A Multiple Scattering-Based Technique for Isotopic Identification in Cosmic Rays
<p>On the left, a graphical scheme of the RICH design devised for this work is shown. The dimensions of the components are not to scale for display purposes. On the right, visualization of the RICH geometry implemented in the GEANT4 simulation, with a simulated D event of generated energy of 50 GeV/nucleon. In the visualization, the hits from Cherenkov photons produced in the aerogel radiator (yellow circle) by the incoming particles are visible in red on the SiPM plane (yellow semitransparent square). The three colored arrows indicate the reference frame used for the visualization, with the labels representing the dimension scale.</p> "> Figure 2
<p>Performance of the proposed RICH design: reconstructed <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>k</mi> </msub> <mo>/</mo> <mi>n</mi> </mrow> </semantics></math> for four monochromatic D beams of 16, 32, 52, and 80 GeV/nucleon. Measured resolution <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <msub> <mi>E</mi> <mi>k</mi> </msub> </msub> <mo>/</mo> <msub> <mi>E</mi> <mi>k</mi> </msub> </mrow> </semantics></math> is also quoted close to each distribution.</p> "> Figure 3
<p>In this figure, a schematic of the working principle of the MSIS is shown. Three subsequent PPT modules are depicted. In red, the scattered track is shown with the hits on each silicon module (gray). The lead layers are drawn in orange. The three depicted modules allow for two independent displacement measurements. In a realistic detector, more modules would be present. To exploit the scattering induced by the last lead target, an extra silicon layer is needed.</p> "> Figure 4
<p>Graphical view of the GEANT4 simulation of the MSIS, with a simulated D event of generated energy 50 GeV/nucleon. Yellow volumes represent the tracking planes, while red volumes represent Pb targets. The blue track represents the trajectory of the particle and the red circles are hits on the detector materials. The three colored arrows indicate the reference frame used for the visualization, with the labels representing the dimension scale.</p> "> Figure 5
<p>The blue line shows the distribution of calculated displacement between the interaction point of the primary particle on a given tracking layer and the extrapolated position of the primary trajectory, reconstructed with the previous PPT module. The black line shows the distribution of calculated displacement between the interaction points of the secondary electrons on the same tracking layer and the extrapolation of the primary trajectory measured in the previous PPT module.</p> "> Figure 6
<p>Distributions of average displacements measured in four simulated beams of D (blue) and p (red) in different <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>k</mi> </msub> <mo>/</mo> <mi>A</mi> </mrow> </semantics></math> ranges by the MSIS. (<b>Top left</b>): 16–17 GeV/nucleon, (<b>top right</b>): 30–34 GeV/nucleon, (<b>bottom left</b>): 49–53 GeV/nucleon, (<b>bottom right</b>): 74–84 GeV/nucleon.</p> "> Figure 7
<p>(<b>Top left</b>): performance of the MS displacement discrimination in terms of background rejection (1 − <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mi>B</mi> </msub> </semantics></math>) of p as a function of efficiency on D signal. (<b>Top right</b>): performance in terms of rejection power of p background (<math display="inline"><semantics> <msub> <mi>ϵ</mi> <mi>S</mi> </msub> </semantics></math>/<math display="inline"><semantics> <msub> <mi>ϵ</mi> <mi>B</mi> </msub> </semantics></math>) as a function of efficiency on D signal. (<b>Bottom</b>): expected signal/noise ratio (<math display="inline"><semantics> <mrow> <mi>D</mi> <mo>/</mo> <msqrt> <mi>p</mi> </msqrt> </mrow> </semantics></math>) for an injected D/p ratio of 0.025 as a function of efficiency on D, assuming to have statistical error on D <math display="inline"><semantics> <mrow> <mo>≤</mo> <mn>1</mn> </mrow> </semantics></math>% (D counts ≥ 10,000).</p> "> Figure 8
<p>A GEANT4 simulation for a detector prototype. A deuterium nucleus is shot and traverses the entire the detector apparatus. In the figure, the blue line represents the trajectory of the primary particle, and the red dots are the energy deposits in the sensitive detectors. The three colored arrows indicate the reference frame used for the visualization, with the labels representing the dimension scale.</p> ">
Abstract
:1. Introduction
2. Measurement of the Energy per Nucleon with a RICH Detector
3. Using Multiple Scattering for Isotopic Distinction in CRs
A Proposal for a Multiple Scattering-Based Isotope Separator
4. Simulation of the MSIS Design
4.1. Effect of Interactions
4.2. Reconstruction and Performance
- Starting from the position of two hits measured in the tracking planes of the first PPT module, a linear trajectory is calculated.
- The trajectory is extrapolated to the position of the first tracking plane of the next PPT module.
- The distance between the extrapolation position and the closest measured hit in the first plane of the second PPT module is taken as displacement measurement (if no hit is found within a 1 mm radius from the extrapolation position, the event is discarded).
- The measurement of displacement induced by the second PPT module is then performed in the same way using the third one and so on, up to the end of the detector. In this way, eight single measurements are obtained.
- To further improve the precision of the average displacement measurement, displacements calculated using all the couples of subsequent PPT planes are added in the average process. Such measurements are multiplied by a factor of to account for the double target thickness traversed, according to Equation (3). In this way, seven additional displacement measurements are obtained, considering all the subsequent PPT pairs.
5. Concept of a Prototype for Isotope Measurements in Flight
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bell, A.R. The acceleration of cosmic rays in shock fronts—I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef]
- Longair, M.S. High Energy Astrophysics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Castellina, A.; Donato, F. Diffusion coefficient and acceleration spectrum from direct measurements of charged cosmic ray nuclei. Astropart. Phys. 2005, 24, 146–159. [Google Scholar] [CrossRef]
- Ahlen, S.P.; Greene, N.R.; Loomba, D.; Mitchell, J.W.; Bower, C.R.; Heinz, R.M.; Mufson, S.L.; Musser, J.; Pitts, J.J.; Spiczak, G.M.; et al. Measurement of the Isotopic Composition of Cosmic-Ray Helium, Lithium, Beryllium, and Boron up to 1700 MeV per Atomic Mass Unit. Astrophys. J. 2000, 534, 757. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2017, 119, 251101. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018, 120, 021101. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; et al. Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer. Phys. Rev. Lett. 2019, 123, 181102. [Google Scholar] [CrossRef] [PubMed]
- Coste, B.; Derome, L.; Maurin, D.; Putze, A. Constraining Galactic cosmic-ray parameters with Z ≤ 2 nuclei. A&A 2012, 539, A88. [Google Scholar] [CrossRef]
- Feng, J.; Tomassetti, N.; Oliva, A. Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons. Phys. Rev. D 2016, 94, 123007. [Google Scholar] [CrossRef]
- Weinrich, N.; Boudaud, M.; Derome, L.; Génolini, Y.; Lavalle, J.; Maurin, D.; Salati, P.; Serpico, P.; Weymann-Despres, G. Galactic halo size in the light of recent AMS-02 data. A&A 2020, 639, A74. [Google Scholar] [CrossRef]
- Boschini, M.J.; Torre, S.D.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; Vacca, G.L.; Masi, N.; Moskalenko, I.V.; Pensotti, S.; Porter, T.A.; et al. Inference of the Local Interstellar Spectra of Cosmic-Ray Nuclei Z ≤ 28 with the GalProp–HelMod Framework. Astrophys. J. Suppl. Ser. 2020, 250, 27. [Google Scholar] [CrossRef]
- Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; Marzo, C.N.D.; et al. High-Energy Deuteron Measurement with the CAPRICE98 Experiment. Astrophys. J. 2004, 615, 259. [Google Scholar] [CrossRef]
- Turundaevskiy, A.; Podorozhnyi, D. High energy deuterons in cosmic rays registered by the SOKOL satellite experiment. Adv. Space Res. 2017, 59, 496–501. [Google Scholar] [CrossRef]
- Maurin, D.; Ahlers, M.; Dembinski, H.; Haungs, A.; Mangeard, P.S.; Melot, F.; Mertsch, P.; Wochele, D.; Wochele, J. A cosmic-ray database update: CRDB v4.1. Eur. Phys. J. C 2023, 83. [Google Scholar] [CrossRef]
- Budrikis, Z. A decade of AMS-02. Nat. Rev. Phys. 2021, 3, 308. [Google Scholar] [CrossRef]
- Wang, P.; Beck, A.; Korner, W.; Scheller, H.; Fricke, J. Density and refractive index of silica aerogels after low- and high-temperature supercritical drying and thermal treatment. J. Phys. Appl. Phys. 1994, 27, 414. [Google Scholar] [CrossRef]
- PEREIRA, R. The RICH detector of the AMS-02 experiment: Status and physics prospects. In Proceedings of the Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications, Como, Italy, 8–12 October 2007; World Scientific: Singapore, 2008. [Google Scholar] [CrossRef]
- Giovacchini, F. The RICH detector of the AMS-02 experiment aboard the International Space Station. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2023, 1055, 168434. [Google Scholar] [CrossRef]
- Calabrese, R.; Fiorini, M.; Luppi, E.; Minzoni, L.; Slazyk, I.; Tomassetti, L.; Bartolini, M.; Cardinale, R.; Fontanelli, F.; Petrolini, A.; et al. Performance of the LHCb RICH detectors during LHC Run 2. J. Instrum. 2022, 17, P07013. [Google Scholar] [CrossRef]
- Abbon, P.; Alekseev, M.; Angerer, H.; Apollonio, M.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Busso, L.; Chiosso, M.; et al. The COMPASS RICH-1 detector upgrade. Eur. Phys. J. Spec. Top. 2008, 162, 251–257. [Google Scholar] [CrossRef]
- Ambrosi, G.; Ambrosio, M.; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Boiano, A.; Bonavolontà, C.; Capasso, M.; Circiello, A.; et al. High-Density Near-Ultraviolet Silicon Photomultipliers: Characterization of photosensors for Cherenkov light detection. Nucl. Instrum. Methods A 2023, 1049, 168023. [Google Scholar] [CrossRef]
- Altamura, A.; Mauro, A.D.; Nappi, E.; Nicassio, N.; Emmerik, M.v.; Volpe, G. Aerogel characterization for RICH applications. In Proceedings of the 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI), Monopoli, Italy, 8–9 June 2023; pp. 211–216. [Google Scholar] [CrossRef]
- Albrecht, E.; Baum, G.; Birsa, R.; Bradamante, F.; Braem, A.; Bressan, A.; Chapiro, A.; Cicuttin, A.; Ciliberti, P.; Colavita, A.; et al. COMPASS RICH-1. Nucl. Instrum. Methods A 2003, 502, 112–116. [Google Scholar] [CrossRef]
- Glusckstern, R.L. Uncertainties in track momentum and direction, due to multiple scattering and measurement errors. Nucl. Instr. Methods 1963, 24, 381. [Google Scholar] [CrossRef]
- Battiston, R.; Bertucci, B.; Adriani, O.; Ambrosi, G.; Baudouy, B.; Blasi, P.; Boezio, M.; Campana, D.; Derome, L.; De Mitri, I.; et al. High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO). Exp. Astron. 2021, 51, 1299–1330. [Google Scholar] [CrossRef]
- Schael, S.; Atanasyan, A.; Berdugo, J.; Bretz, T.; Czupalla, M.; Dachwald, B.; Doetinchem, P.; Duranti, M.; Gast, H.; Karpinski, W.; et al. AMS-100: The Next Generation Magnetic Spectrometer in Space—An International Science Platform for Physics and Astrophysics at Lagrange Point 2. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 944, 162561. [Google Scholar] [CrossRef] [PubMed]
- Dam, M.; Burger, W.; Carpentiero, R.; Chesta, E.; Iuppa, R.; de Rijk, G.; Rossi, L. Design and Modeling of AMaSED-2: A High Temperature Superconducting Demonstrator Coil for the Space Spectrometer ARCOS. IEEE Trans. Appl. Supercond. 2022, 32, 4500105. [Google Scholar] [CrossRef]
- Dam, M.; Burger, W.J.; Carpentiero, R.; Chesta, E.; Iuppa, R.; Kirby, G.; de Rijk, G.; Rossi, L. Manufacturing and testing of AMaSED-2: A no-insulation high-temperature superconducting demonstrator coil for the space spectrometer ARCOS. Supercond. Sci. Technol. 2022, 36, 014007. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. The Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. Available online: https://pdg.lbl.gov/ (accessed on 28 April 2024).
- Abratenko, P.; Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; et al. Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering. J. Instrum. 2017, 12, P10010. [Google Scholar] [CrossRef]
- Mager, M. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 824, 434–438. [Google Scholar] [CrossRef]
- Ricci, E. A pixel based tracker for the HEPD-02 detector. In Proceedings of the Science (POS), 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July–3 August 2023; Volume 444. [Google Scholar] [CrossRef]
- Savino, U. Expected performance of the High Energy Particle Detector (HEPD-02) tracking system on board of the second China Seismo-Electromagnetic Satellite. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2024, 1063, 169281. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Barlow, R.; Beeston, C. Fitting using finite Monte Carlo samples. Comp. Phys. Commun. 1993, 77, 219–228. [Google Scholar] [CrossRef]
- von Doetinchem, P.; Aramaki, T.; Bando, N.; Boggs, S.; Fuke, H.; Gahbauer, F.; Hailey, C.; Koglin, J.; Mognet, S.; Madden, N.; et al. The flight of the GAPS prototype experiment. Astropart. Phys. 2014, 54, 93–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimiccoli, F.; Follega, F.M. A Multiple Scattering-Based Technique for Isotopic Identification in Cosmic Rays. Particles 2024, 7, 477-488. https://doi.org/10.3390/particles7020027
Dimiccoli F, Follega FM. A Multiple Scattering-Based Technique for Isotopic Identification in Cosmic Rays. Particles. 2024; 7(2):477-488. https://doi.org/10.3390/particles7020027
Chicago/Turabian StyleDimiccoli, Francesco, and Francesco Maria Follega. 2024. "A Multiple Scattering-Based Technique for Isotopic Identification in Cosmic Rays" Particles 7, no. 2: 477-488. https://doi.org/10.3390/particles7020027
APA StyleDimiccoli, F., & Follega, F. M. (2024). A Multiple Scattering-Based Technique for Isotopic Identification in Cosmic Rays. Particles, 7(2), 477-488. https://doi.org/10.3390/particles7020027