3D Hand Motion Generation for VR Interactions Using a Haptic Data Glove
<p>Overview of 3D hand position estimation using ultrasonic and inertial sensors.</p> "> Figure 2
<p>The closest point, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>, to the intersections, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>E</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>E</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>, of the two ultrasonic direction vectors, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>→</mo> </mover> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>→</mo> </mover> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>, which are obtained from the source localization methods [<a href="#B32-mti-08-00062" class="html-bibr">32</a>], is estimated as the 3D location of the ultrasonic waves.</p> "> Figure 3
<p>The placements of the IMU sensors (blue) on a hand: the distal phalange (DP) bones, the distal interphalangeal (DIP) joints, the medial phalange (MP) bones, the proximal interphalangeal (PIP) joints, the proximal phalange (PP) bones, the metacarpophalangeal (MCP) joints, and the intermetacarpal (IMC) joints.</p> "> Figure 4
<p>Overview of the haptic force feedback using SMA wires (springs) for VR interactions.</p> "> Figure 5
<p>SMA actuator: (<b>a</b>) the SMA wire and (<b>b</b>) the deformed wire in the form of a spring (a diameter of 5 mm and a helical pitch of 0.5 mm).</p> "> Figure 6
<p>SMA actuation forces: (<b>a</b>) the measurement setup, (<b>b</b>) the pulling forces with the powers supplied to the spring from 0 to 3.2 W, and (<b>c</b>) the temperature variation of the pulling forces.</p> "> Figure 7
<p>SMA cooling: (<b>a</b>) the thermoelectric pad with a size of 25 × 80 mm and (<b>b</b>) overall cooling structure.</p> "> Figure 8
<p>Prototype of the implemented device for 3D hand motion generation.</p> "> Figure 9
<p>Comparison of tracking hand positions in 3D space between the proposed device (green) and the VIVE tracker (red).</p> "> Figure 10
<p>Circuit design for the power control to the SMA springs and thermoelectric pad.</p> "> Figure 11
<p>Prototype of the implemented device for haptic force feedback.</p> "> Figure 12
<p>Comparison of the SMA cooling rate between the static air and proposed method.</p> "> Figure 13
<p>Training the use of a fire extinguisher using the haptic glove: (<b>a</b>) VR application and (<b>b</b>) radar chart (force feedback for squeezing and releasing the handle, nozzle vibration and reaction, and VR immersion) surveyed from user experiences.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Hand Motion Tracking
2.2. Haptic Feedback
3. Design and Implementations
3.1. Hand Position Estimation
3.2. Finger Rotation Estimation
3.3. Haptic Force Feedback
3.3.1. SMA Actuator
3.3.2. SMA Cooling
4. Experimental Results
4.1. Hand Motion Generation
4.2. Haptic Feedback with Cooling Rate
4.3. User Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chao, C.-J.; Wu, S.-Y.; Yau, Y.-J.; Feng, W.-Y.; Tseng, F.-Y. Effects of Three-Dimensional Virtual Reality and Traditional Training Methods on Mental Workload and Training Performance. Hum. Factors Ergon. Manuf. Serv. Ind. 2017, 27, 187–196. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, W.; Li, S.; Chen, K. Augmented and Virtual Reality (AR/VR) for Education and Training in the AEC Industry: A Systematic Review of Research and Applications. Buildings 2022, 12, 1529. [Google Scholar] [CrossRef]
- Xie, B.; Liu, H.; Alghofaili, R.; Zhang, Y.; Jiang, Y.; Lobo, F.D.; Li, C.; Li, W.; Huang, H.; Akdere, M.; et al. A Review on Virtual Reality Skill Training Applications. Front. Virtual Real. 2021, 2, 645153. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Loch, F.; Ziegler, U.; Vogel-Heuser, B. Integrating Haptic Interaction into a Virtual Training System for Manual Procedures in Industrial Environments. IFAC-PapersOnLine 2018, 51, 60–65. [Google Scholar] [CrossRef]
- Seo, S.-W.; Kwon, S.; Hassan, W.; Talhan, A.; Jeon, S. Interactive Virtual-Reality Fire Extinguisher with Haptic Feedback. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Parramatta, NSW, Australia, 12–15 November 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Saghafian, M.; Laumann, K.; Akhtar, R.S.; Skogstad, M.R. The Evaluation of Virtual Reality Fire Extinguisher Training. Front. Psychol. 2020, 11, 3137. [Google Scholar] [CrossRef] [PubMed]
- Arora, J.; Saini, A.; Mehra, N.; Jain, V.; Shrey, S.; Parnami, A. VirtualBricks: Exploring a Scalable, Modular Toolkit for Enabling Physical Manipulation in VR. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, T.; Han, F.; Wu, Y.-S. HapTwist: Creating Interactive Haptic Proxies in Virtual Reality Using Low-cost Twistable Artefacts. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Shigeyama, J.; Hashimoto, T.; Yoshida, S.; Narumi, T.; Tanikawa, T.; Hirose, M. Transcalibur: A Weight Shifting Virtual Reality Controller for 2D Shape Rendering based on Computational Perception Model. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–11. [Google Scholar] [CrossRef]
- Zenner, A.; Krüger, A. Drag:on: A Virtual Reality Controller Providing Haptic Feedback Based on Drag and Weight Shift. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Baek, S.; Gil, Y.-H.; Kim, Y. VR-Based Job Training System Using Tangible Interactions. Sensors 2021, 21, 6794. [Google Scholar] [CrossRef]
- Talhan, A.; Jeon, S. Pneumatic Actuation in Haptic-Enabled Medical Simulators: A Review. Access 2017, 6, 3184–3200. [Google Scholar] [CrossRef]
- VRgluv. Available online: https://kickstarter.com (accessed on 1 May 2024).
- BeBop Data Glove. Available online: https://www.youtube.com/@BeBopSensors/featured (accessed on 1 May 2024).
- Home Hi5 VR Glove. Available online: https://hi5vrglove.com/ (accessed on 1 May 2024).
- MANUS Prime Glove. Available online: https://www.manus-meta.com (accessed on 1 May 2024).
- Teslasuit Glove. Available online: https://teslasuit.io (accessed on 1 May 2024).
- CyberGlove Systems. Available online: http://www.cyberglovesystems.com (accessed on 1 May 2024).
- Shen, Z.; Yi, J.; Li, X.; Mark, L.H.P.; Hu, Y.; Wang, Z. A Soft Stretchable Bending Sensor and Data Glove Applications. In Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 88–93. [Google Scholar]
- Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D.M.; Haufe, F.; Wood, R.J.; Walsh, C.J. Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Adv. Mater. Technol. 2017, 2, 1700136. [Google Scholar] [CrossRef]
- O’Flynn, B.; Sanchez, T.; Connolly, J.; Curran, K.; Gardiner, P.; Ireland, N.; Downes, B. Integrated Smart Glove for Hand Motion Monitoring. In Proceedings of the SENSORDEVICES 2015, Venice, Italy, 23 August 2015; pp. 45–50. [Google Scholar]
- VIVE Tracker. Available online: https://www.vive.com/kr/accessory/tracker3/ (accessed on 1 May 2024).
- HTC VIVE. Available online: https://www.vive.com (accessed on 1 May 2024).
- Meta Quest. Available online: https://www.meta.com (accessed on 1 May 2024).
- Kuhlmann de Canaviri, L.; Meiszl, K.; Hussein, V.; Abbassi, P.; Mirraziroudsari, S.D.; Hake, L.; Potthast, T.; Ratert, F.; Schulten, T.; Silberbach, M.; et al. Static and Dynamic Accuracy and Occlusion Robustness of SteamVR Tracking 2.0 in Multi-Base Station Setups. Sensors 2023, 23, 725. [Google Scholar] [CrossRef]
- Simeone, L.; Velloso, E.; Gellersen, H. Substitutional Reality: Using the Physical Environment to Design Virtual Reality Experiences. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; pp. 3307–3316. [Google Scholar] [CrossRef]
- Hinchet, R.; Vechev, V.; Shea, H.; Hilliges, O. DextrES: Wearable Haptic Feedback for Grasping in VR via a Thin Form-Factor Electrostatic Brake. In Proceedings of the Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, Berlin, Germany, 11 October 2018; ACM: New York, NY, USA, 2018; pp. 901–912. [Google Scholar]
- Bouzit, M.; Popescu, G.; Burdea, G.; Boian, R. The Rutgers Master II-ND Force Feedback Glove. In Proceedings of the Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS 2002), Orlando, FL, USA, 24–25 March 2002; IEEE Computer Society: Piscataway, NJ, USA, 2002; pp. 145–152. [Google Scholar]
- Fujimoto, K.; Kobayashi, F.; Nakamoto, H.; Kojima, F. Development of Haptic Device for Five-Fingered Robot Hand Teleoperation. In Proceedings of the Proceedings of the 2013 IEEE/SICE International Symposium on System Integration, Kobe, Japan, 15–17 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 820–825. [Google Scholar]
- Patterson, Z.J.; Sabelhaus, A.P.; Chin, K.; Hellebrekers, T.; Majidi, C. An Untethered Brittle Star-Inspired Soft Robot for Closed-Loop Underwater Locomotion. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 8758–8764. [Google Scholar]
- Seo, S.-W.; Yun, S.; Kim, M.-G.; Sung, M.; Kim, Y. Screen-Based Sports Simulation Using Acoustic Source Localization. Appl. Sci. 2019, 9, 2970. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG Orientation Using a Gradient Descent Algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–7. [Google Scholar]
- Hong, S.; Kim, Y. Dynamic Pose Estimation Using Multiple RGB-D Cameras. Sensors 2018, 18, 3865. [Google Scholar] [CrossRef] [PubMed]
- Hume, M.C.; Gellman, H.; McKellop, H.; Brumfield, R.H. Functional Range of Motion of the Joints of the Hand. J. Hand Surg. 1990, 15, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Bullock, I.M.; Borras, J.; Dollar, A.M. Assessing Assumptions in Kinematic Hand Models: A Review. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 139–146. [Google Scholar]
- TEGWAY. Available online: https://tegway.cafe24.com/tegway (accessed on 1 May 2024).
- Hagisonic. Available online: http://hagisonic.com (accessed on 1 May 2024).
- Knowles. Available online: http://knowles.com (accessed on 1 May 2024).
- Analog Devices. Available online: http://analog.com (accessed on 1 May 2024).
- TDK. Available online: http://invensense.tdk.com (accessed on 1 May 2024).
- STMicroelectronics. Available online: http://st.com (accessed on 1 May 2024).
- Silicon Labs. Available online: http://silabs.com (accessed on 1 May 2024).
- OptiTrack. Available online: http://optitrack.com (accessed on 1 May 2024).
- Texas Instruments. Available online: http://ti.com (accessed on 1 May 2024).
- Infineon Technologies. Available online: https://www.infineon.com (accessed on 1 May 2024).
Hand Pose | |||||||||
---|---|---|---|---|---|---|---|---|---|
Finger | MANUS | Ours | MANUS | Ours | MANUS | Ours | MANUS | Ours | |
Thumb | MCP | 0.74 | 1.63 | 1.85 | 1.64 | 1.18 | 0.79 | 1.02 | 0.67 |
PIP | 1.02 | 0.56 | 0.70 | 0.34 | 0.92 | 2.37 | 1.63 | 0.63 | |
DIP | 0.93 | 0.71 | 1.59 | 1.09 | 1.27 | 0.80 | 1.45 | 0.93 | |
Index | MCP | 3.09 | 1.32 | 3.29 | 1.24 | 3.08 | 0.16 | 3.50 | 1.00 |
PIP | 1.13 | 3.68 | 1.77 | 0.82 | 1.23 | 2.64 | 1.78 | 1.05 | |
DIP | 3.31 | 0.09 | 1.28 | 1.18 | 4.68 | 5.65 | 3.57 | 1.75 | |
Middle | MCP | 4.42 | 0.90 | 2.09 | 1.16 | 3.74 | 0.31 | 2.28 | 0.20 |
PIP | 3.57 | 2.25 | 2.63 | 3.42 | 3.54 | 0.12 | 2.29 | 2.15 | |
DIP | 1.82 | 1.63 | 1.75 | 0.19 | 1.75 | 1.89 | 3.62 | 0.74 | |
Ring | MCP | 3.58 | 0.57 | 2.39 | 1.79 | 3.52 | 0.42 | 4.21 | 1.61 |
PIP | 2.63 | 3.15 | 3.93 | 1.59 | 3.22 | 1.21 | 3.44 | 3.79 | |
DIP | 2.95 | 0.92 | 3.09 | 1.96 | 4.76 | 3.46 | 3.61 | 3.05 | |
Little | MCP | 2.28 | 1.79 | 1.72 | 0.16 | 2.32 | 0.85 | 2.08 | 0.84 |
PIP | 3.59 | 3.36 | 1.56 | 1.10 | 1.43 | 1.82 | 4.78 | 1.54 | |
DIP | 4.54 | 1.71 | 3.81 | 0.31 | 4.76 | 0.26 | 1.40 | 6.97 | |
Mean | MCP | 2.82 | 1.24 | 2.27 | 1.20 | 2.77 | 0.51 | 2.62 | 0.86 |
PIP | 2.39 | 2.60 | 2.12 | 1.46 | 2.07 | 1.63 | 2.78 | 1.83 | |
DIP | 2.71 | 1.01 | 2.30 | 0.95 | 3.44 | 2.41 | 2.73 | 2.69 |
VRgluv [14] | BeBop [15] | Home Hi5 [16] | MANUS [17] | Teslasuit [18] | CyberGlove [19] | Ours | |
---|---|---|---|---|---|---|---|
Force feedback | Yes (motor) | No | No | No | Yes (motor) | Yes (motor) | Yes (SMA) |
Weight 1 (g) | 450 | 200 | 105 | 134 | 450 | 340 | 200 |
Size 1 (length × width × height mm) | 170 × 100 × 50 | 170 × 90 × 8 | 170 × 90 × 5 | 170 × 90 × 5 | 200 × 100 × 60 | 195 × 125 × 70 | 170 × 90 × 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, S.-W.; Jung, W.-S.; Kim, Y. 3D Hand Motion Generation for VR Interactions Using a Haptic Data Glove. Multimodal Technol. Interact. 2024, 8, 62. https://doi.org/10.3390/mti8070062
Seo S-W, Jung W-S, Kim Y. 3D Hand Motion Generation for VR Interactions Using a Haptic Data Glove. Multimodal Technologies and Interaction. 2024; 8(7):62. https://doi.org/10.3390/mti8070062
Chicago/Turabian StyleSeo, Sang-Woo, Woo-Sug Jung, and Yejin Kim. 2024. "3D Hand Motion Generation for VR Interactions Using a Haptic Data Glove" Multimodal Technologies and Interaction 8, no. 7: 62. https://doi.org/10.3390/mti8070062
APA StyleSeo, S.-W., Jung, W.-S., & Kim, Y. (2024). 3D Hand Motion Generation for VR Interactions Using a Haptic Data Glove. Multimodal Technologies and Interaction, 8(7), 62. https://doi.org/10.3390/mti8070062