Regional-Scale Assessment of Burn Scar Mapping in Southwestern Amazonia Using Burned Area Products and CBERS/WFI Data Cubes
<p>Study area located in the state of Rondônia, in the Southwest Amazon region, depicting the land use land cover (LULC) classes in 2020 according to MapBiomas data.</p> "> Figure 2
<p>General methodological flowchart representing the stages of this research.</p> "> Figure 3
<p>Reference burned area map represented in different grid cell sizes: (<b>a</b>) 1 × 1 km cells; (<b>b</b>) 5 × 5 km cells; and (<b>c</b>) 10 × 10 km cells.</p> "> Figure 4
<p>Total burned area mapped by reference, MCD64A1, Fire_cci, GABAM, MapBiomas Fogo and CBERS over forested areas and non-forested areas, considering the whole study area.</p> "> Figure 5
<p>Spatial distribution of the burned area mapped in the study area during the year 2020 by the map of reference, four operational burned area products, and the method based on CBERS data cubes and the LSMM.</p> "> Figure 6
<p>Burned area spatial distribution in a 1 km × 1 km regular grid. Each grid cell contains the burned proportion indicated by the color gradient.</p> "> Figure 7
<p>Similarity maps of the best and worst comparison pairs of burned area products. The similarity index was calculated taking into account only cells that have burned area detected by at least one product. The similarity index ranges from 0 (lowest similarity) highlighted in dark red to 1 (highest similarity) highlighted in blue.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Overview and Remote Sensing Datasets
2.2.1. Burned Area Products
2.2.2. Burned Area Map with CBERS-4/WFI and CBERS-4A/WFI Data Cubes
2.2.3. Reference Map
2.2.4. Forest and Non-Forest Mapping
2.2.5. Evaluation and Agreement Analysis
3. Results
3.1. Spatial Distribution of the Total Burned Area and Estimates by Land Cover
3.2. Statistical Evaluation and Agreement Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pivello, V.R.; Vieira, I.; Christianini, A.V.; Ribeiro, D.B.; da Silva Menezes, L.; Berlinck, C.N.; Melo, F.P.L.; Marengo, J.A.; Tornquist, C.G.; Tomas, W.M.; et al. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspect. Ecol. Conserv. 2021, 19, 233–255. [Google Scholar] [CrossRef]
- Berlinck, C.N.; Batista, E.K.L. Good fire, bad fire: It depends on who burns. Flora 2020, 268, 151610. [Google Scholar] [CrossRef]
- Bush, M.B.; Silman, M.R.; McMichael, C.; Saatchi, S. Fire, climate change and biodiversity in Amazonia: A Late-Holocene perspective. Philos. Trans. R. Soc. B 2008, 363, 1795–1802. [Google Scholar] [CrossRef]
- Silveira, M.V.F.; Silva-Junior, C.H.L.; Anderson, L.O.; Aragão, L.E.O.C. Amazon fires in the 21st century: The year of 2020 in evidence. Glob. Ecol. Biogeogr. 2022, 31, 2026–2040. [Google Scholar] [CrossRef]
- Silva Junior, C.A.d.; Lima, M.; Teodoro, P.E.; Oliveira-Júnior, J.F.d.; Rossi, F.S.; Funatsu, B.M.; Butturi, W.; Lourençoni, T.; Kraeski, A.; Pelissari, T.D.; et al. Fires Drive Long-Term Environmental Degradation in the Amazon Basin. Remote Sens. 2022, 14, 338. [Google Scholar] [CrossRef]
- Carvalho, N.S.; Anderson, L.O.; Nunes, C.A.; Pessôa, A.C.M.; Silva Junior, C.H.L.; Reis, J.B.C.; Shimabukuro, Y.E.; Berenguer, E.; Barlow, J.; Aragão, L.E.O.C. Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environ. Res. Lett. 2021, 16, 125009. [Google Scholar] [CrossRef]
- Xu, X.; Jia, G.; Zhang, X.; Riley, W.J.; Xue, Y. Climate regime shift and forest loss amplify fire in Amazonian forests. Glob. Chang. Biol. 2020, 26, 5874–5885. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The drivers and impacts of Amazon forest degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef]
- Juárez-Orozco, S.M.; Siebe, C.; Fernández y Fernández, D. Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Trop. Conserv. Sci. 2017, 10, 1940082917737207. [Google Scholar] [CrossRef]
- Mataveli, G.A.V.; de Oliveira, G.; Seixas, H.T.; Pereira, G.; Stark, S.C.; Gatti, L.V.; Basso, L.S.; Tejada, G.; Cassol, H.L.G.; Anderson, L.O.; et al. Relationship between Biomass Burning Emissions and Deforestation in Amazonia over the Last Two Decades. Forests 2021, 12, 1217. [Google Scholar] [CrossRef]
- Barlow, J.; Berenguer, E.; Carmenta, R.; França, F. Clarifying Amazonia’s burning crisis. Glob. Chang. Biol. 2020, 26, 319–321. [Google Scholar] [CrossRef]
- Morton, D.C.; Defries, R.S.; Randerson, J.T.; Giglio, L.; Schroeder, W.; Van Der Werf, G.R. Agricultural intensification increases deforestation fire activity in Amazonia. Biology 2008, 14, 2262–2275. [Google Scholar] [CrossRef]
- Pivello, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Moreira, A.G.; Alencar, A.A. Flames in the Rain Forest: Origins, Impacts and Alternatives to Amazonian Fires; The Pilot Program to Conserve the Brazilian Rain Forest: Brasília, Brazil, 1999. [Google Scholar]
- Pontes-Lopes, A.; Silva, C.V.J.; Barlow, J.; Rincón, L.M.; Campanharo, W.A.; Nunes, C.A.; de Almeida, C.T.; Silva Júnior, C.H.L.; Cassol, H.L.G.; Dalagnol, R.; et al. Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest. Proc. R. Soc. B. 2021, 288, 20210094. [Google Scholar] [CrossRef]
- Oliveras, I.; Román-Cuesta, R.M.; Urquiaga-Flores, E.; Quintano Loayza, J.A.; Kala, J.; Huamán, V.; Lizárraga, N.; Sans, G.; Quispe, K.; Lopez, E.; et al. Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. Glob. Chang. Biol. 2018, 24, 758–772. [Google Scholar] [CrossRef] [PubMed]
- Pontes-Lopes, A.; Dalagnol, R.; Dutra, A.C.; de Jesus Silva, C.V.; de Alencastro Graça, P.M.; de Oliveira e Cruz de Aragão, L.E. Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data. Remote Sens. 2022, 14, 1545. [Google Scholar] [CrossRef]
- Smith, M.N.; Stark, S.C.; Taylor, T.C.; Schietti, J.; de Almeida, D.R.A.; Aragón, S.; Torralvo, K.; Lima, A.P.; de Oliveira, G.; de Assis, R.L.; et al. Diverse anthropogenic disturbances shift Amazon forests along a structural spectrum. Front. Ecol. Environ. 2023, 21, 24–32. [Google Scholar] [CrossRef]
- Leal, O.d.A.; Jiménez-Morillo, N.T.; González-Pérez, J.A.; Knicker, H.; de Souza Costa, F.; Jiménez-Morillo, P.N.; de Carvalho Júnior, J.A.; dos Santos, J.C.; Pinheiro Dick, D. Soil Organic Matter Molecular Composition Shifts Driven by Forest Regrowth or Pasture after Slash-and-Burn of Amazon Forest. Int. J. Environ. Res. Public Health 2023, 20, 3485. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.S.; Kloster, S.; Mahowald, N.M.; Rogers, B.M.; Randerson, J.T.; Hess, P.G. The changing radiative forcing of fires: Global model estimates for past, present and future. Atmos. Chem. Phys. 2012, 12, 10857–10886. [Google Scholar] [CrossRef]
- Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; et al. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. J. Geophys. Res. 2020, 125, e2020JG005677. [Google Scholar] [CrossRef]
- de Andrade, R.B.; Balch, J.K.; Carreira, J.Y.O.; Brando, P.M.; Freitas, A.V.L. The impacts of recurrent fires on diversity of fruit-feeding butterflies in a south-eastern Amazon forest. J. Trop. Ecol. 2017, 33, 22–32. [Google Scholar] [CrossRef]
- Paolucci, L.N.; Schoereder, J.H.; Brando, P.M.; Andersen, A.N. Fire-induced forest transition to derived savannas: Cascading effects on ant communities. Biol. Conserv. 2017, 214, 295–302. [Google Scholar] [CrossRef]
- Feng, X.; Merow, C.; Liu, Z.; Park, D.S.; Roehrdanz, P.R.; Maitner, B.; Newman, E.A.; Boyle, B.L.; Lien, A.; Burger, J.R.; et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 2021, 597, 516–521. [Google Scholar] [CrossRef]
- Rossi, L.C.; Berenguer, E.; Lees, A.C.; Barlow, J.; Ferreira, J.; França, F.M.; Tavares, P.; Pizo, M.A. Predation on artificial caterpillars following understorey fires in human-modified Amazonian forests. Biotropica 2022, 54, 754–763. [Google Scholar] [CrossRef]
- Campanharo, W.; Lopes, A.; Anderson, L.; Da Silva, T.; Aragão, L. Translating Fire Impacts in Southwestern Amazonia into Economic Costs. Remote Sens. 2019, 11, 764. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.G.; Tejada, G.; Aragão, L.E.O.C.; Nobre, C.; Peters, W.; et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef]
- Nawaz, M.O.; Henze, D.K. Premature Deaths in Brazil Associated with Long-Term Exposure to PM2.5 From Amazon Fires Between 2016 and 2019. GeoHealth 2020, 4, e2020GH000268. [Google Scholar] [CrossRef]
- Campanharo, W.A.; Morello, T.; Christofoletti, M.A.M.; Anderson, L.O. Hospitalization Due to Fire-Induced Pollution in the Brazilian Legal Amazon from 2005 to 2018. Remote Sens. 2022, 14, 69. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Laurance, W.F. Synergisms among fire, land use, and climate change in the Amazon. Ambio 2008, 37, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.C.; Le Page, Y.; DeFries, R.; Collatz, G.J.; Hurtt, G.C. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philos. Trans. R. Soc. B 2013, 368, 20120163. [Google Scholar] [CrossRef] [PubMed]
- De Faria, B.L.; Brando, P.M.; Macedo, M.N.; Panday, P.K.; Soares-Filho, B.S.; Coe, M.T. Current and future patterns of fire-induced forest degradation in Amazonia. Environ. Res. Lett. 2017, 12, 095005. [Google Scholar] [CrossRef]
- Brando, P.M.; Paolucci, L.; Ummenhofer, C.C.; Ordway, E.M.; Hartmann, H.; Cattau, M.E.; Rattis, L.; Medjibe, V.; Coe, M.T.; Balch, J. Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annu. Rev. Earth Planet. Sci. 2019, 47, 555–581. [Google Scholar] [CrossRef]
- da Silva Júnior, L.A.S.; Delgado, R.C.; Pereira, M.G.; Teodoro, P.E.; da Silva Junior, C.A. Fire dynamics in extreme climatic events in western amazon. Environ. Dev. 2019, 32, 100450. [Google Scholar] [CrossRef]
- Brando, P.; Macedo, M.; Silvério, D.; Rattis, L.; Paolucci, L.; Alencar, A.; Coe, M.; Amorim, C. Amazon wildfires: Scenes from a foreseeable disaster. Flora 2020, 268, 151609. [Google Scholar] [CrossRef]
- Silveira, M.V.F.; Petri, C.A.; Broggio, I.S.; Chagas, G.O.; Macul, M.S.; Leite, C.C.S.S.; Ferrari, E.M.M.; Amim, C.G.V.; Freitas, A.L.R.; Motta, A.Z.V.; et al. Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis. Land 2020, 9, 516. [Google Scholar] [CrossRef]
- Oliveira, U.; Soares-Filho, B.; Bustamante, M.; Gomes, L.; Ometto, J.P.; Rajão, R. Determinants of Fire Impact in the Brazilian Biomes. Front. For. Glob. Chang. 2022, 5, 735017. [Google Scholar] [CrossRef]
- Silvério, D.V.; Oliveira, R.S.; Flores, B.M.; Brando, P.M.; Almada, H.K.; Furtado, M.T.; Moreira, F.G.; Heckenberger, M.; Ono, K.Y.; Macedo, M.N. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environ. Res. Lett. 2022, 17, 045012. [Google Scholar] [CrossRef]
- Mataveli, G.; de Oliveira, G.; Silva-Junior, C.H.L.; Stark, S.C.; Carvalho, N.; Anderson, L.O.; Gatti, L.V.; Aragão, L.E.O.C. Record-breaking fires in the Brazilian Amazon associated with uncontrolled deforestation. Nat. Ecol. Evol. 2022, 6, 1792–1793. [Google Scholar] [CrossRef]
- Silva Junior, C.; Aragão, L.; Fonseca, M.; Almeida, C.; Vedovato, L.; Anderson, L. Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef]
- Silva-Junior, C.H.L.; Buna, A.T.M.; Bezerra, D.S.; Costa, O.S.; Santos, A.L.; Basson, L.O.D.; Santos, A.L.S.; Alvarado, S.T.; Almeida, C.T.; Freire, A.T.G.; et al. Forest Fragmentation and Fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire 2022, 5, 77. [Google Scholar] [CrossRef]
- Rosan, T.M.; Sitch, S.; Mercado, L.M.; Heinrich, V.; Friedlingstein, P.; Aragão, L.E.O.C. Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado. Front. For. Glob. Chang. 2022, 5, 801408. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Malhi, Y.; Roman-Cuesta, R.M.; Saatchi, S.; Anderson, L.O.; Shimabukuro, Y.E. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 2007, 34, 2006GL028946. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Anderson, L.O.; Silva, A.L.; Almeida, C.T.; Dalagnol, R.; Pletsch, M.A.J.S.; Penha, T.V.; Paloschi, R.A.; Aragão, L.E.O.C. Fire Responses to the 2010 and 2015/2016 Amazonian Droughts. Front. Earth Sci. 2019, 7, 97. [Google Scholar] [CrossRef]
- Brando, P.M.; Soares-Filho, B.; Rodrigues, L.; Assunção, A.; Morton, D.; Tuchschneider, D.; Fernandes, E.C.M.; Macedo, M.N.; Oliveira, U.; Coe, M.T. The gathering firestorm in southern Amazonia. Sci. Adv. 2020, 6, eaay1632. [Google Scholar] [CrossRef]
- Ortega, G.; Arias, P.A.; Villegas, J.C.; Marquet, P.A.; Nobre, P. Present-day and future climate over central and South America according to CMIP5/CMIP6 models. Int. J. Climatol. 2021, 41, 6713–6735. [Google Scholar] [CrossRef]
- Arruda, V.L.S.; Piontekowski, V.J.; Alencar, A.; Pereira, R.S.; Matricardi, E.A.T. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 2021, 22, 100472. [Google Scholar] [CrossRef]
- Daldegan, G.A.; Roberts, D.A.; Ribeiro, F.d.F. Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sens. Environ. 2019, 232, 111340. [Google Scholar] [CrossRef]
- Wu, Z.; Middleton, B.; Hetzler, R.; Vogel, J.; Dye, D. Vegetation Burn Severity Mapping Using Landsat-8 and WorldView-2. Photogramm. Eng. Remote Sens. 2015, 81, 143–154. [Google Scholar] [CrossRef]
- Alcaras, E.; Costantino, D.; Guastaferro, F.; Parente, C.; Pepe, M. Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery. Remote Sens. 2022, 14, 1727. [Google Scholar] [CrossRef]
- Martins, V.S.; Novo, E.M.L.M.; Lyapustin, A.; Aragão, L.E.O.C.; Freitas, S.R.; Barbosa, C.C.F. Seasonal and interannual assessment of cloud cover and atmospheric constituents across the Amazon (2000–2015): Insights for remote sensing and climate analysis. ISPRS J. Photogramm. Remote Sens. 2018, 145, 309–327. [Google Scholar] [CrossRef]
- Melchiorre, A.; Boschetti, L. Global Analysis of Burned Area Persistence Time with MODIS Data. Remote Sens. 2018, 10, 750. [Google Scholar] [CrossRef]
- Alencar, A.; Asner, G.P.; Knapp, D.; Zarin, D. Temporal variability of forest fires in eastern Amazonia. Ecol. Appl. 2011, 21, 2397–2412. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef]
- Fornacca, D.; Ren, G.; Xiao, W. Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sens. 2017, 9, 1131. [Google Scholar] [CrossRef]
- Humber, M.L.; Boschetti, L.; Giglio, L.; Justice, C.O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth 2019, 12, 460–484. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Libonati, R.; Pereira, A.A.; Nogueira, J.M.P.; Santos, F.L.M.; Peres, L.F.; Santa Rosa, A.; Schroeder, W.; Pereira, J.M.C.; Giglio, L.; et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 318–331. [Google Scholar] [CrossRef]
- Pessôa, A.C.M.; Anderson, L.O.; Carvalho, N.S.; Campanharo, W.A.; Junior, C.H.L.S.; Rosan, T.M.; Reis, J.B.C.; Pereira, F.R.S.; Assis, M.; Jacon, A.D.; et al. Intercomparison of Burned Area Products and Its Implication for Carbon Emission Estimations in the Amazon. Remote Sens. 2020, 12, 3864. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; de Oliveira, G.; Pereira, G.; Arai, E.; Cardozo, F.; Dutra, A.C.; Mataveli, G. Assessment of Burned Areas during the Pantanal Fire Crisis in 2020 Using Sentinel-2 Images. Fire 2023, 6, 277. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Dutra, A.C.; Arai, E.; Duarte, V.; Cassol, H.L.; Pereira, G.; Cardozo, F.D. Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets. Remote Sens. 2020, 12, 3827. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 2012, 117, G04012. [Google Scholar] [CrossRef]
- Shiraishi, T.; Hirata, R. Estimation of carbon dioxide emissions from the megafires of Australia in 2019–2020. Sci. Rep. 2021, 11, 8267. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef]
- Alencar, A.A.C.; Arruda, V.L.S.; Silva, W.V.; Conciani, D.E.; Costa, D.P.; Crusco, N.; Duverger, S.G.; Ferreira, N.C.; Franca-Rocha, W.; Hasenack, H.; et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. Remote Sens. 2022, 14, 2510. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.-J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Ferreira, K.R.; Queiroz, G.R.; Vinhas, L.; Marujo, R.F.B.; Simoes, R.E.O.; Picoli, M.C.A.; Camara, G.; Cartaxo, R.; Gomes, V.C.F.; Santos, L.A.; et al. Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sens. 2020, 12, 4033. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Simoes, R.; Chaves, M.; Santos, L.A.; Sanchez, A.; Soares, A.; Sanches, I.D.; Ferreira, K.R.; Queiroz, G.R. CBERS data cube: A powerful technology for apping and monitoring Brazilian biomes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 533–539. [Google Scholar] [CrossRef]
- Anderson, L.O.; Aragão, L.E.O.E.C.D.; Lima, A.D.; Shimabukuro, Y.E. Detecção de cicatrizes de áreas queimadas baseada no modelo linear de mistura espectral e imagens índice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira. Acta Amaz. 2005, 35, 445–456. [Google Scholar] [CrossRef]
- Lima, A.; Silva, T.S.F.; Aragão, L.E.O.E.C.D.; Feitas, R.M.D.; Adami, M.; Formaggio, A.R.; Shimabukuro, Y.E. Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Appl. Geogr. 2012, 34, 239–246. [Google Scholar] [CrossRef]
- Cardozo, F.D.; Pereira, G.; Shimabukuro, Y.E.; Moraes, E.C. Analysis and Assessment of the Spatial and Temporal Distribution of Burned Areas in the Amazon Forest. Remote Sens. 2014, 6, 8002–8025. [Google Scholar] [CrossRef]
- Anderson, L.O.; Aragão, L.E.O.C.; Gloor, M.; Arai, E.; Adami, M.; Saatchi, S.S.; Malhi, Y.; Shimabukuro, Y.E.; Barlow, J.; Berenguer, E.; et al. Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought. Glob. Biogeochem. Cycles 2015, 29, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, Y.E.; Arai, E.; Anderson, L.O.; Aragão, L.E.O.e.C.d.; Duarte, V. Mapping Degraded Forest Areas Caused by Fires during The Year 2010 in Mato Grosso State, Brazilian Legal Amazon Using Landsat-5 Tm Fraction Images. Rev. Bras. Cartogr. 2017, 69, 23–32. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Soares, A.R.; Mataveli, G.A.V.; Sánchez, A.H.; Sanches, I.D. A Semi-Automated Workflow for LULC Mapping via Sentinel-2 Data Cubes and Spectral Indices. Automation 2023, 4, 94–109. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Soares, A.R.; Sanches, I.D.; Fronza, J.G. CBERS data cubes for land use and land cover mapping in the Brazilian Cerrado agricultural belt. Int. J. Remote Sens. 2021, 42, 8398–8432. [Google Scholar] [CrossRef]
- Adorno, B.V.; Körting, T.S.; Amaral, S. Contribution of time-series data cubes to classify urban vegetation types by remote sensing. Urban For. Urban Green. 2023, 79, 127817. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Sanches, I.D. Improving crop mapping in Brazil’s Cerrado from a data cubes-derived Sentinel-2 temporal analysis. Remote Sens. Appl. Soc. Environ. 2023, 32, 101014. [Google Scholar] [CrossRef]
- INPE—Instituto Nacional de Pesquisas Espaciais. Coordenação Geral de Observação da Terra. Programa de Monitoramento da Amazônia e Demais Biomas. Desmatamento—Amazônia Legal. Available online: http://terrabrasilis.dpi.inpe.br/downloads/ (accessed on 27 December 2023).
- Lopes, J.M.A.; Santos, A.M.; Nunes, F.G. Análise do desmatamento nas áreas de influência da BR-421 e as pressões sobre áreas especiais no oeste de Rondônia. Soc. Territ. 2019, 31, 282–304. [Google Scholar] [CrossRef]
- Santos, A.M.d.; Silva, C.F.A.d.; Almeida Junior, P.M.d.; Rudke, A.P.; Melo, S.N.d. Deforestation drivers in the Brazilian Amazon: Assessing new spatial predictors. J. Environ. Manag. 2021, 294, 113020. [Google Scholar] [CrossRef]
- Silva, C.F.A.; Alvarado, S.T.; Santos, A.M.; Andrade, M.O.; Melo, S.N. Highway Network and Fire Occurrence in Amazonian Indigenous Lands. Sustainability 2022, 14, 9167. [Google Scholar] [CrossRef]
- da Silva, C.F.A.; de Andrade, M.O.; dos Santos, A.M.; de Melo, S.N. Road network and deforestation of indigenous lands in the Brazilian Amazon. Transp. Res. Part D Transp. Environ. 2023, 119, 103735. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatísticas. Manual Técnico da Vegetação Brasileira: Sistema Fitogeográfico, Inventário das Formações Florestais e Campestres, Técnicas e Manejo de Coleções Botânicas, Procedimentos Para Mapeamentos; IBGE: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.d.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- INPE—Instituto Nacional de Pesquisas Espaciais. Coordenação Geral de Observação da Terra. Programa Queimadas—BD QUEIMADAS. Available online: http://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/ (accessed on 27 December 2023).
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef]
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; et al. Generation and analysis of a new global burned area product based on MODIS 250m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- MapBiomas Project. MapBiomas-Accuracy Assessment of Collection 6.0 Cover & Use Maps. Available online: http://mapbiomas.org/en/accuracy-statistics?cama_set_language=en (accessed on 27 December 2023).
- INPE—Instituto Nacional de Pesquisas Espaciais. CBERS Program. Available online: http://www.cbers.inpe.br/sobre/index.php# (accessed on 27 December 2023).
- Brazil Data Cube Project. Data Cube Explorer. Available online: https://brazildatacube.dpi.inpe.br/portal/explore (accessed on 27 December 2023).
- Shimabukuro, Y.E.; Smith, J.A. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Trans. Geosci. Remote Sens. 1991, 29, 16–20. [Google Scholar] [CrossRef]
- Bins, L.S.; Fonseca, L.M.G.; Erthal, G.J.; Mitsuo, F.A. Satellite imagery segmentation: A region growing approach. In Proceedings of the VIII Simpósio Brasileiro de Sensoriamento Remoto, Salvador, BA, Brazil, 14–19 April 1996; pp. 677–680. [Google Scholar]
- INPE—Instituto Nacional de Pesquisas Espaciais. TerraView Project. Available online: http://www.dpi.inpe.br/terralib5/wiki/doku.php?id=start (accessed on 27 December 2023).
- Dutra, D.J.; Fearnside, P.M.; Yanai, A.M.; Graça, P.M.L.d.A.; Dalagnol, R.; Pessôa, A.C.M.; Cabral, B.F.; Burton, C.; Jones, C.; Betts, R.; et al. Burned area mapping in Different Data Products for the Southwest of the Brazilian Amazon. Rev. Bras. Cartogr. 2023, 75, 1–16. [Google Scholar] [CrossRef]
- Anderson, L.O.; Cheek, D.; Aragao, L.E.O.C.; Andere, L.; Duarte, B.; Salazar, N.; Lima, A.; Duarte, V.; Arai, E. Development of a Point-based Method for Map Validation and Confidence Interval Estimation: A Case Study of Burned Areas in Amazonia. J. Remote Sens. GIS 2017, 6, 193. [Google Scholar] [CrossRef]
- Giglio, L.; van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 2006, 6, 957–974. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Assis, T.O.; Escada, M.I.; Amaral, S. Effects of Deforestation over the Cerrado Landscape: A Study in the Bahia Frontier. Land 2021, 10, 352. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L. Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Visser, H.; de Nijs, T. The Map Comparison Kit. Environ. Model. Softw. 2006, 21, 346–358. [Google Scholar] [CrossRef]
- RIKS BV—Research Institute for Knowledge Systems. Map Comparison Kit 3: User Manual; Research Institute for Knowledge Systems: Maastricht, The Netherlands, 2010. [Google Scholar]
- Libonati, R.; Pereira, A.A.; Santos, F.L.M.; Rodrigues, J.A.; Rosa, A.S.; Melchiori, A.E.; Morelli, F.; Setzer, A.W. Sensoriamento remoto de áreas queimadas no Brasil: Progressos, incertezas, desafios, e perspectivas futuras. In Queimadas e Incêndios Florestais: Mediante Monitoramento Orbital; Setzer, A.W., Ferreira, N.J., Eds.; Oficina de Textos: São Paulo, Brazil, 2021; pp. 53–80. [Google Scholar]
- Padilla, M.; Stehman, S.V.; Litago, J.; Chuvieco, E. Assessing the Temporal Stability of the Accuracy of a Time Series of Burned Area Products. Remote Sens. 2014, 6, 2050–2068. [Google Scholar] [CrossRef]
- Herrera, D.; Pfaff, A.; Robalino, J. Impacts of protected areas vary with the level of government: Comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2019, 116, 14916–14925. [Google Scholar] [CrossRef] [PubMed]
- Silva-Junior, C.H.L.; Silva, F.B.; Arisi, B.M.; Mataveli, G.; Pessôa, A.C.M.; Carvalho, N.S.; Reis, J.B.C.; Silva Júnior, A.R.; Motta, N.A.C.S.; E Silva, P.V.M.; et al. Brazilian Amazon indigenous territories under deforestation pressure. Sci. Rep. 2023, 13, 5851. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.M.; da Silva, C.F.A.; de Melo, S.N.; de Almeida Junior, P.M.; Bueno, L.F. Influence of deforestation inside and outside indigenous lands in the Brazilian Amazon Biome. Reg. Environ. Chang. 2022, 22, 77. [Google Scholar] [CrossRef]
- Pessôa, A.C.M.; Morello R.S., T.F.; Silva-Junior, C.H.L.; Doblas, J.; Carvalho, N.S.; Aragão, L.E.O.C.; Anderson, L.O. Protected areas are effective on curbing fires in the Amazon. Ecol. Econ. 2023, 214, 107983. [Google Scholar] [CrossRef]
- Santos, A.M.d.; Silva, C.F.A.d.; Rudke, A.P.; Oliveira Soares, D.d. Dynamics of active fire data and their relationship with fires in the areas of regularized indigenous lands in the Southern Amazon. Remote Sens. Appl. Soc. Environ. 2021, 23, 100570. [Google Scholar] [CrossRef]
- Chen, Y.; Hall, J.; van Wees, D.; Andela, N.; Hantson, S.; Giglio, L.; van der Werf, G.R.; Morton, D.C.; Randerson, J.T. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data 2023, 15, 5227–5259. [Google Scholar] [CrossRef]
- Chen, Y.; Morton, D.C.; Jin, Y.; Collatz, G.J.; Kasibhatla, P.S.; van der Werf, G.R.; DeFries, R.S.; Randerson, J.T. Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Manag. 2013, 4, 617–638. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Lagoudakis, E. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 2009, 6, 849–866. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z. Assessing the Accuracy of MODIS MCD64A1 C6 and FireCCI51 Burned Area Products in Mediterranean Ecosystems. Remote Sens. 2022, 14, 602. [Google Scholar] [CrossRef]
- Brennan, J.; Gómez-Dans, J.L.; Disney, M.; Lewis, P. Theoretical uncertainties for global satellite-derived burned area estimates. Biogeosciences 2019, 16, 3147–3164. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Nagol, J.; Souza, C.M.; Kasischke, E.S.; Hurtt, G.C.; Dubayah, R. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 2011, 115, 1706–1720. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Miettinen, J.; Beuchle, R.; Grecchi, R.C.; Simonetti, D.; Achard, F. Estimating Burned Area in Mato Grosso, Brazil, Using an Object-Based Classification Method on a Systematic Sample of Medium Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4502–4508. [Google Scholar] [CrossRef]
- Alonso-Canas, I.; Chuvieco, E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Arcanjo, J.S.; Marujo, R.d.F.B.; Souza, R.C.M.d.; Costa, R.W.; Queiroz, G.R.d.; Ferreira, K.R. A multi-source wfi datacube of CBERS-4 and CBERS-4A images: Improving visual interpretation. In Proceedings of the XX Brazilian Symposium on Remote Sensing, Florianópolis, Brazil, 2–5 April 2023; pp. 3348–3350. [Google Scholar]
- Morton, D.C.; Coffield, S.; Chen, Y.; Arevalo, P.A.; Uribe, M.d.R.; Brando, P.M.; Randerson, J.T.; Alencar, A. Enhanced Amazon Fire Detection and Tracking to Mitigate Ecosystem and Climate Impacts from Forest Degradation. In Proceedings of the AGU23, San Francisco, CA, USA, 11–15 December 2023. B13G-1983. [Google Scholar]
- Bonilla, E.X.; Mickley, L.J.; Raheja, G.; Eastham, S.D.; Buonocore, J.J.; Alencar, A.; Verchot, L.; Westervelt, D.M.; Castro, M.C. Health impacts of smoke exposure in South America: Increased risk for populations in the Amazonian Indigenous territories. Environ. Res. Health 2023, 1, 021007. [Google Scholar] [CrossRef]
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T.H. Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery. Remote Sens. 2018, 10, 460. [Google Scholar] [CrossRef]
Product | Sensor | Spatial Resolution | Scale | Time | Reference |
---|---|---|---|---|---|
MCD64A1 c6.0 | MODIS | 500 m | Global | 2000–2022 | [92] |
Fire_cci v.5.1 | MODIS | 250 m | Global | 2001–2020 | [95] |
GABAM | Landsat | 30 m | Global | 2000–2021 | [70] |
MapBiomas Fogo c1.0 | Landsat | 30 m | Brazil | 1985–2021 | [71] |
Model | R | R2 | RMSE | MB | MB (% of Observed) |
---|---|---|---|---|---|
Reference × MCD64A1 | 0.58 | 0.33 | 0.197 | 0.073 | 40.34 |
Reference × Fire_cci | 0.31 | 0.09 | 0.229 | 0.159 | 88.07 |
Reference × GABAM | 0.41 | 0.17 | 0.220 | 0.156 | 86.61 |
Reference × MapBiomas | 0.87 | 0.76 | 0.118 | 0.014 | 7.54 |
Reference × CBERS | 0.85 | 0.72 | 0.128 | −0.022 | −12.30 |
CBERS × MCD64A1 | 0.52 | 0.27 | 0.215 | 0.095 | 46.88 |
CBERS × Fire_cci | 0.30 | 0.09 | 0.241 | 0.181 | 89.38 |
CBERS × GABAM | 0.41 | 0.17 | 0.229 | 0.178 | 88.08 |
CBERS × MapBiomas | 0.80 | 0.63 | 0.152 | 0.036 | 17.67 |
MapBiomas × MCD64A1 | 0.63 | 0.39 | 0.188 | 0.060 | 35.48 |
MapBiomas × Fire_cci | 0.34 | 0.12 | 0.227 | 0.145 | 87.10 |
MapBiomas × GABAM | 0.46 | 0.21 | 0.214 | 0.142 | 85.52 |
MCD64A1 × GABAM | 0.25 | 0.06 | 0.253 | 0.083 | 77.56 |
MCD64A1 × Fire_cci | 0.28 | 0.08 | 0.251 | 0.086 | 80.01 |
GABAM × Fire_cci | 0.10 | 0.01 | 0.068 | 0.003 | 10.89 |
Product Combinations | Overall Similarity |
---|---|
Reference × MapBiomas | 0.70 |
Reference × MCD64A1 | 0.41 |
Reference × GABAM | 0.33 |
Reference × Fire_cci | 0.27 |
Reference × CBERS | 0.68 |
CBERS × MCD64A1 | 0.42 |
CBERS × Fire_cci | 0.23 |
CBERS × GABAM | 0.28 |
CBERS X MapBiomas | 0.63 |
MapBiomas × MCD64A1 | 0.40 |
MapBiomas × Fire_cci | 0.31 |
MapBiomas × GABAM | 0.36 |
MCD64A1 × GABAM | 0.67 |
MCD64A1 × Fire_cci | 0.68 |
GABAM × Fire_cci | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro, P.D.; Mataveli, G.; Arcanjo, J.d.S.; Dutra, D.J.; Medeiros, T.P.d.; Shimabukuro, Y.E.; Pessôa, A.C.M.; de Oliveira, G.; Anderson, L.O. Regional-Scale Assessment of Burn Scar Mapping in Southwestern Amazonia Using Burned Area Products and CBERS/WFI Data Cubes. Fire 2024, 7, 67. https://doi.org/10.3390/fire7030067
Ferro PD, Mataveli G, Arcanjo JdS, Dutra DJ, Medeiros TPd, Shimabukuro YE, Pessôa ACM, de Oliveira G, Anderson LO. Regional-Scale Assessment of Burn Scar Mapping in Southwestern Amazonia Using Burned Area Products and CBERS/WFI Data Cubes. Fire. 2024; 7(3):67. https://doi.org/10.3390/fire7030067
Chicago/Turabian StyleFerro, Poliana Domingos, Guilherme Mataveli, Jeferson de Souza Arcanjo, Débora Joana Dutra, Thaís Pereira de Medeiros, Yosio Edemir Shimabukuro, Ana Carolina Moreira Pessôa, Gabriel de Oliveira, and Liana Oighenstein Anderson. 2024. "Regional-Scale Assessment of Burn Scar Mapping in Southwestern Amazonia Using Burned Area Products and CBERS/WFI Data Cubes" Fire 7, no. 3: 67. https://doi.org/10.3390/fire7030067
APA StyleFerro, P. D., Mataveli, G., Arcanjo, J. d. S., Dutra, D. J., Medeiros, T. P. d., Shimabukuro, Y. E., Pessôa, A. C. M., de Oliveira, G., & Anderson, L. O. (2024). Regional-Scale Assessment of Burn Scar Mapping in Southwestern Amazonia Using Burned Area Products and CBERS/WFI Data Cubes. Fire, 7(3), 67. https://doi.org/10.3390/fire7030067