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Abstract: This work introduces a model for lead-acid battery health monitoring in automo-
biles, focusing on detecting degradation before complete failure. With the proliferation of
electronic modules and increasing power demands in vehicles, along with enhanced sensor
data availability, this study aims to investigate battery lifespan. Dead batteries often lead to
customer dissatisfaction and additional expenses due to inadequate diagnosis. This study
seeks to enhance predictive diagnostics and provide drivers with timely warnings about
battery health. The proposed method employs the Detrended Cross-Correlation Analysis
Coefficient for end-of-life detection by analyzing the cross-correlation of voltage signals
from batteries in different states of health. The results demonstrate that batteries with a
good state of health exhibit a coefficient consistently within the statistically significant
cross-correlation zone across all time scales, indicating a strong correlation with reference
batteries over extended time scales. In contrast, batteries with a deteriorated state of health
compute a coefficient below 0.3, often falling within the non-significant cross-correlation
zone, confirming a clear decline in correlation. The method effectively distinguishes batter-
ies nearing the end of their useful life, offering a low-computational-cost alternative for
real-time battery monitoring in automotive applications.

Keywords: lead-acid battery; state of health; automotive; ρDCCA

1. Introduction
The use of motor vehicles is common in people’s daily lives, allowing for transporta-

tion to work or leisure, whether planned or in emergencies. One of the fundamental points
for the beginning of this journey is to start the car.

When analyzing the simplified operation of the system, the starter motor of the car,
plugged in a lead-acid battery, allows the combustion engine to start rotating. The engine
control module coordinates fuel injection and controls sparks in the engine cylinders, and
the energy generated by internal combustion keeps the engine running. At this moment,
the starter motor can be deactivated [1] and the alternator starts to convert the rotation of
the engine shaft into voltage and electrical current, allowing the system to remain stable
and the lead-acid battery also to be recharged [2].
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There have been few changes in automotive lead-acid batteries technology over the
past 90 years. With respect to design and manufacturing process technologies, batteries
are expected to have an average lifespan ranging from 2 to 7 years (depending on climatic
conditions), reliability and robustness, cold start capacity, and the ability to meet all these
requirements with minimal material consumption, weight, and cost [2].

Despite having a relatively low energy density, only 30 to 40% of the conceptual limit
when compared to 90% for lithium-ion batteries, lead-acid batteries are advantageous
due to their use of abundant, nonflammable, and low-cost materials, and water-based
electrolyte. Additionally, manufacturing practices with a 99% recycling rate significantly
minimize their environmental impact [3,4].

If the starter motor does not function properly, one of the possible causes is malfunction
of the lead-acid battery. The battery undergoes wear over time, until a moment when it
ceases to serve its primary function [5]. To monitor the state of a battery, many automakers
use sensors in close proximity. This sensor setup is known as the Battery Monitor Sensor
(BMS) [1], which typically monitors current, temperature, and battery voltage. In some
applications, the BMS is positioned directly on the negative terminal of the battery and
communicates through a Local Interconnect Network protocol with an Engine Control
Module, in some cases with the Body Control Module (BCM) of the vehicle.

An automotive battery is a complex nonlinear electrochemical process for which
behavior analysis is needed to determine its usage conditions, such as the State of Charge
(SOC) and State of Health (SOH). From this battery data acquisition by the BMS and sharing
with the BCM, several control strategies have been developed and implemented, such as
inferring the SOC of the battery from a combination of the voltage and the delta of the
current entering and leaving the battery. The SOH is calculated as the ratio of the actual
cell capacity resistance to its initial value [6–8]

Nowadays, innovations and cutting-edge advancements in renewable energy con-
version are transforming global energy systems, such as hybrid electric vehicles (HEVs)
and renewable electricity generation, to significantly decrease reliance on fossil fuels [9].
Despite the widespread adoption of lithium-ion batteries in HEVs, lead-acid batteries
have remained the predominant electrochemical power source for medium-to-large energy
storage applications since their development [10].

Lead-acid batteries are required to operate under partial state of charge conditions
for renewable energy storage and HEV applications, but a specific failure mode known as
sulfation degrades their capacity and performance [11]. To address this challenge, a new
technology called Lead-Carbon Batteries has emerged, incorporating functional carbon
additives into the negative active material to raise the performance of traditional lead-acid
batteries [12].

Another current application of lead-acid batteries is in electric two-wheeler vehicles
(E2Ws), which are equipped with electric motors rated for continuous power between 0.25
and 4 kW, have a top speed of 45 km/h, and require approximately 8 h to charge. These
vehicles are overwhelming sold in Asian markets, particularly in China and Vietnam [13].
E2Ws are regarded as significantly more energy efficient than their petrol-based counter-
parts, consuming three to five times less energy than gasoline-powered two-wheelers [14].
For lower-income countries, E2Ws present an attractive alternative, as they are more af-
fordable compared to gasoline cars. With prices starting from around EUR 100 [15], E2Ws
provide an economical and sustainable transportation option, making them especially
appealing in regions where cost is a critical factor in purchasing decisions.

There have always been complaints about batteries failing without prior notice to the
driver. Battery degradation is natural and expected, but the lack of information provided
by the monitoring system can make this event a major issue for the driver [16]. This work’s
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main objective is to propose a go/no-go test for the SOH of lead-acid batteries. Our
hypothesis is that batteries with deteriorated SOH exhibit a decay in cross-correlation
with batteries in good SOH when analyzed across multiple time scales. This diagnostic
method, based on the Detrended Cross-Correlation Analysis Coefficient (DCCAC), aims to
identify this correlation decay, providing a clear indication of whether a battery remains in
good condition or is nearing the end of its useful life. This approach helps drivers avoid
unexpected failures and plan timely replacements.

2. Methods and Models for Evaluating Battery SOH Literature Review
Firstly, an analysis of methods and models for evaluating the health of a vehicle

battery was developed based on the current literature. A search was conducted in the
ScienceDirect, Springer, and IEEE repositories using the terms (SoH OR “State of Health”)
AND “Lead-Acid Battery” AND (automotive OR vehicle). A total of 431 research articles,
161 review articles and 81 book chapters were obtained from ScienceDirect, 31 articles from
Springer Link, and 21 articles from IEEE. Subsequently, some terms were considered for
the removal of documents: items related to lithium-ion batteries, stationary usage batteries,
solar energy applications, or purely electric vehicles batteries. Thus, this work presents the
main findings identified in articles published since 2003.

Hariprakash et al. [17] reported that electrochemical sparse-impedance spectroscopy
has proven to be an effective technique for assessing the SOH of sealed automotive lead-
acid batteries, as it enables onboard data collection within the vehicle. They predicted that
sparse-impedance spectroscopy could be increasingly applied in future vehicles to monitor
the SOH of lead-acid battery systems.

A proposal was presented by May [18] for monitoring batteries under stop-start
conditions, which included monitoring the SOC, SOH, open circuit voltage, voltage drop
during startup, and voltage response to small loads. They concluded that the SOC and SOH
are critical for achieving reliability standards. Similarly, Blank et al. [19] used the current
and calculation of voltage ripples acquired with an electrochemical impedance spectroscopy
meter across different frequency ranges to perform battery prognostics, concluding that
impedance measurement is an effective tool for assessing battery states.

In the study presented by Okoshi et al. [20], the focus was on improving the accuracy
of SOC inference by utilizing Direct Current Resistance (DCR), thereby enhancing the
correlation between the SOC and DCR. Zhang et al. [21] monitored the SOH of the battery
during engine startup, introducing a new battery model that considered the internal
resistance of the battery and the voltage drop during startup. This approach achieved better
battery diagnostic performance compared to the conventional method at the time, which
was based on resistance. They also suggested the use of detection methods with statistical
models for future research.

Ushiyama and Masayuki [22] also focused their study on SOH estimates for lead-
acid batteries, specifically by considering the waveforms of voltage and current at the
battery terminals during operation. They produced their SOH estimates by analyzing
changes in the battery’s internal resistance and capacitance. Aware of the limitations of
SOH measurement by inference, Marcos et al. [23] proposed measuring the SOH and SOC
through the electrolyte density, using an optical fiber inserted into the battery. However,
a downside of this research, when compared to the study in this dissertation, is that it
requires an invasive method to obtain and measure the electrolyte density.

Li et al. [24] proposed an approach for estimating the SOC and SOH using a dynamic
data-driven method, applying Symbolic Dynamic Filtering along with a D-Markov machine
and a Probabilistic Finite State Automaton. It considered the current and voltage as
parameters in a time series, resulting in a dynamic data-driven method as an alternative to
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traditional battery model-based methods. Li et al. [25] also presented a study involving
battery current time series alongside voltage, which can be considered a continuation of
the previous research presented in [24].

Kerley et al. [26] presented a system for measuring the SOH based on the battery’s
voltage drop curve during a startup event, monitoring the first two voltage drops over
time, along with the battery’s temperature and the SOC. The algorithm developed can raise
warnings of battery SOH deterioration, but it still needs improvements to increase system
reliability. This application was tested in a controlled environment. For future research,
Kerley et al. [26] suggested applying the algorithm in real-world scenarios, along with
field tests.

In the article presented by Piłatowicz et al. [27], a model based on the Butler–Volmer
equation was introduced, capable of accurately predicting the battery’s voltage response
across a wide range of discharge currents, SOC, and temperatures. The model successfully
predicted the battery’s voltage drop even in a dynamic environment with varying electrical
loads and operating conditions, including scenarios with low battery SOC.

Hyun [28] proposed a method for estimating battery SOH during the startup phase,
using only the SOC, battery temperature, and the voltage drop from the resting state to
the first voltage dip, as well as between the first and second voltage dips. The result was a
system capable of estimating the SOH without the need for a current sensor installed in
the vehicle.

In the work presented by Bressanini et al. [29], a design and implementation of an
SOH and SOC estimator model were presented. The SOH estimation was based on the
battery’s internal resistance, while the SOC was determined using the Coulomb counting
method during the battery’s charge and discharge phases. For SOC estimation, the mea-
surements considered the currents entering and exiting the battery, while the SOH was
assessed during the initial charging stages of the battery. Kwiecien et al. [30] provided an
overview indicating that automotive lead-acid battery technologies still face numerous
challenges and are expected to continue evolving over the next two decades. They also
highlighted the importance of battery sensors (BMS) for real-time monitoring of battery
current, voltage, and temperature, along with the implementation of adaptive algorithms
and high parameterization work as key paths for advancement. Kwiecien et al. [30] further
suggested that determining the available battery capacity throughout its lifespan, which is
directly related to the SOH, remains an unsolved issue.

Zhang et al. [31] presented a study with a focus on battery modeling. In this case, a
distinction was made between the explanation of the thermal and electrical phenomena
of the battery, as well as the evolution of major battery failures. This was followed by the
application of a two-time-scale method in a model-based estimator. The algorithm in the
broader time scale monitors the battery and adjusts the parameters of the model on the
more immediate scale. It was concluded that the hybrid algorithm system was able to
monitor the battery and continuously self-adjust over time.

From a hardware perspective, and with regard to the study of battery modeling, Kumar
et al. [32] presented a battery SOC and SOH estimator based on a Neuro-Fuzzy approach
and statistical models, implemented on a Field-Programmable Gate Array (FPGA) within a
BMS. The model took into account the consumption time, electrical current drain, terminal
voltage, temperature, and internal battery resistance. This study provided an alternative
for BMS systems, highlighting advantages such as low non-recurring engineering costs,
low power consumption, high processing speed, configurable logic, large storage capacity,
and more flexible interfaces.

Wassiliadis et al. [33] developed Kalman filter studies by using an extended double
Kalman Filter (KF) to estimate the SOC and SOH in a case study focused on battery life
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cycle analysis. They used battery resistance and capacity estimates as parameters. The
study concluded that this method is essential for improving model accuracy and enhancing
the robustness of the filters, especially for aged batteries.

Further, Khaleghi et al. [34] proposed a data-driven algorithm under multiple condi-
tions to estimate the SOH using known load applications. They used a driving cycle called
the Worldwide Light Duty Driving Test Cycle in the laboratory to perform acquisitions
simulating real-world usage. Indicators obtained through time and frequency domain
measurements of the voltage and current over defined time intervals were used, allowing
for real-time investigation of battery SOH degradation.

Li et al. [35] presented an article on a battery management system based on cloud
processing, utilizing a Digital Twin for the SOH and SOC of the battery. The study con-
sidered a context where battery data would be available via the Internet of Things, mak-
ing this initiative feasible. For this work, equivalent circuit models, electromechanical
models, and machine learning models were used, with the pros and cons of each model
being considered.

Calborean et al. [36] introduced a new approach using Electrochemical Impedance
Spectroscopy to predict the lifespan of battery cells under specific aging conditions. Fluc-
tuations were monitored during charge and discharge sequences at two SOC levels. By
studying the resonance frequencies of the batteries during the aging process, a trend in the
battery’s SOH was identified.

Guida et al. [37] proposed the ERMES algorithm which offers a robust and computa-
tionally efficient method for real-time estimation of a battery’s SOC and SOH, addressing
the challenges posed by complex and time-varying battery dynamics. A key feature of
ERMES is its ability to capture sudden SOH variations based on a simple battery model,
with potential for extension to other parameters. The algorithm also provides a figure of
merit, called the SOU, which measures the accuracy of its estimates, allowing for real-time
monitoring of its robustness. If prediction uncertainty exceeds a certain threshold, the
system can dynamically adjust the model composition, such as by fine-tuning parameters
or adding models close to the current SOH estimate.

In summary, there are several algorithms used for the estimation of the SOC and
SOH of batteries. The voltage method for estimating the SOC involves measuring the
open-circuit voltage of the battery and then comparing it to either a lookup table or a
mathematical model. Although this approach is noninvasive, it is susceptible to fluctu-
ations in temperature and the evolving nature of battery aging [29,38,39]. The Coulomb
counting method estimates the SOC by integrating the current flowing in and out of the
battery. Although this method is simple to implement, it is vulnerable to cumulative errors
stemming from inaccuracies in measurements, parasitic currents, and variations in battery
capacity due to temperature and aging fluctuations [40–42]. The KF approach utilizes a
recursive filter algorithm along with a comprehensive mathematical model of the battery.
While offering a more precise estimation of the SOC when compared to other methods
such as Coulomb counting and voltage estimation [43], this approach requires substan-
tial computational resources, constraining its practicality in resource-limited applications,
especially in the automotive sector [33,44].

The Neural Network method involves training a neural network using a dataset of
batteries measurements to establish a correlation between input parameters (such as the
ampere, temperature, and voltage) and the SOC. Subsequently, the neural network is
employed to forecast the SOC or SOH based on real-time or historical battery data [45,46].
However, the effective deployment of this algorithm heavily depends on the presence
of a sizable and varied dataset for training the neural network, along with a remarkable
computational resources for both training and inference tasks [47].
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Jiang and Song ([46]) provided an extensive evaluation and comparison of different
methods for analyzing the SOH of batteries. An ideal SOH estimation method that can
be applied in any charging or discharging situation, and can be used quickly, accurately,
and economically, does not exist yet. However, the KF method and its variants, along with
data-driven methods or a combination of these two types of methods, appear to be the
most promising candidates for achieving the best possible SOH estimation.

The KF method and its variants have been proven effective in state of charge (SOC)
estimation under complex working conditions, and can at least provide a rough estimate of
battery SOH online. However, the accuracy of these methods in SOH estimation requires
further testing, and the selection of different KF variants to balance estimation accuracy
and computational cost needs additional study. For data-driven methods, some quick and
accurate SOH estimations have been achieved, but the challenge remains in extracting
features closely related to the battery’s SOH from data obtained under irregular charging
and discharging conditions [46].

3. Materials and Method
3.1. Data Acquisition and Vehicle Setup

For data acquisition, a PicoScope 2204A digital oscilloscope from the 2000 series was
used, with a bandwidth of 10 MHz and 8-bit resolution at 100 MS/s, connected to a laptop
running the PicoScope 6 application, version 6.14.23.5207. The probe tip was positioned
directly on the battery terminals for voltage acquisition. The setup used for acquisitions
was +/− 20 V and 100 ms/div, with a trigger for voltage drops below 10 V. The sampling
rate in the BMS-BCM system available in vehicles was adjusted to 1ms per point.

Following the instrumentation, a Vehicle Start and Stop procedure was performed.
At this stage, battery rest was preconditioned for at least 12 h with the vehicle at rest after
use. During this stage, the voltage time series data to be evaluated were collected. All data
were collected at the same time of day, on a single day in an indoor environment, ensuring
conditions without significant changes in equipment temperature. The collected data were
filtered to display only the area of interest, keeping the initial point of all measurements
aligned at the same moment, i.e., the zero point before voltage drops, allowing monitoring
of each millisecond of the measurements while maintaining the same length of the time
series. It is important to define the length of the time series, because a finite number of
records can introduce unacceptable fluctuations and bias in statistical calculations. To
ensure reliable analysis, our final dataset consists of 1193 points per vehicle, which provides
a sufficient number of data points to capture the voltage behavior up to a stable reference
point in the graph.

The tested vehicles were as follows:

• Y1.1 = Subcompact car, 1.5 L engine, with 1 month of battery usage
• Y1.2 = Subcompact car, 1.5 L engine, with 6 months of battery usage
• Y1.3 = Subcompact car, 1.5 L engine, with 32 months of battery usage
• Y2.1 = Compact car, 2.0 L engine, with 15 months of battery usage
• Y2.2 = SUV car, 2.0 L engine, with deteriorated SOH
• Y2.3 = SUV car, 2.0 L engine, where the original battery was replaced by an aftermarket

battery. Aftermarket battery with 6 months of usage
• Y2.4 = SUV car, 2.0 L engine, with deteriorated SOH. The battery received a new

charge before the measurement

The starter motor system and engine are the same for the Compact (Y2.1) and SUV
(Y2.2, Y2.3, and Y2.4) vehicles. During the data acquisition and subsequent filtering of
voltage time series, it was possible to obtain the set of curves presented in Figure 1. A
voltage drop can be observed at the moment of starting, which is particularly pronounced
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in batteries with deteriorated SOH. In vehicles Y2.2 and Y2.4, the initial voltage dip was
not only deeper but also took longer to recover, indicating a reduced capacity to supply
the necessary current. Comparatively, vehicles Y1.1 and Y2.1, which served as baselines,
exhibited a more stable voltage profile, with a faster recovery to nominal voltage values.
This suggests that the ability of a battery to maintain voltage under load conditions is
directly correlated with its SOH. Additionally, the oscillations observed in the voltage time
series for vehicles with degraded batteries may indicate increased internal resistance and re-
duced charge retention capacity. As the engine starts, the voltage tends to increase until the
voltage returns above 12 volts, which is characteristic of a functioning combustion engine.

Figure 1. Filtered data collected for the 7 vehicles. The axis Y is the measured voltage (V) in each
vehicle and the axis X is the time in milliseconds.

3.2. Detrended Cross-Correlation Analysis Coefficient

The DCCAC was first introduced and implemented by Zebende [48]. It uses detrended
fluctuation analysis (DFA) [49] and detrended cross-correlation analysis (DCCA) [50] to
measure the degree of cross-correlation. These methods have been applied in mobility [51],
biological processes [52], climate [53], econophysics [54–57], big data [58], and epidemic
data series [59–61]. It provides an index for quantifying the cross-correlation between two
nonstationary time series [62]. Examining these fluctuations enables the identification of
co-movements between two time series.

Two studies may be highlighted regarding the application of DCCAC to evaluate
different behaviors. Azevedo et al. [51] proposed a method to assess the impact of rainfall
on bus accessibility for passengers with disabilities and the elderly compared to other
passengers. Using the DCCAC, they identified the bus lines and city areas with the worst
accessibility for PWD and elderly passengers during the rainy season. Dong and Gao [63]
analyzed a twin-engine aircraft and found that the fuel flow time series from the left
and right engines exhibited significantly stronger cross-correlations than the exhaust gas
temperature time series from the same engines.

Compared to Pearson’s method, the DCCAC is more robust to contaminated noises
and less sensitive to the amplitude ratio between slow and fast components [64]. This is
an efficient correlation coefficient used to estimate correlations between non-stationary
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time series. The method also follows the procedure of [65] to test the significance of the
correlation and calculate the 95% confidence intervals for non-significant results.

DCCAC is calculated using the following equations [48]:
Consider two paired time series, {xt} and {yt}, where t = 1, 2, . . . , N, with N rep-

resenting the total length of the time series. To remove non-stationary trends and better
analyze the cross-correlations between the two time series, the cumulative sum (integra-
tion) of each series is computed to obtain two new integrated time series, as shown in
Equation (1).

xxk =
k

∑
t=1

xt and yyk =
k

∑
t=1

yt, k = 1, 2, . . . , N (1)

Next, the integrated time series {xxk} and {yyk} are divided into overlapping boxes
of equal length s. The number of overlapping boxes is given by (N − s), and the box length
s is constrained within the range 4 ≤ s ≤ N

4 .
Within each box, the local trend of the time series is estimated using a least-squares

polynomial fit, denoted as xPi(k) for {xxk} and yPi(k) for {yyk}. The residuals from these
local trends represent detrended fluctuations, which are used to compute the covariance of
residuals within each box, as given by Equation (2).

f 2
xy(s, i) =

1
s + 1

i+s

∑
k=1

(xxk − xPi(k))(yyk − yPi(k)) (2)

To obtain a global measure of covariance across all overlapping boxes, the average of
the covariance over all boxes is computed, yielding the detrended covariance function, as
shown in Equation (3).

F2
xy(s) =

1
N − s

N−s

∑
i=1

f 2
xy(s, i) (3)

Finally, the Detrended Cross-Correlation Analysis Coefficient (DCCAC) is determined
using Equation (4). The DCCAC normalizes the covariance function by the individual
detrended fluctuation functions Fxx(s) and Fyy(s), which represent the auto-affinity of each
time series.

DCCAC(s) =
F2

xy(s)
Fxx(s)Fyy(s)

(4)

The DCCAC is a dimensionless coefficient. Its value ranges between −1 and +1,
where:

• DCCAC = +1: the time series are perfectly cross-correlated;
• DCCAC = 0: indicates no cross-correlation between the two analyzed time series;
• DCCAC = −1: the time series are perfectly anti-correlated.

By applying this method to battery voltage time series, it becomes possible to quantify
how the cross-correlation strength varies across multiple time scales, allowing for an
effective comparison of batteries with good and deteriorated SOH.

3.3. Interpreting DCCAC Results for Battery SOH Evaluation

In the context of battery SOH evaluation, DCCAC allows for the comparison of voltage
signals from a battery under test with a reference battery in good condition. The main
hypothesis is that batteries with deteriorated SOH exhibit a decay in correlation with
healthy batteries across multiple scales. By analyzing this behavior, it becomes possible to
determine whether a battery is in good SOH condition or approaching failure.

When interpreting the DCCAC results, a battery with good SOH should exhibit a
significant and increasing DCCAC value as the time scale increases, inside the zone B,
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green color, presented in Figure 2. This indicates that the voltage signals maintain strong
cross-correlation, which is expected for batteries operating under similar conditions. In
contrast, batteries with degraded SOH show weaker correlation, with DCCAC values that
remain low or statistically non-significant across different time scales, partially inside the
zone A, grey color, presented in Figure 2. This pattern suggests a disruption in the expected
voltage behavior during engine ignition.

Another key aspect of the analysis is the presence of results falling within the non-
significant cross-correlation area. Batteries with severely deteriorated SOH tend to have
most of their computed DCCAC values within this non-significant range, inside the zone
A, grey color, presented in Figure 2. This means that their voltage signals do not exhibit a
meaningful correlation with a healthy reference battery, reinforcing the conclusion that the
battery is no longer performing optimally. The ability to distinguish between significant
and non-significant cross-correlation is crucial for establishing a clear threshold for battery
failure detection.

Figure 2. DCCAC results interpretation: Zone A is defined by the 95% confidence interval upper limit
(UL) and 95% confidence interval lower limit (LL) and represents the statistically non-significant area,
calculated using the method proposed by Podobnik et al. [65]. Zone B corresponds to the statistically
significant area, where meaningful correlations can be observed. Batteries with good SOH should
have all computed DCCAC results within Zone B, indicating significant cross-correlation with the
reference battery.

4. Results and Discussion
First, one baseline vehicle was selected for each engine displacement. Vehicles Y1.1

and Y2.1 presented the lowest MIS and the best battery SOH. Thus, vehicles with the
same engine displacement were evaluated against the baseline vehicle. The DCCAC
was calculated for the pairs Y1.1,Y1.2 and Y1.1,Y1.3 for 1.5L engine displacement. Pairs
Y2.1,Y2.2, Y2.1,Y2.3, and Y2.1,Y2.4 were evaluated for 2.0L engine displacement.

Figure 3 shows the results for 1.5L engine displacement. All the batteries are in good
SOH. The DCCAC for the pair Y1.1,Y1.2 exhibits a steady increase from 0.0613 at n = 4 to
0.5880 at n = 285, indicating a progressively stronger correlation as the box size increases.
This behavior was noticed in batteries operating under similar conditions. For the pair
Y1.1,Y1.3, the DCCAC follows a similar trend but reaches a higher value of 0.8829 at
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n = 285, indicating a strong cross-correlation between these two vehicles. Despite the
32-month usage period of the Y1.3 battery, the results suggest that it retains a stable voltage
profile comparable to that of a new battery. The highlight in Figure 3 is the pattern of
the rising curve for batteries with good SOH, demonstrating how the cross-correlation
strengthens from short- to long-term scales.

Figure 3. DCCAC of the following vehicle pairs: Y1.1,Y1.2 and Y1.1,Y1.3. Vehicle Y1.1 is the baseline
for this analysis. The 95% confidence interval upper limit (UL) and 95% confidence interval lower
limit (LL) are also presented.

The results for 2.0L engine displacement are presented in Figure 4. Only the baseline
and Y2.3 vehicles have batteries in good condition of use, with adequate SOH. The DCCAC
increases from 0.0210 at n = 4 to 0.7263 at n = 285 for the Y2.1,Y2.3 pair. The pair Y2.1,Y2.2
and Y2.1,Y2.4, both featuring vehicles with deteriorated SOH, present weak and statistically
non-significant DCCAC values across all time scales. Even in the case of Y2.4, where the
battery was recently recharged, the DCCAC remains low. This suggests that recharging a
battery with degraded SOH does not restore its ability to sustain voltage stability under load.
The lack of significant correlation in these cases highlights a fundamental deterioration in
battery performance, further reinforcing the effectiveness of DCCAC in identifying failing
batteries. In contrast, the rising curve trend seen in Figure 3 is also observed in Figure 4
for the pair Y2.1,Y2.3, reinforcing that batteries with good SOH maintain a consistent and
increasing cross-correlation coefficient from short- to long-term scales.

Finally, it was verified that the method cannot be applied to compare different engine
displacements using a unique baseline engine as a reference. Figure 5 evaluates the pairs
Y2.1,Y1.2 and Y2.1,Y1.3 against the 95% confidence intervals. Vehicle Y2.1, with a 2.0-L
engine, serves as the baseline for this analysis, while Y1.2 and Y1.3 are 1.5 L engine vehicles
with batteries in good SOH. Initially, DCCAC values for the pair Y2.1,Y1.2 are not statisti-
cally significant, as they fall between the UL and LL for almost all boxsizes. As the boxsize
increases (n ≥ 224), DCCAC values exceed the UL, indicating statistically significant posi-
tive cross-correlation. For the pair Y2.1,Y1.3, DCCAC values are significant for smaller box
sizes (n > 38), but become statistically insignificant afterward, almost mimicking the other
analyzed pair for the remaining box sizes. However, unlike the rising curves observed in
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Figure 3, Figure 5 presents a break in the constant rising pattern, indicating that DCCAC
comparisons between different engine displacements may be unfeasible.

Figure 4. DCCAC of the following vehicle pairs: Y2.1,Y2.2; Y2.1,Y2.3 and Y2.1,Y2.4. Vehicle Y2.1
is the baseline for this analysis. The 95% confidence interval upper limit (UL) and 95% confidence
interval lower limit (LL) are also presented.

Figure 5. DCCAC of the following vehicle pairs: Y2.1,Y1.2 and Y2.1,Y1.3. Vehicle Y2.1 is the 2.0 L
engine baseline for this analysis, and Y1.2 plus Y1.3 are 1.5 L engine vehicles with batteries with good
SOH. The 95% confidence interval upper limit (UL) and 95% confidence interval lower limit (LL) are
also presented.

Overall, a vehicle with a battery with adequate SOH will present significant DCCAC
values across all box sizes n when compared to the baseline vehicle. The coefficient increases
for long-term boxes, creating a rising pattern for the curve. A battery with deteriorated
SOH will present DCCAC values that are weak or statistically non-significant for both
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short- and long-term boxes when compared to those of the baseline vehicle with a battery
in good SOH. DCCAC is a simple method to implement, with low computational cost,
and can be used as a vehicle feature to identify deteriorated SOH before the battery is
completely dead and the engine cannot start.

5. Conclusion
This work applied the DCCAC method to evaluate the SOH of lead-acid batteries

using a time series of voltage measurements during vehicle start-up. A comparison of a
battery with SOH deterioration and one without signs of deterioration, within the same
engine displacement, did not show a statistically significant cross-correlation, while com-
parisons between batteries with an adequate SOH state showed a statistically significant
cross-correlation across the size boxes of time. This difference in behavior allowed for
the segregation of batteries with adequate SOH from those with deteriorated SOH, near-
ing the end of their useful life, even though the battery is still capable of starting the
combustion engine.

This approach may offer advantages over other SOH estimation methods in the lit-
erature. It does not require complex modeling, extensive datasets, or high computational
resources, making it an efficient, cost-effective solution for real-time battery monitoring in
automotive systems. The DCCAC method can be integrated into vehicles to identify deteri-
orating SOH before the battery reaches critical failure levels, offering drivers a preemptive
alert and allowing better maintenance planning.

An essential step in comparing a battery with a good SOH to one with a deteriorated
SOH is the calculation of the statistically non-significant zone. This step is crucial as it
enables a meaningful comparison of results and helps define the critical region for the
cross-correlation index. By establishing this zone, it becomes possible to accurately identify
the thresholds where the cross-correlation index indicates potential concern regarding
battery health.

When compared to lithium-ion batteries, 12 V lead-acid batteries continue to hold a
significant share in the global market. However, their challenges in operating efficiently
under high-rate partial state of charge conditions make them less suitable for use in EVs.
And in HEVs, the DCCAC needs to be tested and analyzed before it can be considered
able to monitor battery degradation under partial state-of-charge conditions, a critical
factor for ensuring optimal performance and longevity in energy storage applications.
An option may be the usage of the method in E2Ws, which rely heavily on efficient and
affordable lead-acid battery systems, where DCCAC offers a low-cost, computationally
efficient approach to identify battery deterioration before the critical failure occurs.

Despite being used for the last few decades as an energy storage technology, lead-acid
batteries will continue to play a crucial role in the global rechargeable battery market,
offering significant advantages in terms of cost-effectiveness and recyclability. Future
research should focus on expanding the application of DCCAC to different types of batteries,
such as lead-carbon batteries, as well as integrating this method with other diagnostic tools
to enhance predictive accuracy. It may also work with lithium-ion batteries, but new studies
require to be conducted to confirm it. Real-world testing across various environmental
conditions and usage patterns will help refine the method, potentially leading to improved
models for predicting battery SOH across broader contexts. This work presents a new
direction for improving battery health monitoring in the automotive industry.
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