Improving Fire Suppression Efficiency in Electric Vehicles: A Study on Optimized Upward Spray Devices
<p>Concept design for fire suppression using an upward spray device.</p> "> Figure 2
<p>Operation principles of the fluidic oscillator.</p> "> Figure 3
<p>(<b>a</b>) Schematic representation of the design variables. (<b>b</b>) Definitions of the various design variables.</p> "> Figure 4
<p>Three-dimensional model of the fluidic oscillator for simulation purposes.</p> "> Figure 5
<p>Results of the fluid spray angle and frequency experiments for the (<b>a</b>) MR model, (<b>b</b>) IW model, (<b>c</b>) OR model, and (<b>d</b>) OW model.</p> "> Figure 5 Cont.
<p>Results of the fluid spray angle and frequency experiments for the (<b>a</b>) MR model, (<b>b</b>) IW model, (<b>c</b>) OR model, and (<b>d</b>) OW model.</p> "> Figure 6
<p>Results of the maximum spray angle for the (<b>a</b>) MR-0.97, (<b>b</b>) IW-1.18, (<b>c</b>) OR-1.08, and (<b>d</b>) OW-1.16 models.</p> "> Figure 7
<p>(<b>a</b>,<b>b</b>) Simulation results according to the different variable combinations, and the spray angle results.</p> "> Figure 8
<p>Spray angle results according to the different variable combinations: (<b>a</b>) MR + OW, (<b>b</b>) IW + OW, and (<b>c</b>) MR + IW + OW.</p> "> Figure 9
<p>The fluidic oscillator nozzle experiment rig: (<b>a</b>) schematic representation, and (<b>b</b>) photographic image.</p> "> Figure 10
<p>Experiment results for the fluid spray angle. (<b>a</b>) The base model, (<b>b</b>) the MR + OW model, (<b>c</b>) the IW + OW model, and the (<b>d</b>) MR + IW + OW model.</p> "> Figure 11
<p>Comparison of the experimental and simulated spray angle results.</p> "> Figure 12
<p>The nozzle cooling performance test device: (<b>a</b>) heating plate, (<b>b</b>) FON cooling model, and (<b>c</b>) ON cooling model.</p> "> Figure 13
<p>Average temperature changes on the heating plate.</p> "> Figure 14
<p>Upward spray device to suppress electric vehicle battery fires: (<b>a</b>) 3D model and (<b>b</b>) manufactured device.</p> "> Figure 15
<p>Performance evaluation of the upward spray device. (<b>a</b>) Rear view of the spray from outside the vehicle, (<b>b</b>) side view of the spray from outside the vehicle, and (<b>c</b>) rear view of the spray from under the vehicle.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Variables
2.2. Analytical Conditions and Calculation Grid
3. Results and Discussion
3.1. Analytical Results
3.2. Analysis of Nozzle Optimization
3.3. Nozzle Spray Experiments
3.4. Fluidic Oscillator Cooling Performance
3.5. Development of an Upward Spray Device
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Na, Y.U.; Kim, J.S. A study on the characteristic of electric vehicle fire in Korea. In Proceedings of the Fall Academic Conference, Jecheon, Republic of Korea, 17 November 2022. [Google Scholar]
- Kim, W.Y. Numerical Analysis on Thermal Runaway in Cylindrical Lithium-Ion Batteries for Electric Vehicles. Master’s Thesis, Jeju National University, Jeju, Republic of Korea, 2021. [Google Scholar]
- Jung, D.Y. BMS technology for electric vehicles. Korean Inst. Power Electron. 2014, 19, 45–54. [Google Scholar]
- Dong, Y.; Meng, J.; Sun, X.; Zhao, P.; Sun, P.; Zheng, B. Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery. World Electr. Veh. J. 2023, 14, 270. [Google Scholar] [CrossRef]
- Yu, W.; Guo, Y.; Xu, S.; Yang, Y.; Zhao, Y.; Zhang, J. Comprehensive recycling of lithium-ion batteries: Fundamentals, pretreatment, and perspectives. Energy Storage Mater. 2022, 54, 172–220. [Google Scholar] [CrossRef]
- Lai, X.; Yi, W.; Cui, Y.; Qin, C.; Han, X.; Sun, T.; Zhou, L.; Zheng, Y. Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter. Energy 2020, 216, 119233. [Google Scholar] [CrossRef]
- Liu, L.; Xu, J.; Wang, S.; Wu, F.; Li, H.; Chen, L. Practical evaluation of energy densities for sulfide solid-state batteries. eTransportation 2019, 1, 100010. [Google Scholar] [CrossRef]
- Choi, G.W.; Jang, S.M.; Kim, H.B. A study on the risk of fire and fire pattern in secondary cell battery (Li-ion battery). JFISK 2018, 9, 49–67. [Google Scholar]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Lim, S.H.; Lee, G.Y.; Kim, N.H.; Kim, D.E.; Kil, G.S. Detection and analysis of discharge pulses by failure mechanisms of the separator inside lithium-ion batteries. J. Korean Inst. Electr. Electron. Mater. Eng. 2021, 34, 327–332. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.; Pecht, M. Mitigation strategies for Li-ion battery thermal runaway: A review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Guo, G.; Long, B.; Cheng, B.; Zhou, S.; Xu, P.; Cao, B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J. Power Sources 2009, 195, 2393–2398. [Google Scholar] [CrossRef]
- Chae, G.E.; Park, Y.K.; Choi, J.H. International and domestic electric vehicle fire test research trend survey. In Proceedings of the Spring Academic Conference, Jeju, Republic of Korea, 27 April 2022. [Google Scholar]
- Jeon, C.H.; Kim, D.K. Analysis of fire development patterns and risk factors in case of electric vehicle fire in special space (un-derground parking lot). In Proceedings of the Summer Conference, Pyeongchang, Republic of Korea, 22 June 2022. [Google Scholar]
- Ko, B.Y.; Yoo, S.H.; Choi, D.H.; Han, K.I. Full-Scale Fire Extinguishing Experiments to Analyze the Adaptability of Firefighting Facilities for Electric Vehicle Fires in Underground Parking Lots in Lithium-ion Battery Fires. KFSE 2024, 38, 1–8. [Google Scholar]
- Korea National Fire Research Institute. Available online: https://www.nfa.go.kr/nfa/publicrelations/policyarchive/promotion/;jsessionid=xui0beuao7Pize62BiY+eXuH.nfa22?boardId=bbs_0000000000000805&mode=view&cntId=66&category=&pageIdx=&searchCondition=&searchKeyword= (accessed on 24 August 2023).
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Mechanism of Thermal Runaway in Lithium-Ion Cells. J. Electrochem. Soc. 2018, 165, A1303–A1308. [Google Scholar] [CrossRef]
- Kang, S.W.; Lee, K.M.; Kwon, M.J.; Choi, J.Y. Examination and proposal for standard operating procedure (SOP) to respond to battery electric vehicle (BEV) fire Incidents. In Proceedings of the Fall Academic Conference, Daegu, Republic of Korea, 25 November 2021. [Google Scholar]
- Ha, T.-W.; Park, P.-K. The Study on Next-generation Fire Blanket for Electric Vehicle Fires. Korean J. Hazard. Mater. 2023, 11, 42–48. [Google Scholar] [CrossRef]
- Lim, O.K.; Kang, S.; Kwon, M.; Choi, J.Y. Full-scale Fire Suppression Tests to Analyze the Effectiveness of Existing Lithium-ion Battery Fire Response Procedures for Electric Vehicle Fires. Fire Sci. Eng. 2021, 35, 21–29. [Google Scholar] [CrossRef]
- Liu, T.; Tao, C.; Wang, X. Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Appl. Energy 2020, 267, 115087. [Google Scholar] [CrossRef]
- Moon, H.S. Unsteady computational fluid analysis of fluid vibration characteristics of windshield spray nozzle. Master’s Thesis, Kongju National University, Gongju, Republic of Korea, 2020. [Google Scholar]
- Choi, J.H. Experimental and Analytical Study on the Internal Flow Characteristics of Windshield Spray Nozzle According to Design Variables. Master’s Thesis, Kongju National University, Kongju, Republic of Korea, 2021. [Google Scholar]
- Kim, C.-H.; Choi, J.-H.; Park, S.-Y. Performance Development of Fluidic Oscillator Nozzle for Cleaning Autonomous-Driving Sensors. Appl. Sci. 2024, 14, 1596. [Google Scholar] [CrossRef]
- CD-Adapco. Star-CCM+ver. 12.04 User Guide (2017). Available online: https://docs.sw.siemens.com/documentation/external/PL20200805113346338/en-US/userManual/userguide/html/index.html#page/STARCCMP%2FGUID-7DED1D9B-AAA1-48D4-93A0-62B176764E35.html (accessed on 31 August 2020).
- Park, S.Y. Apparatus for Oscillating Fluid Injection. Korea. Patent 10-2273574, 30 June 2021. [Google Scholar]
Model | MR [mm] | IW [mm] | OR [mm] | OW [mm] |
---|---|---|---|---|
Base | 20.7 | 3.60 | 5.11 | 4.50 |
MR-0.93 | 19.25 | |||
MR-0.97 | 20.00 | |||
MR-0.98 | 20.30 | |||
MR-1.01 | 21.00 | |||
MR-1.02 | 21.10 | |||
IW-0.88 | 20.70 | 3.15 | ||
IW-0.94 | 3.38 | |||
IW-1.06 | 3.80 | |||
IW-1.11 | 4.00 | |||
IW-1.18 | 4.25 | |||
IW-1.24 | 4.46 | |||
IW-1.30 | 4.68 | |||
OR-0.98 | 3.60 | 5.00 | ||
OR-1.04 | 5.30 | |||
OR-1.08 | 5.50 | |||
OR-1.12 | 5.70 | |||
OW-0.89 | 5.11 | 4.00 | ||
OW-0.96 | 4.30 | |||
OW-1.04 | 4.70 | |||
OW-1.11 | 5.00 | |||
OW-1.16 | 5.22 | |||
OW-1.20 | 5.40 | |||
OW-1.24 | 5.58 |
Parameter | Unit | Value |
---|---|---|
Mesh type | - | Polyhedral |
Base size | mm | 0.8 |
Number of prism layers | - | 5 |
Prism layer thickness | mm | 0.26 |
Prism layer stretching | - | 1.5 |
Minimum surface size | mm | 0.08 |
Combination | MR [mm] | IW [mm] | OR [mm] | OW [mm] |
---|---|---|---|---|
MR + IW | 20.00 | 4.25 | 5.11 | 4.50 |
MR + OR | 20.00 | 3.60 | 5.50 | 4.50 |
MR + OW | 20.00 | 3.60 | 5.11 | 5.22 |
IW + OR | 20.70 | 4.25 | 5.50 | 4.50 |
IW + OW | 20.70 | 4.25 | 5.11 | 5.22 |
OR + OW | 20.70 | 3.60 | 5.50 | 5.22 |
MR + IW + OR | 20.00 | 4.25 | 5.50 | 4.50 |
MR + IW + OW | 20.00 | 4.25 | 5.11 | 5.22 |
IW + OR + OW | 20.70 | 4.25 | 5.50 | 5.22 |
MR + OR + OW | 20.00 | 3.60 | 5.50 | 5.22 |
MR + IW + OR + OW | 20.00 | 4.25 | 5.50 | 5.22 |
Model | Simulation [°] | Experimental [°] | Error [%] |
---|---|---|---|
Base | 57 | 53 | 7.02 |
MR + OW | 80.5 | 76 | 5.59 |
IW + OW | 79 | 77 | 2.53 |
MR + IW + OW | 84 | 82 | 2.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.-D.; Kim, C.-H.; Park, S.-Y. Improving Fire Suppression Efficiency in Electric Vehicles: A Study on Optimized Upward Spray Devices. Fire 2024, 7, 460. https://doi.org/10.3390/fire7120460
Oh J-D, Kim C-H, Park S-Y. Improving Fire Suppression Efficiency in Electric Vehicles: A Study on Optimized Upward Spray Devices. Fire. 2024; 7(12):460. https://doi.org/10.3390/fire7120460
Chicago/Turabian StyleOh, Jin-Dong, Chan-Hoo Kim, and Sung-Young Park. 2024. "Improving Fire Suppression Efficiency in Electric Vehicles: A Study on Optimized Upward Spray Devices" Fire 7, no. 12: 460. https://doi.org/10.3390/fire7120460
APA StyleOh, J. -D., Kim, C. -H., & Park, S. -Y. (2024). Improving Fire Suppression Efficiency in Electric Vehicles: A Study on Optimized Upward Spray Devices. Fire, 7(12), 460. https://doi.org/10.3390/fire7120460