Study of Fuel-Smoke Dynamics in a Prescribed Fire of Boreal Black Spruce Forest through Field-Deployable Micro Sensor Systems
"> Figure 1
<p>(<b>a</b>) Image of Pelican Mountain unit 5 prescribed fire area, micro-station deployment locations are marked; (<b>b</b>) location coordinates of unit 5 and the sensor systems, cross mark (x) in the figure refers to the assumed center of the fire area from where all distances are measured.</p> "> Figure 2
<p>A schematic diagram for modeling the smoke dynamics. The sensor is assumed to be placed on the left face of the vertical imaginary box. Incoming smoke flux <span class="html-italic">q</span> and propagation direction <span class="html-italic">v</span> are shown by arrows.</p> "> Figure 3
<p>PM<sub>2.5</sub> background concentrations before prescribed fire. Enhancements on the far right indicates the time of fire.</p> "> Figure 4
<p>(<b>a</b>) Ambient temperature variation at different sensor locations for a period of 24 h near the prescribed fire area; (<b>b</b>) relative humidity variations.</p> "> Figure 5
<p>Time series PM<sub>2.5</sub> concentrations at sensor locations downwind of the prescribed fire. Elevated concentrations from flaming and smoldering smokes can be seen during smoke wavefronts A, B, and C, respectively. The symbol in the time axis indicates the time of ignition of fire.</p> "> Figure 6
<p>(<b>a</b>) Curve fitting of decay profile of PM<sub>2.5</sub> concentration during the smoke wavefront A (shown in the time-series plot of <a href="#fire-03-00030-f005" class="html-fig">Figure 5</a>); (<b>b</b>) cure fitting for smoke waveform B; (<b>c</b>) curve fitting for smoke waveform C. Time in x-axis is measured from the peak intensity of smoke-waves.</p> "> Figure 7
<p>(<b>a</b>) Wavefront profile of smoke A modeled through Gaussian fit; (<b>b</b>) wavefront profile for smoke B; (<b>c</b>) wavefront profile for smoke C. Centers in the polar plots represent the center of the fire area and radius represent distances in meters. 90 degrees in polar coordinates represent the north. Symbols show measured data.</p> "> Figure 8
<p>(<b>a</b>) Smoke from ignition line of fire (17:50); (<b>b</b>) spread of fire towards north (17:52); flaming smoke, and vertical lofting direction is shown by arrow; (<b>c</b>) horizontal propagation of smoldering smoke (17:57).</p> "> Figure 9
<p>Smoke propagation speed at sensor locations versus distances. Distances of sensor locations at north (µS303–100), northwest (µS303–200), and northeast (µS303–300) are marked in the figure. Uncertainties in propagation speed estimates are shown by error bars.</p> "> Figure A1
<p>(<b>a</b>) Gaussian fitting of smoke wavefront A; (<b>b</b>) smoke wavefront B; (<b>c</b>) smoke wavefront C. Symbols indicate measured data at the four sensor locations at the time of peak intensities.</p> "> Figure A2
<p>Aerial picture of smoldering smoke propagating in north-northeast direction, taken at 18:31 local time. Sensor deployment locations at ~500 m from the fire area (unit 5) are shown by the dashed line. Mostly horizontal propagation of smoke confined to ground level, especially in the near-field range can be observed.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Micro Sensor Systems
2.3. Data Analysis and Models
2.3.1. Smoke Propagation
- q = flux of PM2.5 in the incoming smoke (µg/m2/s),
- v = propagation velocity of smoke plume wavefront (m/s),
- n = effective concentration of PM2.5 within the vertical three dimensional box (µg/m3),
- Δn = n(t2) − n(t1) = increase in PM2.5 concentration within the box during an interval Δt (µg/m3),
- Δt = t2 − t1 = time interval (s)
- A = area of the imaginary cross section at the measurement location (m2), and
- d = effective length of virtual box where excess PM2.5 distribution is considered to be uniform (m).
2.3.2. Gaussian Profiling of Smoke Dispersion
2.3.3. PM2.5 Emission from Combustion of Fuels
- Q = flow of PM2.5 at the wavefront (µg/s),
- v = smoke propagation velocity (m/s),
- l = length along the arc of the smoke wavefront (m), l1 and l2 are the lower and upper limits describing the smoke wavefront distribution,
- n(l) = PM2.5 density as a function of arc length (µg/m3),
- H = height of smoke plume from ground.
- MPM2.5 = mass of PM2.5 in smoke-wave,
- n(t) = PM2.5 density as a function of time (µg/m3),
- n(t)max = peak PM2.5 intensity at the smoke-wave (µg/m3),
- t0 = onset of smoke-wave detection at sensor location, and
- T = duration of smoke-wave recorded at sensor location (s).
3. Results
3.1. Background Ambient Conditions
3.2. Smoke from Fire
3.3. Smoke Decay Half-Life
3.4. Smoke Wavefronts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Smoke Wavefront Profiling
Curve Fitting | ||||
---|---|---|---|---|
Smoke Wavefront | a | b | c | R-square |
A | 1761 | 71.42 | 21.72 | 1 |
B | 1717 | 105.9 | 21.15 | 1 |
C | 2410 | 68.74 | 22.24 | 1 |
Appendix B. PM2.5 Emission from Combustion of Fuels
Sensor Serial | v (m/s) | vmean (m/s) | Flow at Wavefront Q (µg/s) | ||
---|---|---|---|---|---|
303–300 | 0.68 | 0.77 | 5.87 × 105 | 2.26 × 107 | 15.2 |
303–100 | 0.86 | ||||
303–200 | |||||
401–100 |
Sensor Serial | v (m/s) | vmean (m/s) | Flow at Wavefront Q (µg/s) | ||
---|---|---|---|---|---|
303–300 | 0.23 | 5.57 × 105 | 6.41 × 106 | 3.0 | |
303–100 | 0.23 | ||||
303–200 | 0.22 | ||||
401–100 |
Sensor Serial | v (m/s) | vmean (m/s) | Flow at Wavefront Q (µg/s) | ||
---|---|---|---|---|---|
303–300 | 0.19 | 0.17 | 8.22 × 105 | 6.99 × 106 | 13.3 |
303–100 | 0.15 | ||||
303–200 | |||||
401–100 |
Combustion Phase | Smoke-Wave | PM2.5 Mass M (kg) | Total Emission (kg) |
---|---|---|---|
Flaming | A | 15.2 | 15.2 |
Smoldering | B | 3.0 | 16.3 |
C | 13.3 |
Appendix C. Estimations of Uncertainties
Micro-Station Serial | Location | Distance l (m) | Δl (m) | Δt (s) |
---|---|---|---|---|
µS 303–100 | North | 415 | 50 | 30 |
µS 303–200 | NW | 474 | 80 | 30 |
µS 303–300 | NE | 567 | 80 | 30 |
303–100 | 303–200 | 303–300 | |||||||
---|---|---|---|---|---|---|---|---|---|
Smoke Wavefront | Ul (%) | Ut (%) | UTotal(%) | Ul (%) | Ut(%) | UTotal (%) | Ul (%) | Ut (%) | UTotal (%) |
A | 12.0 | 5.9 | 13.4 | 14.1 | 3.4 | 14.5 | |||
B | 12.0 | 1.6 | 12.2 | 16.9 | 1.4 | 17.0 | |||
C | 12.0 | 1.1 | 12.1 | 14.1 | 1.0 | 14.1 |
References
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef] [Green Version]
- Schutte, A.; Walsh, C.; Tymstra, C.; Levelton Consultants Ltd. Estimating the Air Quality Impacts of Forest Fires in Alberta. In Proceedings of the Sixth Annual Symposium on Fire and Forest Meteorology, Canmore, Canada, 25–27 October 2005. [Google Scholar]
- Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. Ecol. Manag. 2014, 317, 51–60. [Google Scholar] [CrossRef]
- Burling, I.R.; Yokelson, R.J.; Akagi, S.K.; Urbanski, S.P.; Wold, C.E.; Griffith, D.W.T.; Johnson, T.J.; Reardon, J.; Weise, D.R. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Atmos. Chem. Phys. 2011, 11, 12197–12216. [Google Scholar] [CrossRef] [Green Version]
- Akagi, S.K.; Yokelson, R.J.; Burling, I.R.; Meinardi, S.; Simpson, I.; Blake, D.R.; McMeeking, G.R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; et al. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmos. Chem. Phys. 2013, 13, 1141–1165. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manag. Assoc. 2020. (accepted). [Google Scholar] [CrossRef]
- Alberta Wildfire Season Statistics. Available online: https://wildfire.alberta.ca/resources/maps-data/documents/2019AlbertaWildfireStats-Jan08-2020.pdf (accessed on 14 April 2020).
- Huda, Q.; Hidalgo, K.C.; Leon Cevallos, A.J.; Lu, Q.; Collins, M.; Hossain, M. Air Monitoring Micro-Stations for Low Cost and Low Footprint Ambient Monitoring in Community Levels and Remote Locations. In Proceedings of the 112th AWMA Annual Conference & Exhibition, Quebec City, QC, Canada, 25–28 June 2019. [Google Scholar]
- Alberta Ambient Air Quality Objectives and Guidelines Summary. Available online: https://open.alberta.ca/dataset/0d2ad470-117e-410f-ba4f-aa352cb02d4d/resource/4ddd8097-6787-43f3-bb4a-908e20f5e8f1/download/aaqo-summary-jan2019.pdf (accessed on 14 April 2020).
- Johnson, M.C.; Halofsky, J.E.; Peterson, D.L. Effects of salvage logging and pile-and-burn on fuel loading, potential behavior, fuel consumption and emissions. Int. J. Wildland Fire 2013, 22, 757–769. [Google Scholar] [CrossRef]
- Ottmar, R.D. Wildland fire emissions, carbon, and climate: Modeling fuel consumption. Ecol. Manag. 2014, 317, 41–50. [Google Scholar] [CrossRef]
- Lobert, J.M.; Warnatz, J. Emissions from the Combustion Process in Vegetation. In Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires; Crutzen, P.J., Goldammer, J.G., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 1993; pp. 15–37. [Google Scholar]
- Stocks, B.J.; Alexander, M.E.; Wotton, B.M.; Stefner, C.N.; Flannigan, M.D.; Taylor, S.W.; Lavoie, N.; Mason, J.A.; Hartley, G.R.; Maffey, M.E.; et al. Crown fire behaviour in a northern jack pine black spruce forest. Can. J. For. Res. 2004, 34, 1548–1560. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K. Fire Ecology of Pacific Northwest Forests, 1st ed.; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Rein, G.; Cleaver, N.; Ashton, C.; Pironi, P.; Torero, J.L. The severity of smoldering peat fires and damage to the forest soil. CATENA 2008, 74, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.C.; Turetsky, M.R.; Benscoter, B.W.; Wotton, B.M. Fuel load, structure, and potential fire behaviour in black spruce bogs. Can. J. For. Res. 2015, 45, 888–899. [Google Scholar] [CrossRef]
- Wilkinson, S.L.; Moore, P.A.; Flannigan, M.D.; Wotton, B.M.; Waddington, J.M. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ. Res. Lett. 2018, 13.1, 014018. [Google Scholar] [CrossRef]
- Malia, D.; Kochanski, A.; Urbanski, S.; Lin, J. Optimizing smoke and plume rise modeling approaches at local scales. Atmosphere 2018, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Achtemeier, G.L.; Goodrick, S.; Liu, Y.; Garcia-Menendez, F. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke. Atmosphere 2011, 2, 358–388. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Achtemeier, G.; Goodrick, S.; Jackson, W. Important parameters for smoke plume rise simulation with Daysmoke. Atmos. Pollut. Res. 2010, 1, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Clements, C.; Seto, D. Observations of Fire–Atmosphere Interactions and Near-Surface Heat Transport on a Slope. Bound.-Layer Meteorol. 2015, 154, 409–426. [Google Scholar] [CrossRef]
- Burling, I.R.; Yokelson, R.J.; Griffith, D.W.T.; Johnson, T.J.; Veres, P.; Roberts, J.M.; Warneke, C.; Urbanski, S.P.; Reardon, J.; Weise, D.R.; et al. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmos. Chem. Phys. 2010, 10, 1115–11130. [Google Scholar] [CrossRef] [Green Version]
- Achtemeier, G.L. Measurements of moisture in smoldering smoke and implications for fog. Int. J. Wildland Fire 2006, 15, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Bartolome, C.; Princevac, M.; Weise, D.; Mahalingam, S.; Ghasemian, M.; Venkatram, A.; Henry, V.; Aguilar, G. Laboratory and numerical modeling of the formation of superfog from wildland fires. Fire Saf. J. 2019, 106, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The BlueSky smoke modeling framework. Int. J. Wildland Fire 2009, 18, 906–920. [Google Scholar] [CrossRef] [Green Version]
- Mehadi, A.; Moosmuller, H.; Campbell, D.; Ham, W.; Schweizier, D.; Tarnay, J. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef]
- Thompson, D.K.; Schroeder, D.; Wilkinson, S.L.; Barber, Q.; Baxter, G.; Cameron, H.; Hsieh, R.; Marshall, G.; Moore, B.; Refai, R.; et al. Recent crown thinning in a boreal black spruce forest does not reduce spread rate nor total fuel consumption: Results from an experimental crown fire in Alberta, Canada. Fire 2020, 3, 28. [Google Scholar] [CrossRef]
- Stewart, J. Differential Equations. In Calculus Early Transcendentals, 7th ed.; Brooks/Cole: Belmont, CA, USA, 2012; pp. 616–620. [Google Scholar]
Micro-Station Serial | Location | Latitude | Longitude | Distance (m) |
---|---|---|---|---|
µS 303–100 | North | 55.7219 | –113.573 | 415 |
µS 303–200 | NW | 55.7214 | –113.578 | 474 |
µS 303–300 | NE | 55.7211 | –113.566 | 567 |
µS 401–100 | WNW | 55.7296 | –113.581 | 529 |
µS 401–200 | NW | 55.7245 | –113.584 | 973 |
Curve Fitting | ||||||
---|---|---|---|---|---|---|
Smoke Wavefront | no (µg/m3) | v/d (min−1) | σv/d (min−1) | T1/2 (min) | ΔT1/2 (±min) | R-square |
A | 824 | 0.07 | 0.016 | 9.73 | 1.75 | 0.71 |
B | 910 | 0.26 | 0.059 | 2.71 | 0.51 | 0.97 |
C | 901 | 0.04 | 0.002 | 17.76 | 0.85 | 0.91 |
303–100 | 303–200 | 303–300 | |||||||
---|---|---|---|---|---|---|---|---|---|
Smoke Wavefront | Time of Travel (min) | Distance (m) | Prop. Rate (m/s) | Time of Travel (min) | Distance (m) | Prop. Rate (m/s) | Time of Travel (min) | Distance (m) | Prop. Rate (m/s) |
A | 8 | 415 | 0.86 | 14 | 567 | 0.68 | |||
B | 30 | 415 | 0.23 | 36 | 474 | 0.22 | |||
C | 45 | 415 | 0.15 | 51 | 567 | 0.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huda, Q.; Lyder, D.; Collins, M.; Schroeder, D.; Thompson, D.K.; Marshall, G.; Leon, A.J.; Hidalgo, K.; Hossain, M. Study of Fuel-Smoke Dynamics in a Prescribed Fire of Boreal Black Spruce Forest through Field-Deployable Micro Sensor Systems. Fire 2020, 3, 30. https://doi.org/10.3390/fire3030030
Huda Q, Lyder D, Collins M, Schroeder D, Thompson DK, Marshall G, Leon AJ, Hidalgo K, Hossain M. Study of Fuel-Smoke Dynamics in a Prescribed Fire of Boreal Black Spruce Forest through Field-Deployable Micro Sensor Systems. Fire. 2020; 3(3):30. https://doi.org/10.3390/fire3030030
Chicago/Turabian StyleHuda, Quamrul, David Lyder, Marty Collins, Dave Schroeder, Dan K. Thompson, Ginny Marshall, Alberto J. Leon, Ken Hidalgo, and Masum Hossain. 2020. "Study of Fuel-Smoke Dynamics in a Prescribed Fire of Boreal Black Spruce Forest through Field-Deployable Micro Sensor Systems" Fire 3, no. 3: 30. https://doi.org/10.3390/fire3030030
APA StyleHuda, Q., Lyder, D., Collins, M., Schroeder, D., Thompson, D. K., Marshall, G., Leon, A. J., Hidalgo, K., & Hossain, M. (2020). Study of Fuel-Smoke Dynamics in a Prescribed Fire of Boreal Black Spruce Forest through Field-Deployable Micro Sensor Systems. Fire, 3(3), 30. https://doi.org/10.3390/fire3030030