2.78 × 108 1.20 × 109 A0A2T3ZAP7 CBM1 carbohydrate-
binding module 88

cellulose 1.69 × 108 9.14 × 106 4.78 × 107 A0A2T3ZMC2 CBM1 carbohydrate-
binding module 33

cellulose 2.96 × 107 1.90 × 108 2.20 × 108 A0A6V8R7F2 GH5 endoglucanase II 56

cellulose 2.16 × 107 4.65 × 106 7.80 × 106 A0A0W7VDH7 GH6 exoglucanase 45

cellulose 3.16 × 106 1.85 × 109 3.86 × 108 A0A6V8R5M5 GH3 β-glucosidase
celA 57

chitin 2.00 × 108 1.74 × 108 3.72 × 106 XP_024756832.1 GH18 glycoside
hydrolase 56
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Table 1. Cont.

Degraded
Biomass

iBAQ (a)
Hemicellulose

Simulation

iBAQ (a)
Sugarcane

Bagasse

iBAQ (a)
Tamarind Seeds Protein IDs (b) Family

MS/MS View:
Identified
Proteins

Molecular
Weight (kDa) (c)

chitin 7.88 × 107 1.66 × 107 3.31 × 105 A0A2T3YRL6 GH18 glycoside
hydrolase 46

chitin 6.24 × 107 5.66 × 107 6.51 × 106 A0A2K0U0B3 GH18 chitinase 26

chitin 2.28 × 106 1.78 × 108 2.20 × 106 A0A0B5AH01 GH18 chitinase 98

cutin 1.59 × 109 2.00 × 107 2.33 × 107 A0A2T3ZC81 CE5 cutinase 42

ester carboxylic 1.05 × 108 1.65 × 108 1.42 × 108 A0A6V8R506 CE1 carboxylic ester
hydrolase 55

GMC 2.17 × 107 1.33 × 108 2.46 × 107 A0A6V8R691 AA3

glucose–
methanol–

choline GMC
oxidoreductase

57

hemicellulose 2.38 × 1011 9.25 × 109 3.25 × 108 A0A6V8RCI3 GH3 xylan
1,4-β-xylosidase 32

hemicellulose 1.93 × 1011 1.27 × 1010 3.18 × 1010 A0A6V8R417 GH54 α-L-
arabinofuranosidase 85

hemicellulose 1.72 × 1011 1.88 × 109 6.96 × 109 A0A6V8R4W9 GH11 endo-1,4-β-
xylanase 34

hemicellulose 1.35 × 1011 6.71 × 108 4.40 × 108 A0A6V8QYX8 GH27 α-galactosidase 57

hemicellulose 1.27 × 1011 2.83 × 1010 6.35 × 109 A0A088MAZ4 GH11 endo-1,4-β-
xylanase 38

hemicellulose 3.10 × 1010 1.02 × 108 3.73 × 109 A0A2T3YZH0 GH11 endo-1,4-β-
xylanase 55

hemicellulose 1.27 × 1010 4.52 × 108 4.59 × 108 A0A6V8R480 GH72 1,3-β-
glucanosyltransferase 105

hemicellulose 1.03 × 1010 1.33 × 108 1.20 × 107 G9NNL4 GH12 glycoside
hydrolase 55

hemicellulose 6.63 × 109 6.27 × 108 1.97 × 108 A0A6V8QQS5 GH54 α-L-
arabinofuranosidase 88

hemicellulose 5.49 × 109 2.57 × 108 3.19 × 106 A0A6V8QVE6 GH16 endo-1,3(4)-β-
glucanase 31

hemicellulose 4.93 × 109 2.29 × 108 3.19 × 109 A0A2T3Z959 GH62 α-L-
arabinofuranosidase 66

hemicellulose 4.40 × 109 3.00 × 107 1.36 × 108 A0A6V8R688 GH72 1,3-β-
glucanosyltransferase 33

hemicellulose 2.17 × 109 4.19 × 106 5.16 × 105 G9N9X8 GH11 glycoside
hydrolase 24

hemicellulose 1.71 × 109 1.60 × 109 1.86 × 109 A0A6V8QV79 GH43
arabinoxylan

arabinofuranohy-
drolase

26

hemicellulose 1.28 × 109 7.97 × 107 1.97 × 106 A0A6V8R523 GH2 β-mannosidase
A 88

hemicellulose 1.24 × 109 2.84 × 107 8.89 × 107 A0A2P4ZDF2 GH27 α-galactosidase 67

hemicellulose 1.09 × 109 4.23 × 108 8.82 × 106 A0A6V8R4Z6 GH30 xylanase 52

hemicellulose 9.44 × 108 6.64 × 108 4.68 × 108 A0A6V8QNB0 GH16 glycoside
hydrolase 50

hemicellulose 8.42 × 108 4.51 × 108 5.59 × 109 UKZ86534.1 GH74 xyloglucanase 78

hemicellulose 8.41 × 108 2.62 × 107 3.68 × 107 A0A6V8QP12 CE5 acetylxylan
esterase 2 53

hemicellulose 7.38 × 108 2.48 × 108 1.65 × 108 A0A6V8QM46 GH17
glucan endo-1,3-
β-glucosidase

eglC
88

hemicellulose 7.33 × 108 1.03 × 107 4.09 × 107 G9NGV2 GH27 α-galactosidase 60

hemicellulose 3.32 × 108 3.81 × 108 1.23 × 107 A0A2T3ZAU0 GH30 glycoside
hydrolase 56

hemicellulose 2.74 × 108 1.65 × 108 1.44 × 106 A0A6V8R899 GH64 glucan endo-1,3-
β-glucosidase 56

hemicellulose 2.48 × 108 2.79 × 108 9.46 × 106 A0A6V8QQA1 GH72 1,3-β-
glucanosyltransferase 9

hemicellulose 1.38 × 108 5.95 × 106 3.06 × 106 A0A2N1L3Y3 CE5 acetylxylan
esterase 46
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Table 1. Cont.

Degraded
Biomass

iBAQ (a)
Hemicellulose

Simulation

iBAQ (a)
Sugarcane

Bagasse

iBAQ (a)
Tamarind Seeds Protein IDs (b) Family

MS/MS View:
Identified
Proteins

Molecular
Weight (kDa) (c)

hemicellulose 1.32 × 108 5.86 × 106 3.99 × 106 A0A0F9XN15 GH27 α-galactosidase 57

hemicellulose 1.11 × 108 3.25 × 105 3.10 × 107 A0A6V8R5J5 GH55 glucan 1,3-β-
glucosidase 57

hemicellulose 1.07 × 108 5.67 × 106 5.74 × 106 A0A6V8RC59 GH27 α-galactosidase 36

hemicellulose 7.91 × 107 1.10 × 107 4.34 × 107 A0A2T4B0H5 GH54 α-L-
arabinofuranosidase 102

hemicellulose 7.85 × 107 3.88 × 106 1.98 × 105 Q6QNU8 GH11 endo-1,4-β-
xylanase 88

hemicellulose 6.42 × 107 5.76 × 108 1.14 × 108 A0A6V8QJT1 GH55 glucan 1,3-β-
glucosidase 79

hemicellulose 5.74 × 107 2.15 × 107 3.48 × 106 A0A6V8QPF0 GH2 β-mannosidase
A 125

hemicellulose 5.66 × 107 6.36 × 107 4.29 × 106 A0A2T3YZN9 GH78 glycoside
hydrolase 40

hemicellulose 4.26 × 107 2.35 × 107 1.44 × 107 A0A2T3YYK7 GH71 glycoside
hydrolase 27

hemicellulose 2.47 × 107 1.06 × 1010 5.93 × 108 A0A6V8QIP8 GH10 endo-1,4-β-
xylanase C 49

hemicellulose 2.12 × 107 3.21 × 107 1.65 × 106 A0A2T4C2Y0 GH72 1,3-β-
glucanosyltransferase 51

hemicellulose 1.92 × 107 1.59 × 106 7.44 × 105 A0A2T4AVU1 GH17 glycoside
hydrolase 88

hemicellulose 1.85 × 107 5.82 × 108 1.93 × 107 A0A2T3YYG3 GH30 glycoside
hydrolase 63

hemicellulose 1.13 × 107 8.23 × 106 3.68 × 104 G0RWY3 GH18 endo-1,4-β-
xylanase 77

hemicellulose 8.92 × 106 6.19 × 108 3.87 × 107 A0A6V8R5H6 GH35 β-galactosidase 60

hemicellulose 8.60 × 106 1.64 × 106 1.88 × 105 A0A2T3Z3S2 GH27 α-galactosidase 87

hemicellulose 3.74 × 106 2.33 × 108 2.02 × 106 A0A2T3ZG69 GH31 glycoside
hydrolase 89

hemicellulose 3.40 × 106 6.90 × 109 2.42 × 108 XP_024755433.1 GH10 glycoside
hydrolase 57

hemicellulose 1.49 × 106 3.32 × 107 2.49 × 107 A0A6V8R3D3 GH3 xylan
1,4-β-xylosidase 65

hemicellulose 1.39 × 106 1.87 × 108 2.57 × 106 A0A6V8QXM8 GH67 α-glucuronidase 55

hemicellulose 6.91 × 105 1.42 × 107 4.53 × 106 A0A6V8QX14 GH76 mannan endo-1,6-
α-mannosidase 44

hemicellulose 6.50 × 105 8.42 × 106 2.19 × 105 A0A2T3YZP2 GH79 glycoside
hydrolase 97

lignin 1.69 × 109 1.44 × 109 1.83 × 106 A0A6V8QZK1 AA3 laccase 70

oxygen 1.25 × 108 4.76 × 107 8.71 × 105 A0A6V8R4F9 AA3 FAD-dependent
monooxygenase 54

pectin 1.26 × 1011 6.11 × 109 1.58 × 109 A0A2T3YXQ4 CE5 carbohydrate
esterase 56

pectin 3.20 × 1010 3.13 × 107 1.34 × 109 A0A6V8R602 GH28 endopolygalacturonase 56

pectin 1.52 × 1010 1.12 × 109 2.57 × 108 XP_024766320.1 CE5 carbohydrate
esterase 49

pectin 5.45 × 109 4.68 × 108 6.53 × 108 A0A2K0T4R7 CE5 cutinase 48

pectin 3.53 × 109 1.35 × 106 1.05 × 107 A0A6V8QQH8 PL7 alginate lyase 88

pectin 2.31 × 109 1.04 × 107 3.93 × 107 A0A6V8R557 PL1 polysaccharide
lyase 42

pectin 1.53 × 109 4.76 × 107 5.34 × 108 A0A2T3YYD8 CE8 pectinesterase 36

pectin 5.65 × 108 4.01 × 108 4.44 × 107 A0A2T3YTH0 GH28 glycoside
hydrolase 65

pectin 2.87 × 108 4.01 × 105 1.85 × 108 A0A2T3YUA1 GH28 glycoside
hydrolase 34

pectin 1.79 × 108 1.61 × 107 7.61 × 106 A0A2T3ZG56 GH28 glycoside
hydrolase 56
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Table 1. Cont.

Degraded
Biomass

iBAQ (a)
Hemicellulose

Simulation

iBAQ (a)
Sugarcane

Bagasse

iBAQ (a)
Tamarind Seeds Protein IDs (b) Family

MS/MS View:
Identified
Proteins

Molecular
Weight (kDa) (c)

pectin 1.13 × 108 3.68 × 107 1.33 × 108 A0A395NND2 GH28 glycoside
hydrolase 50

pectin 8.22 × 107 6.60 × 107 1.40 × 107 A0A2T3ZCA4 CE16 carbohydrate
esterase 26

pectin 1.94 × 107 3.74 × 105 1.17 × 105 A0A2T3YZM0 GH18 glycoside
hydrolase 39

pectin 2.24 × 106 1.43 × 106 9.20 × 107 A0A6V8RBF6 PL1 pectate lyase C 68

pectin 1.61 × 105 5.72 × 106 5.28 × 106 A0A2T3YUJ2 GH28 glycoside
hydrolase 71

phosphate 3.60 × 108 6.77 × 107 6.38 × 105 A0A6V8QHF9 CBM21 acid phosphatase 44

(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides
of a protein. (b) Accession number with protein information and family information were obtained from
UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.

Table 2. Comprehensive LC-MS/MS secretome analysis for 41 proteins found only in the hemicellu-
lose simulation conditions classified according to which biomass they degrade.

Degraded Biomass
iBAQ (a)

Hemicellulose
Simulation

Protein IDs
(b) Family MS/MS View:

Identified Proteins
Molecular Weight

(kDa) (c)

amido 6.46 × 107 A0A2T4B8C2 CE50 amidase 49

cellulose 1.05 × 108 A0A2T3Z508 CBM1 carbohydrate-
binding module 28

cellulose 4.09 × 107 G9P6M2 CE5 carbohydrate esterase 53

cellulose 3.37 × 107 A0A2K0SW07 CBM1 carbohydrate-
binding module 78

cellulose 2.07 × 107 A0A2T3YUC4 GH3 β-glucosidase 55

cellulose 1.41 × 107 A0A2T3YX19 CBM1 carbohydrate-
binding module 52

cellulose 1.37 × 107 A0A2T4BD17 CBM1 carbohydrate-
binding module 42

cellulose 1.09 × 107 A0A2T3Z5Y5 CBM18 carbohydrate-
binding module 55

cellulose 9.31 × 106 A0A6V8R0S9 AA9 lytic polysaccharide
monooxygenase 40

cellulose 3.65 × 106 G9NFW5 GH5 glycoside hydrolase 50

cellulose 2.95 × 106 A0A395NJN7 GH7 cellobiohydrolase 25

cellulose 2.28 × 106 A0A2K0TAX7 AA9 copper radical
oxidase 43

cellulose 1.96 × 106 G9N4X9 GH5 glycoside hydrolase 115

chitin 2.27 × 108 A0A6V8R2F4 GH18 chitinase 44

chitin 7.82 × 106 A0A2K0T4Z2 GH18 chitinase 49

hemicellulose 3.57 × 108 A0A6V8QJU6 CE6 acetylxylan esterase 46

hemicellulose 8.52 × 107 A0A2H2ZRV5 CE5 acetylxylan esterase 36

hemicellulose 7.56 × 107 A0A0W7VKU2 GH54 α-L-
arabinofuranosidase 102

hemicellulose 6.34 × 107 G9N626 GH27 α-galactosidase 32

hemicellulose 4.66 × 107 A0A395NVC4 GH3 xylan
1,4-β-xylosidase 58

hemicellulose 4.39 × 107 A0A6V8QTS4 GH16 glucan endo-1,3-β-
glucosidase 44
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Table 2. Cont.

Degraded Biomass
iBAQ (a)

Hemicellulose
Simulation

Protein IDs
(b) Family MS/MS View:

Identified Proteins
Molecular Weight

(kDa) (c)

hemicellulose 3.29 × 107 A0A6V8QPH8 GH76 mannan endo-1,6-α-
mannosidase 34

hemicellulose 3.03 × 107 KAH6604482.1 GH11 glycoside hydrolase 56

hemicellulose 3.01 × 107 A0A2K0TP30 GH16 glycoside hydrolase 49

hemicellulose 2.69 × 107 G9NUB8 GH62 α-L-
arabinofuranosidase 51

hemicellulose 2.44 × 107 A0A2T3YUG9 GH3 xylan
1,4-β-xylosidase 25

hemicellulose 1.82 × 107 A0A2T4ASM6 GH3 xylan
1,4-β-xylosidase 31

hemicellulose 1.54 × 107 G9MSH9 GH3 xylan
1,4-β-xylosidase 15

hemicellulose 1.40 × 107 A0A2T3YT55 GH54 α-L-
arabinofuranosidase 40

hemicellulose 1.24 × 107 A0A395NS24 GH54 α-L-
arabinofuranosidase 27

hemicellulose 9.94 × 106 A0A2T4BTG8 GH54 α-L-
arabinofuranosidase 46

hemicellulose 7.48 × 106 G9MZ65 GH54 α-L-
arabinofuranosidase 28

hemicellulose 6.24 × 106 G9MV41 GH27 α-galactosidase 69

hemicellulose 5.24 × 106 A0A6V8R9B0 GH27 α-galactosidase 42

hemicellulose 4.48 × 106 A0A2K0UKQ2 GH3 xylan
1,4-β-xylosidase 26

hemicellulose 3.55 × 106 G9P179 GH3 xylan
1,4-β-xylosidase 55

hemicellulose 2.72 × 106 A0A395NKK0 GH12 glycoside hydrolase 120

hemicellulose 1.11 × 106 G9NPZ0 GH64 glycoside hydrolase 45

pectin 1.20 × 108 G9NBD3 CE5 carbohydrate esterase 65

pectin 4.64 × 107 G9NXF6 CE5 carbohydrate esterase 52

pectin 1.60 × 106 G9NPZ7 CE5 carbohydrate esterase 49

(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides
of a protein. (b) Accession number with protein information and family information were obtained from
UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.

On the other hand, it was shown that T. longibrachiatum LMBC 172 secreted 29 unique
proteins with the use of sugarcane bagasse as the carbon source (Figure 1B, Table 3), with
emphasis on 2 glycosyl hydrolases of the GH92 family, a family recognized to belong to
α-mannosidases [57], in addition to 2 more mannan endo-1,6-α-mannosidases from the
GH76 family, in agreement with the study by Scarcella et al. [14], who showed a mannose
composition in sugarcane bagasse. Another enzyme found that agrees with the study by
Scarcella et al. [14] is the α-fucosidase A of the GH95 family, given the existence of fucose in
the constitution of this residue. Another interesting finding when using sugarcane bagasse
for the culture was the great iBAQ shown in the production of a glycosyl hydrolase from
the GH93 family: the GH93 family hydrolyses linear α-1,5-L-arabinan [58].
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Table 3. Comprehensive LC-MS/MS secretome analysis for 29 proteins enzymes found only in the
sugarcane bagasse culture classified according to which biomass they degrade.

Degraded Biomass iBAQ (a)
Sugarcane Bagasse

Protein IDs
(b) Family MS/MS View:

Identified Proteins
Molecular Weight

(kDa) (c)

amido 4.51 × 106 B5BQC3 GH13 α-amylase 57

carboxylic ester 1.37 × 108 A0A6V8QU70 CE1 carboxylic ester
hydrolase 56

carboxylic ester 3.42 × 107 A0A2T3ZJ05 CE1 carboxylic ester
hydrolase 26

carboxylic ester 1.03 × 107 A0A6V8R5C2 CE1 carboxylic ester
hydrolase 70

carboxylic ester 8.95 × 106 A0A2K0U229 CE1 carboxylic ester
hydrolase 60

cellulose 9.08 × 107 A0A6V8QSJ6 GH3 β-glucosidase F 46

cellulose 3.84 × 107 A0A395N8R8 GH2 glycoside hydrolase 25

cellulose 1.99 × 107 A0A6V8QPG8 GH31 α-glucosidase 31

cellulose 9.93 × 106 G9P291 GH3 glycoside hydrolase 25

cellulose 4.39 × 106 A0A2T4CHF3 GH3 β-glucosidase 96

cellulose 2.32 × 106 A0A2T3YT78 GH3 β-glucosidase 28

chitin 2.29 × 107 V9I0I2 GH18 chitinase 42

chitin 4.68 × 106 A0A395NWN8 GH75 endo-chitanase 88

fucose 1.33 × 107 A0A6V8QZS6 GH95 α-fucosidase A 26

hemicellulose 2.46 × 108 A0A2T3ZFW9 GH92 glycoside hydrolase 88

hemicellulose 9.26 × 107 A0A6V8QLJ6 GH76 mannan endo-1,6-α-
mannosidase 25

hemicellulose 3.34 × 107 A0A6V8QYK7 GH43 arabinoxylan arabino-
furanohydrolase 56

hemicellulose 3.21 × 107 A0A2T3ZL91 GH16 glycoside hydrolase 72

hemicellulose 1.86 × 107 A0A6V8R1B3 GH51 α-L-
arabinofuranosidase 36

hemicellulose 9.40 × 106 A0A0F9XAZ2 GH43 glycoside hydrolase 47

hemicellulose 5.84 × 106 A0A6V8R596 GH5 glucan endo-1,6-β-
glucosidase B 26

hemicellulose 4.36 × 106 A0A2T3YUM4 GH55 glycoside hydrolase 80

hemicellulose 4.34 × 106 A0A2P4ZLF1 GH6 α-galactosidase 27

hemicellulose 2.56 × 106 A0A395NYK8 GH71 glycoside hydrolase 42

hemicellulose 2.42 × 106 A0A1T3CS19 GH76 mannan endo-1,6-α-
mannosidase 58

hemicellulose 2.13 × 106 G9PBD3 GH72 1,3-β-
glucanosyltransferase 49

hemicellulose 1.74 × 106 G9NFR0 GH93 glycoside hydrolase 49

hemicellulose 1.67 × 106 A0A2T3YT16 GH17 glycoside hydrolase 23

hemicellulose 1.49 × 106 A0A2T3YQY4 GH92 glycoside hydrolase 25

(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides
of a protein. (b) Accession number with protein information and family information were obtained from
UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.

A different analysis was shown when tamarind seeds were used for the culture, since
only three proteins were produced exclusively with the use of this lignocellulosic residue
(Figure 1B), which were a carbohydrate-binding module CBM1, a glycosyl hydrolase of
the GH5 family, and curiously a laccase, an enzyme recognized for being a polyphenol
oxidase [59] (Table 4). However, an interesting verification is the fact of the great iBAQ
shown in the production of a xyloglucanase of the GH74 family when using tamarind
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seeds in comparison with the other conditions (Table 1), thus reaffirming the richness of
xyloglucan in the constitution of these seeds.

Table 4. Comprehensive LC-MS/MS secretome analysis for three proteins found only in the tamarind
seeds condition classified according to which biomass they degrade.

Degraded
Biomass

iBAQ (a)
Tamarind Seeds

Protein IDs
(b) Family MS/MS View:

Identified Proteins
Molecular Weight

(kDa) (c)

cellulose 3.03 × 108 G9PBZ8 GH5 glycoside
hydrolase 88

cellulose 3.01 × 106 A0A2T3YZD8 CBM1 carbohydrate-
binding module 34

lignin 1.07 × 108 A0A2T3YR43 AA3 laccase 45

(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides
of a protein. (b) Accession number with protein information and family information were obtained from
UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.

Other important data to be analyzed are the proteins found in only two of the three
conditions tested and the reasons for this. When using the simulation of hemicellulose
and sugarcane bagasse for the culture, 18 proteins in common are shown, which are not
found when the culture was made with tamarind seeds (Figure 1B). Among the most in-
teresting are a lysozyme of the GH25 family, which promotes the hydrolysis of the β-1,4
glycosidic bonds between residues of N-acetylmuramic acid (Mur2Ac) and N-acetyl-D-
glucosamine (GlcNAc) in a peptidoglycan [60]; and a β-glucuronidase of the GH79 family
(Table S1—Supplementary Material). However, the great majority of these 18 proteins are
enzymes that cleave xylan, a polysaccharide seen in smaller amounts in tamarind seeds.

The correlation of the CAZymes shown in the secretome of T. longibrachiatum LMBC 172
when cultivated with the hemicellulose simulation or with tamarind seeds was performed,
and it was seen that 11 proteins are found (Figure 1B); specifically, α-L-arabinofuranosidases
belonging to the GH54 family were investigated. These enzymes are responsible for hydrolyz-
ing terminal α-1,5-glycosidic linkages to arabinofuranosides in arabinan, as well as α-1,2 and
α-1,3-linkages to arabinofuranosides of arabinan, arabinoxylan, and arabinogalactan. They
operate synergistically with other hemicellulolytic enzymes, effectively removing L-arabinose
side chains that might otherwise impede the activity of backbone-degrading enzymes [61].
Other proteins found are the glycosyl hydrolases of the GH7 family that cleave β-1,4 glycosidic
bonds in cellulose/β-1,4-glucans [62] (Table S2—Supplementary Material). It is agreement
the presence, simultaneous between these conditions (hemicellulose simulation and tamarind
seeds), of enzymes that cleave cellulose existing in the medium.

Analyzing the CAZymes shown simultaneously among the cultures performed with lig-
nocellulosic residues, sugarcane bagasse, or tamarind seeds, 15 proteins are found in common
(Figure 1B), especially a feruloyl esterase C, a mannosyl-oligosaccharide α-1,2-mannosidase of
the GH47 family, an AA9 lytic polysaccharide monooxygenase, and a glycosyl hydrolase from
the GH39 family, recognized to belong toβ-xylosidase [63] (Table S3—Supplementary Material).
However, the great majority are CAZymes from the GH3 family, which currently groups to-
gether exo-acting β-D-glucosidases, α-L-arabinofuranosidases, and β-D-xylopyranosidases [64],
enzymes known to be hemicelluloses.

The secreted enzymes of T. longibrachiatum differ when using sugarcane bagasse, or
tamarind seeds, or hemicellulose simulation due to the distinct composition of the polysac-
charides present in these carbon sources. Sugarcane bagasse primarily consists of cellulose,
hemicellulose, and lignin, with cellulose being the most abundant polysaccharide [36–38].
As a result, the secretome of T. longibrachiatum grown on sugarcane bagasse is rich in cel-
lulases, such as GH3, GH5, GH6, and GH7, which are crucial for breaking down cellulose
into glucose monomers (Tables 1 and 3). Additionally, the presence of hemicellulose and
lignin in sugarcane bagasse stimulates the production of hemicellulases (e.g., xylanases,
GH10) and lignin-degrading auxiliary activity enzymes (AAs) like AA3 and AA9 (Table 1
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and Table S3—Supplementary Material), facilitating the comprehensive degradation of this
complex biomass.

In contrast, tamarind seeds contain high levels of xyloglucans, which are polysaccharides
composed of a cellulose backbone with xylose, galactose, and fucose side chains [43,44]. The
unique structure of xyloglucans in tamarind seeds necessitates the production of specific
enzymes, such as xyloglucanases (GH74), to effectively hydrolyze these complex sugars [19].
Consequently, the secretome of T. longibrachiatum cultured with tamarind seeds is particularly
enriched in enzymes that target xyloglucans (Table 1), reflecting the adaptation of the fungus
to the predominant polysaccharides in this carbon source.

Hemicellulose simulation, which likely includes a mixture of various hemicellulosic
sugars such as xylans, mannans, and arabinogalactans, prompts the secretion of a di-
verse array of hemicellulases tailored to these components. Enzymes such as xylanases
(GH11), mannosidases (GH76), and arabinofuranosidases (GH54) are produced to de-
grade the heterogeneous polysaccharide structure of hemicellulose into fermentable sugars
(Tables 1 and 2; and Tables S1 and S2—Supplementary Material) [46,47].

The differences in secreted enzymes when using sugarcane bagasse, or tamarind seeds,
or hemicellulose are thus directly influenced by the specific polysaccharide compositions
of these substrates. The fungus adapts its enzymatic machinery to efficiently break down
the available sugars, producing a tailored set of CAZymes that correspond to the structural
complexity and specificities of the given carbon source. This adaptive enzyme production
ensures the optimal utilization of the provided biomass, demonstrating the metabolic
versatility of T. longibrachiatum.

These results demonstrate the importance of analysis studies of CAZymes secreted
by microorganisms in different culture conditions, since their abundance in relation to
protein intensity can present different results [65]. In addition, they agree with previous
works published by our group, such as that of Contato et al. [45], which provides, under
the same culture conditions, the catalytic activity of the enzymes found in the T. longi-
brachiatum LMBC 172 secretome shown in this study. The research identified a total of
206 distinct CAZymes in the secretome of T. longibrachiatum LMBC 172, with 89 proteins
consistently produced across all three conditions (sugarcane bagasse, or tamarind seeds, or
hemicellulose simulation). Notably, specific proteins were uniquely produced depending
on the carbon source, including 41 proteins for hemicellulose simulation, 29 for sugarcane
bagasse, and 3 for tamarind seeds. Tamarind seeds, specifically, induced a high production
of xyloglucanase GH74, reflecting their high xyloglucan content [44].

The identified CAZymes belong to various families, such as glycosyl hydrolases (GHs),
carbohydrate esterases (CEs), polysaccharide lyases (PLs), carbohydrate-binding modules
(CBMs), and auxiliary activity enzymes (AAs). The study underscores the adaptive mecha-
nisms of T. longibrachiatum in secreting differential enzymes based on the carbon source,
which is crucial for the degradation of specific components of lignocellulosic biomass.
This differential enzyme secretion highlights the fungus’s ability to utilize diverse carbon
sources effectively [23,24,26,29,66,67].

From a biotechnological perspective, the detailed secretome analysis of T. longibrachia-
tum can drive the development of efficient enzyme cocktails for biomass conversion pro-
cesses, thereby enhancing the production of biofuels and biochemicals [24,68,69]. The
specific enzymes identified in this study hold potential for further engineering or opti-
mization for various industrial applications, including the food, beverage, textile, and
paper industries [25,68,70,71]. Additionally, utilizing agricultural residues like sugarcane
bagasse and tamarind seeds as carbon sources for enzyme production promotes sustainable
biomass utilization, reducing environmental waste and supporting circular bioeconomy
initiatives [14,26,45,72]. The ability of T. longibrachiatum to produce different enzymes
tailored to specific substrates suggests potential for customized enzyme production to meet
specific industrial needs.

Environmentally, this study supports efforts to mitigate the impact of waste disposal by
leveraging agro-industrial residues, thus promoting the efficient use of renewable resources.
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The findings advocate for eco-friendly alternatives to traditional chemical processing
methods, reducing reliance on non-renewable resources and minimizing environmental
pollution. Furthermore, this research advances the understanding of molecular mechanisms
behind enzyme production and secretion in fungi, contributing significantly to the field of
fungal biotechnology. Insights gained from this study can inform future research on other
fungal species and their potential applications in various biotechnological processes.

In summary, this study provides a comprehensive analysis of the CAZyme secretome
of T. longibrachiatum under different conditions, highlighting significant biotechnological
advancements and sustainable industrial applications. The research emphasizes the poten-
tial for developing efficient and tailored enzyme solutions to meet the growing demand for
sustainable biomass conversion and industrial bioprocessing.

4. Conclusions

The analysis of the secretome of T. longibrachiatum LMBC 172 cultured under submerged
fermentation in two different lignocellulosic residues, sugarcane bagasse or tamarind seeds, in
addition to a hemicellulose simulation as the control, revealed a total of 206 CAZymes. Each
carbon source showed particularities and differences. Of these, 89 proteins were produced
simultaneously with all the carbon sources, 41 proteins using only the hemicellulose simu-
lation, 29 proteins when sugarcane bagasse was used as a carbon source, and only 3 when
tamarind seeds were used. Among the proteins found, there are representatives of different
families such as glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or other
components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-binding
modules (CBMs); and auxiliary activity enzymes (AAs). These results demonstrate the im-
portance of analysis studies of CAZymes secreted by microorganisms in different culture
conditions, since their abundance in relation to protein intensity can present different results.
However, it has limitations that need addressing. The secretome analysis, though detailed,
was based on a limited number of carbon sources, and expanding the range of substrates could
provide a broader understanding of the enzyme production capabilities of T. longibrachiatum.
Future research should explore the genetic and metabolic pathways involved in enzyme
regulation and secretion, as well as investigate the synergistic effects of mixed carbon sources
on enzyme profiles.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cleantechnol6030050/s1, Table S1: Comprehensive LC-
MS/MS secretome analysis for 18 proteins found using the simulation of hemicellulose and sugarcane
bagasse classified according to which biomass they degrade; Table S2: Comprehensive LC-MS/MS
secretome analysis for 11 proteins found using the simulation of hemicellulose and tamarind seeds
classified according to which biomass they degrade; Table S3: Comprehensive LC-MS/MS secretome
analysis for 15 proteins found using sugarcane bagasse and tamarind seeds classified according to
which biomass they degrade.
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