A Systematic Assessment of Greening Interventions for Developing Best Practices for Urban Heat Mitigation—The Case of Huế, Vietnam
<p>Location of Huế city in Central Vietnam, location of An Cuu City within the city of Huế, and extent of the case study area in the southeastern part of An Cuu City. Squares indicate the location of Huế city in Vietnam, and of the case study area within Huế city.</p> "> Figure 2
<p>Suggested greening interventions along a qualitative and quantitative dimension. Columns represent the qualitative dimension through choice of GI element, i.e., street trees (ST; <b>left</b>), green verges (GV; <b>middle</b>), and vertical greenery systems (VGS; <b>right</b>). Rows represent the quantitative dimension, i.e., for street trees and green verges, the tree density or green verge area is increased from top to bottom, denoted as ST.1 to ST.3, and GV.1 to GV.2, respectively. Thereby, a so-called triangle of interventions is formed (bottom middle). This intervention triangle is subsequently amended with scenarios C.1 and C.2, which suggest simultaneous greening interventions for a potential maximization of cooling benefits. Scenario C.1 is obtained by combining ST.3 and GV.2, and Scenario C.2 is obtained by combining C.1 and VGS.1. The baseline scenario, including six chosen observer locations, is depicted in the bottom-right corner. See <a href="#urbansci-08-00067-t001" class="html-table">Table 1</a> for more details on each scenario.</p> "> Figure 3
<p>Simulated impacts averaged at the domain level, at a height of 1.4 m above ground level: (<b>a</b>) mean and range of air temperature (T<sub>a</sub>, °C) under baseline; (<b>b</b>) mean and range of relative humidity (RH, %) under baseline; (<b>c</b>) mean and range of mean radiant temperature (T<sub>mrt</sub>, °C) under baseline; (<b>d</b>) mean and range of UTCI (°C) under baseline. Plotted thresholds indicate strong (UTCI > 32 °C), very strong (UTCI > 38 °C), and extreme heat stress (UTCI > 46 °C) [<a href="#B71-urbansci-08-00067" class="html-bibr">71</a>]; (<b>e</b>) cooling potential over time of day, in terms of averaged differences in modeled T<sub>a</sub> to baseline (K), per scenario; (<b>f</b>) averaged differences in modeled RH to baseline (%), per scenario; (<b>g</b>) averaged differences in modelled T<sub>mrt</sub> to baseline (K), per scenario; (<b>h</b>) averaged differences in modeled UTCI to baseline (K), per scenario.</p> "> Figure 4
<p>Simulation results at the pedestrian level for 6 a.m.: (<b>a</b>) local cooling potential, i.e., modeled difference in air temperature (K) compared to baseline; (<b>b</b>) changes in relative humidity (%) compared to baseline; (<b>c</b>) difference in T<sub>mrt</sub> (K) compared to baseline; (<b>d</b>) local regulation of OTC, i.e., difference in UTCI (K) compared to baseline; (<b>e</b>) classified local regulation of OTC, where Adverse: ΔUTCI > +0.25; None: −0.25 < ΔUTCI ≤ +0.25; Negligible: −0.5 < ΔUTCI ≤ −0.25; Low: −1.0 < ΔUTCI ≤ −0.5; Moderate: −2.0 < ΔUTCI ≤ −1.0; High: −2.0 > ΔUTCI; (<b>f</b>) heat stress, with classes derived through a classification of modeled UTCI (°C), where None: UTCI ≤ 26; Moderate: 26 < UTCI ≤ 32; Strong: 32 < UTCI ≤ 38; Very strong: 38 < UTCI ≤ 46; Extreme: UTCI > 46 [<a href="#B71-urbansci-08-00067" class="html-bibr">71</a>]. Prevailing wind speed and wind direction are shown as a Quiver plot. The significance of differences is based on a one-sided Wilcoxon signed-rank test (H<sub>A</sub>: scenario < baseline) and is denoted as follows: ***, highly significant (<span class="html-italic">p</span> < 0.001); non-significant otherwise (<span class="html-italic">p</span> > 0.05).</p> "> Figure 5
<p>Simulation results at the pedestrian level for 12 p.m.: (<b>a</b>) local cooling potential (K); (<b>b</b>) changes in relative humidity (%); (<b>c</b>) difference in T<sub>mrt</sub> (K); (<b>d</b>) local regulation of OTC; (<b>e</b>) classified local regulation of OTC; (<b>f</b>) heat stress. Prevailing wind speed and wind direction are shown as a Quiver plot. Please refer to <a href="#urbansci-08-00067-f004" class="html-fig">Figure 4</a> for a description of the classes and significances. ***, highly significant (<span class="html-italic">p</span> < 0.001); non-significant otherwise (<span class="html-italic">p</span> > 0.05).</p> "> Figure 6
<p>Simulation results at the pedestrian level for 3 p.m.: (<b>a</b>) local cooling potential (K); (<b>b</b>) changes in relative humidity (%); (<b>c</b>) difference in T<sub>mrt</sub> (K); (<b>d</b>) local regulation of OTC; (<b>e</b>) classified local regulation of OTC; (<b>f</b>) heat stress. Prevailing wind speed and wind direction are shown as a Quiver plot. Please refer to <a href="#urbansci-08-00067-f004" class="html-fig">Figure 4</a> for a description of the classes and significances. ***, highly significant (<span class="html-italic">p</span> < 0.001); non-significant otherwise (<span class="html-italic">p</span> > 0.05).</p> "> Figure 7
<p>Simulation results at the pedestrian level for 6 p.m.: (<b>a</b>) local cooling potential (K); (<b>b</b>) changes in relative humidity (%); (<b>c</b>) difference in T<sub>mrt</sub> (K); (<b>d</b>) local regulation of OTC; (<b>e</b>) classified local regulation of OTC; (<b>f</b>) heat stress. Prevailing wind speed and wind direction are shown as a Quiver plot. Please refer to <a href="#urbansci-08-00067-f004" class="html-fig">Figure 4</a> for a description of the classes and significances. ***, highly significant (<span class="html-italic">p</span> < 0.001); non-significant otherwise (<span class="html-italic">p</span> > 0.05); **, very significant (<span class="html-italic">p</span> < 0.01).</p> "> Figure 8
<p>Simulated differences to baseline at chosen observer locations over time of day: PW (parking lot, western side), PE (parking lot, eastern side), CW (courtyard, western side), CE (courtyard, eastern side), SW (sidewalk, western side), and SE (sidewalk, eastern side). (<b>a</b>) Difference in air temperature (K); (<b>b</b>) difference in relative humidity (%); (<b>c</b>) difference in T<sub>mrt</sub> (K); (<b>d</b>) difference in UTCI (K). Shaded areas refer to classified impact on UTCI, from adverse to high.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Scenario Development
Scenario | Description |
---|---|
Baseline | The amount of greenery under baseline conditions is comparatively sparse, including courtyard greening by lawns, as well as a grassy central median on the central main road. Both the green courtyards and the grassy median strip are about 0.13 ha in size, with the total green area reaching about 0.27 ha. |
ST.1 | Like baseline, with 24 small deciduous trees proposed in the six courtyards, and 88 palm trees considered in tree pits along the block perimeters. With a total of 112 trees, the tree density reaches about 44 trees per ha in this scenario, and the total green area is equal to 0.27 ha. |
ST.2 | Like ST.1, with an additional 10 large deciduous trees added in the main road’s grassy median. In this scenario, the total tree count increases to 122, with a tree density of 48 trees per ha, and the total green area is 0.27 ha. |
ST.3 | Like ST.2, with an additional 36 palm trees, to form double rows of palm trees along either side of the central main road. The total tree count is 158, and the tree density 62 trees per ha, and the total green area is 0.27 ha. |
GV.1 | Like baseline, with additional green verges. The GV.1 scenario prioritizes green verges on wider sidewalks, i.e., on the northern block edges, as well as along either side of the central main road. In total, green verges increase the green area by 0.05 ha, so that the total green area in GV.1 is about 0.32 ha. |
GV.2 | Like GV.1, with added green verges along outer roads, and a second row of green verges parallel to the central main road. The additional green verges are equal to 0.1 ha in size, increasing the total green area in this scenario to 0.42 ha. |
VGS.1 | Like baseline, but with added green facades on the northern, eastern, and southern building faces, up to a height of 6 m from ground level. The ground-based green area remains at 0.27 ha. |
C.1 | This scenario seeks to identify combined and added impacts of ST.3 and GV.2. |
C.2 | This scenario seeks to identify combined and added impacts of ST.3, GV.2, and VGS.1. |
2.3. Model Implementation and Validation
Parameter | Setting |
---|---|
Location | Huế, Thừa Thiên Huế Province, Vietnam |
Start of simulation | 19 April 2019, 12:00 a.m./midnight |
Duration [h] | 24 |
Model grid size (x, y, z) | 77 × 82 × 15 |
Resolution (dx, dy, dz) [m] | 2 × 2 × 2 |
Telescoping factor [%] | 30 |
Telescoping starting height [m] | 20 |
Model rotation [°] | 28.60 |
Building material | Roofing: Tile [0100R1]; Walls: Plastered concrete wall consisting of Default Plaster [0100PL] (1 cm); Concrete: Hollow block [0000C3] (30 cm); Default Plaster [0100PL] (1 cm) |
Surface material | Main road, parking lots: Asphalt Road [0100ST]; Sidewalks: Concrete Pavement Gray [0100PG]; Sealed surfaces: Pavement (Concrete), used/dirty; Unsealed surfaces: Default Unsealed Soil (Sandy Loam) [010000] |
Vegetation | Palm tree: Crown diameter (width) 3 m, height 5 m, medium trunk, LAD 1 of 0.60, tropical (evergreen) profile; Small deciduous tree: Crown diameter (width) 3 m, height 5 m, medium trunk, LAD of 1.10, spherical crown shape, tropical (evergreen) profile; Large deciduous tree: Crown diameter (width) 9 m, height 15 m, large trunk, LAD of 1.10, cylindric crown shape, tropical (evergreen) profile; Grass: Axonopus compressus, LAD of 0.30, tropical (evergreen) profile |
Meteorological boundary conditions | Simple forcing |
Air temperature (min/max) [°C] | 26.4/39.4 |
Relative humidity (min/max) [%] | 45/96 |
Wind speed [m s−1] | 2.00 |
Wind direction [°] | 67.50 |
Cloud cover (low/medium/high) [okta] | 0/0/4 |
Raytracing precision | Finer resolution |
Height segment angles resolution [°] | 15 |
Azimuthal segment angles resolution [°] | 15 |
2.4. Assessment of Cooling and Outdoor Thermal Comfort
3. Results
3.1. Morning Conditions
3.2. Noon Conditions
3.3. Afternoon Conditions
3.4. Evening Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asian Development Bank. Viet Nam Environment and Climate Change Assessment; Asian Development Bank: Manila, Philippines, 2013. [Google Scholar]
- The World Bank Group and Asian Development Bank. Climate Risk Country Profile: Vietnam; World Bank Publications: Washington, DC, USA, 2021. [Google Scholar]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Endreny, T.A. Strategically growing the urban forest will improve our world. Nat. Commun. 2018, 9, 1160. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.; Cruz, S.; Monteiro, A.; Neset, T.-S. Designing urban green spaces for climate adaptation: A critical review of research outputs. Urban Clim. 2022, 42, 101126. [Google Scholar] [CrossRef]
- Koc, C.B.; Osmond, P.; Peters, A. Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Sol. Energy 2018, 166, 486–508. [Google Scholar]
- Livesley, S.J. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Peng, Z.; Bardhan, R.; Ellard, C.; Steemers, K. Urban climate walk: A stop-and-go assessment of the dynamic thermal sensation and perception in two waterfront districts in Rome, Italy. Build. Environ. 2022, 221, 109267. [Google Scholar] [CrossRef]
- Li, J.; Niu, J.; Mak, C.M.; Huang, T.; Xie, Y. Exploration of applicability of UTCI and thermally comfortable sun and wind conditions outdoors in a subtropical city of Hong Kong. Sustain. Cities Soc. 2020, 52, 101793. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Outdoor thermal comfort. Front. Biosci. (Schol. Ed.) 2011, 3, 1552–1568. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Tuller, S.E.; Jo, M. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc. Urban Sci. 2014, 125, 146–155. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, T.; Li, J.; Liu, J.; Niu, J.; Mak, C.M.; Lin, Z. Evaluation of a multi-nodal thermal regulation model for assessment of outdoor thermal comfort: Sensitivity to wind speed and solar radiation. Build. Environ. 2018, 132, 45–56. [Google Scholar] [CrossRef]
- Jamei, E.; Ossen, D.R.; Seyedmahmoudian, M.; Sandanayake, M.; Stojcevski, A.; Horan, B. Urban design parameters for heat mitigation in tropics. Renew. Sust. Energ. Rev. 2020, 134, 110362. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Azizi, M.M.; Aminzadeh, B.; O’Donnell, J. A comprehensive review of outdoor thermal comfort in urban areas: Effective parameters and approaches. Energy Environ. 2022, 34, 2204–2227. [Google Scholar] [CrossRef]
- Fu, J.; Dupre, K.; Tavares, S.; King, D.; Banhalmi-Zakar, Z. Optimized greenery configuration to mitigate urban heat: A decade systematic review. Front. Archit. Res. 2022, 11, 466–491. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Segura, R.; Krayenhoff, E.; Martilli, A.; Badia, A.; Estruch, C.; Ventura, S.; Villalba, G. How do street trees affect urban temperatures and radiation exchange? Observations and numerical evaluation in a highly compact city. Urban Clim. 2022, 46, 101288. [Google Scholar] [CrossRef]
- Baró, F.; Calderón-Argelich, A.; Langemeyer, J.; Connolly, J. Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environ. Sci. Policy 2019, 102, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Ka-Lun Lau, K.; Ng, E. Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Build. Environ. 2017, 120, 93–109. [Google Scholar] [CrossRef]
- Atwa, S.; Ibrahim, M.G.; Murata, R. Evaluation of plantation design methodology to improve the human thermal comfort in hot-arid climatic responsive open spaces. Sustain. Cities Soc. 2020, 59, 102198. [Google Scholar] [CrossRef]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef]
- Djekić, J.P.; Mitković, P.B.; Dinić Branković, M.; Igić, M.Z.; Djekić, P.S.; Mitković, M.P. The Study of Effects of Greenery on Temperature Reduction in Urban Areas. Therm. Sci. 2018, 22, S989–S1000. [Google Scholar] [CrossRef]
- Aboelata, A. Vegetation in different street orientations of aspect ratio (H/W 1:1) to mitigate UHI and reduce buildings’ energy in arid climate. Build. Environ. 2020, 172, 106712. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Quantifying the seasonal cooling capacity of ‘green infrastructure types’ (GITs): An approach to assess and mitigate surface urban heat island in Sydney, Australia. Landsc. Urban Plan. 2020, 203, 103893. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Hu, Y. Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability 2020, 12, 2752. [Google Scholar] [CrossRef]
- Jänicke, B.; Meier, F.; Hoelscher, M.-T.; Scherer, D. Evaluating the Effects of Façade Greening on Human Bioclimate in a Complex Urban Environment. Adv. Meteorol. 2014, 2015, 747259. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Acero, J.A.; Koh, E.J.Y.; Li, X.; Ruefenacht, L.A.; Pignatta, G.; Norford, L.K. Thermal impact of the orientation and height of vertical greenery on pedestrians in a tropical area. Build. Simul. 2019, 12, 973–984. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Huynh, C.; Eckert, R. Reducing Heat and Improving Thermal Comfort through Urban Design—A Case Study in Ho Chi Minh City. Int. J. Environ. Sci. Dev. 2012, 3, 480–485. [Google Scholar] [CrossRef]
- Dang, H.T.; Pitts, A. Urban Morphology and Outdoor Microclimate around the “Shophouse” Dwellings in Ho Chi Minh City, Vietnam. Buildings 2020, 10, 40. [Google Scholar] [CrossRef]
- Ngo, H.N.D.; Motoasca, E.; Versele, A.; Pham, H.C.; Breesch, H. Effect of neighbourhood courtyard design on the outdoor thermal comfort in a tropical city. IOP Conf. Ser. Earth Environ. Sci. 2022, 1078, 012035. [Google Scholar] [CrossRef]
- Abdollahzadeh, N.; Biloria, N. Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney. Front. Archit. Res. 2021, 10, 394–409. [Google Scholar] [CrossRef]
- Abdulateef, M.F.; Al-Alwan, H.A.S. The effectiveness of urban green infrastructure in reducing surface urban heat island. Ain Shams Eng. J. 2022, 13, 101526. [Google Scholar] [CrossRef]
- Gál, T.; Mahó, S.I.; Skarbit, N.; Unger, J. Numerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future. Comput. Environ. Urban Syst. 2021, 87, 101600. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Lum, Q.J.G.; Chan, Y.K.D. Micro-scale thermal performance of tropical urban parks in Singapore. Build. Environ. 2015, 94 Pt 2, 467–476. [Google Scholar] [CrossRef]
- Lin, B.-S.; Lin, C.-T. Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban For. Urban Green. 2016, 20, 348–357. [Google Scholar] [CrossRef]
- ENVI-met GmbH. ENVI-met; Version 5.0.3; Windows; ENVI-met GmbH: Essen, Germany, 2022. [Google Scholar]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Fong, C.S.; Aghamohammadi, N.; Ramakreshan, L.; Sulaiman, N.M.; Mohammadi, P. Holistic recommendations for future outdoor thermal comfort assessment in tropical Southeast Asia: A critical appraisal. Sustain. Cities Soc. 2019, 46, 101428. [Google Scholar] [CrossRef]
- Dang, T.N.; Seposo, X.T.; Duc, N.H.C.; Thang, T.B.; An, D.D.; Hang, L.T.M.; Long, T.T.; Loan, B.T.H.; Honda, Y. Characterizing the relationship between temperature and mortality in tropical and subtropical cities: A distributed lag non-linear model analysis in Hue, Viet Nam, 2009–2013. Glob. Health Action 2016, 9, 28738. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.P. Urban expansion and compulsory land acquisition in Hue, Vietnam: Challenges and ways towards fair urbanization. LANDac 2017, Policy Brief 05, 1–8. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Standing Committee of the National Assembly. Resolution 1264/NQ-UBTVQH14 on 27 April 2021: Adjustment of the Administrative Geography of Administrative Units at the District Level and on the Ordering and Establishment of Wards in Hue City, Thua Thien Hue Province; Socialist Republic of Vietnam: Hanoi, Vietnam, 2021. [Google Scholar]
- Thua Thien Hue Province’s Statistical Agency. Statistical Yearbook of Thua Thien Hue Province 2021; Thua Thien Hue Province’s Statistical Agency: Hue, Vietnam, 2022. [Google Scholar]
- Linh, N.H.K.; Tung, P.G.; Chuong, H.V.; Ngoc, N.B.; Phuong, T.T. The Application of Geographical Information Systems and the Analytic Hierarchy Process in Selecting Sustainable Areas for Urban Green Spaces: A Case Study in Hue City, Vietnam. Climate 2022, 10, 82. [Google Scholar] [CrossRef]
- Rösler, K.; Konopatzki, P.; Jache, J.; Hoang, T.B.M.; Nguyen, D.H.L.; Scheuer, S.; Sumfleth, L.; Stolpe, F.; Haase, D. Status Quo Report: Nature-Based Solutions in the City of Hue; GreenCityLabHue: Berlin, Germany, 2020; Available online: https://www.greencitylabhue.com/wp-content/uploads/2020/07/Status-quo-report_NBS-in-Hue-City__2020-2-1.pdf (accessed on 1 January 2024).
- CDC Stock Co. Điều Chỉnh Quy Hoạch Chi Tiết Xây Dựng Khu Đô Thị Mới An Cựu Bản Đồ Quy Hoạch Kiến Trúc Cảnh Quan; CDC Stock Co.: Hue, Vietnam, 2019. [Google Scholar]
- Croce, S.; Vettorato, D. Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions. Sustain. Cities Soc. 2021, 75, 103313. [Google Scholar] [CrossRef]
- Mayrand, F.; Clergeau, P. Green Roofs and Green Walls for Biodiversity Conservation: A Contribution to Urban Connectivity? Sustainability 2018, 10, 985. [Google Scholar] [CrossRef]
- Jache, J.; Scheuer, S.; Stolpe, F.; Sumfleth, L.; Dao, T.M.; Hoang, T.B.M.; Vo, Y.; Nguyen, D.H.L.; Zschiesche, M.; Haase, D. GreenCityLabHuế: Nature-Based Solutions to Strengthen Climate Resilience of Urban Regions in Central Vietnam; Final Report for the Definition Phase of the Joint Research Project; GreenCityLabHue: Berlin, Germany, 2021; Available online: https://www.greencitylabhue.com/wp-content/uploads/2021/04/GreenCityLabHue__final-project-report__2021.pdf (accessed on 1 January 2024).
- ESRI. ArcGIS Pro; Version 3.0.1; ESRI: Redlands, CA, USA, 2022. [Google Scholar]
- Shuhaimi, N.; Zaid, S.; Esfandiari, M.; Lou, E.; Mahyuddin, N. The impact of vertical greenery system on building thermal performance in tropical climates. J. Build. Eng. 2022, 45, 103429. [Google Scholar] [CrossRef]
- Peng, L.; Jiang, Z.; Yang, X.; He, Y.; Xu, T.; Chen, S. Cooling effects of block-scale facade greening and their relationship with urban form. Build. Environ. 2020, 169, 106552. [Google Scholar] [CrossRef]
- Robert McNeel & Associates. Rhinoceros 3D; Version 7; Robert McNeel & Associates: Seattle, WA, USA, 2020. [Google Scholar]
- Papanikolaou, K.-T.; Liapi, K.; Sibetheros, I. Environmental Impact Assessment and Visualization of Rain-water Best Management Practices for Urban Blocks. An “architect-friendly” simulation model. In Co-Creating the Future: Inclusion in and through Design Volume 2, Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe, Ghent, Belgium, 13–16 September 2022; Pak, B., Wurzer, G., Stouffs, R., Eds.; eCAADe and KU Leuven Faculty of Architecture: Ghent, Belgium, 2022; pp. 75–82. [Google Scholar]
- Song, A.; di Nunzio, A.; Mackey, C.; Yang, J.; Roudsari, M.; Vasanthakumar, S. Dragonfly for Grasshopper. Available online: https://github.com/ladybug-tools/dragonfly-legacy (accessed on 6 June 2024).
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban For. Urban Green. 2018, 29, 212–222. [Google Scholar] [CrossRef]
- Ouyang, W.; Morakinyo, T.E.; Ren, C.; Ng, E. The cooling efficiency of variable greenery coverage ratios in different urban densities: A study in a subtropical climate. Build. Environ. 2020, 174, 106772. [Google Scholar] [CrossRef]
- Cruz, J.A.; Blanco, A.C.; Garcia, J.J.; Santos, J.A.; Moscoso, A.D. Evaluation of the cooling effect of green and blue spaces on urban microclimate through numerical simulation: A case study of Iloilo River Esplanade, Philippines. Sustain. Cities Soc. 2021, 74, 103184. [Google Scholar] [CrossRef]
- Cortes, A.; Rejuso, A.J.; Santos, J.A.; Blanco, A. Evaluating mitigation strategies for urban heat island in Mandaue City using ENVI-met. J. Urban Manag. 2022, 11, 97–106. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, S.C. How Important Is Humidity in Heat Stress? J. Geophys. Res. Atmos. 2018, 123, 11808–11810. [Google Scholar] [CrossRef]
- Baldwin, J.W.; Benmarhnia, T.; Ebi, K.L.; Jay, O.; Lutsko, N.J.; Vanos, J.K. Humidity’s Role in Heat-Related Health Outcomes: A Heated Debate. Environ. Health Perspect. 2023, 131, 055001. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Franceschi, E.; Pattnaik, N.; Moser-Reischl, A.; Hartmann, C.; Paeth, H.; Pretzsch, H.; Rötzer, T.; Pauleit, S. Spatial and temporal changes of outdoor thermal stress: Influence of urban land cover types. Sci. Rep. 2022, 12, 671. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Build. Environ. 2017, 114, 118–128. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Pantavou, K.; Lykoudis, S.; Nikolopoulou, M.; Tsiros, I.X. Thermal sensation and climate: A comparison of UTCI and PET thresholds in different climates. Int. J. Biometeorol. 2018, 62, 1695–1708. [Google Scholar] [CrossRef] [PubMed]
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extrem. 2018, 19, 49–57. [Google Scholar] [CrossRef]
- McGregor, G.R. Special issue: Universal Thermal Comfort Index (UTCI). Int. J. Biometeorol. 2012, 56, 419. [Google Scholar] [CrossRef] [PubMed]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Guerri, G.; Crisci, A.; Morabito, M. Urban microclimate simulations based on GIS data to mitigate thermal hot-spots: Tree design scenarios in an industrial area of Florence. Build. Environ. 2023, 245, 110854. [Google Scholar] [CrossRef]
- Milošević, D.; Bajšanski, I.; Savić, S. Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban For. Urban Green. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Coutts, A.; White, E.; Tapper, N.; Beringer, J.; Livesley, S. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Wei, D.; Yang, L.; Bao, Z.; Lu, Y.; Yang, H. Variations in outdoor thermal comfort in an urban park in the hot-summer and cold-winter region of China. Sustain. Cities Soc. 2022, 77, 103535. [Google Scholar] [CrossRef]
- Gál, C.V.; Kántor, N. Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban Clim. 2020, 32, 100571. [Google Scholar] [CrossRef]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Meili, N.; Acero, J.A.; Peleg, N.; Manoli, G.; Burlando, P.; Fatichi, S. Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Build. Environ. 2021, 195, 107733. [Google Scholar] [CrossRef]
- Lai, S.; Zhao, Y.; Fan, Y.; Ge, J. Characteristics of daytime land surface temperature in wind corridor: A case study of a hot summer and warm winter city. J. Build. Eng. 2021, 44, 103370. [Google Scholar] [CrossRef]
- Lindberg, F.; Onomura, S.; Grimmond, C.S.B. Influence of ground surface characteristics on the mean radiant temperature in urban areas. Int. J. Biometeorol. 2016, 60, 1439–1452. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Yun, S.H.; Lee, D.K.; Kim, N.Y.; Piao, Z.G.; Kim, S.H.; Park, S. Quantifying outdoor cooling effects of vertical greening system on mean radiant temperature. Dev. Built Environ. 2023, 15, 100211. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J. Green infrastructure for air quality improvement in street canyons. Environ. Int. 2021, 146, 106288. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, J.; Schlueter, A. Daily enthalpy gradients and the effects of climate change on the thermal energy demand of buildings in the United States. Appl. Energy 2020, 262, 114458. [Google Scholar] [CrossRef]
- Silva, T.J.V.; Hirashima, S.Q.S. Predicting urban thermal comfort from calibrated UTCI assessment scale—A case study in Belo Horizonte city, southeastern Brazil. Urban Clim. 2021, 36, 100652. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Naboni, E.; Meloni, M.; Mackey, C.; Kaempf, J. The Simulation of Mean Radiant Temperature in Outdoor Conditions: A review of Software Tools Capabilities. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; pp. 3234–3241. [Google Scholar]
- Sinsel, T.; Simon, H.; Ouyang, W.; dos Santos Gusson, C.; Shinzato, P.; Bruse, M. Implementation and evaluation of mean radiant temperature schemes in the microclimate model ENVI-met. Urban Clim. 2022, 45, 101279. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Saroglou, T.; Pearlmutter, D. Evaluation of summer mean radiant temperature simulation in ENVI-met in a hot Mediterranean climate. Build. Environ. 2023, 245, 110881. [Google Scholar] [CrossRef]
- Simpson, C.H.; Brousse, O.; Ebi, K.L.; Heaviside, C. Commonly used indices disagree about the effect of moisture on heat stress. NPJ Clim. Atmos. Sci. 2023, 6, 78. [Google Scholar] [CrossRef]
Scen. | ΔTa (K) 1 | ΔRH (%) 2 | ΔTmrt (K) 1 | ΔUTCI (K) 1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Min | Max | Mean | Std | Min | Max | Mean | Std | Min | Max | Mean | Std | Min | Max | |
6 a.m. | ||||||||||||||||
ST.1 | −0.07 | 0.07 | −0.39 | 0.06 | 0.60 | 0.67 | −0.39 | 3.42 | 0.52 | 0.55 | −0.15 | 2.94 | 0.18 | 0.20 | −0.26 | 1.06 |
ST.2 | −0.06 | 0.09 | −0.40 | 0.11 | 0.66 | 0.78 | −0.90 | 3.85 | 0.88 | 0.72 | −0.07 | 3.23 | 0.25 | 0.21 | −0.18 | 1.11 |
ST.3 | −0.07 | 0.09 | −0.47 | 0.11 | 0.69 | 0.80 | −0.86 | 4.36 | 1.01 | 0.81 | −0.08 | 3.57 | 0.29 | 0.24 | −0.17 | 1.32 |
GV.1 | −0.01 | 0.01 | −0.07 | 0.00 | 0.06 | 0.05 | 0.01 | 0.38 | 0.07 | 0.23 | −0.01 | 1.49 | 0.01 | 0.06 | −0.02 | 0.39 |
GV.2 | −0.03 | 0.02 | −0.11 | −0.01 | 0.11 | 0.08 | 0.01 | 0.61 | 0.18 | 0.37 | −0.02 | 1.57 | 0.03 | 0.09 | −0.05 | 0.41 |
VGS.1 | 0.03 | 0.02 | 0.01 | 0.08 | −0.18 | 0.14 | −0.81 | −0.03 | 0.47 | 0.59 | 0.01 | 2.63 | 0.13 | 0.14 | 0.01 | 0.67 |
C.1 | −0.09 | 0.09 | −0.50 | 0.10 | 0.78 | 0.81 | −0.82 | 4.59 | 1.13 | 0.96 | −0.08 | 4.02 | 0.31 | 0.28 | −0.20 | 1.47 |
C.2 | −0.06 | 0.08 | −0.49 | 0.11 | 0.56 | 0.73 | −0.86 | 4.45 | 1.56 | 1.01 | −0.01 | 4.48 | 0.43 | 0.31 | −0.07 | 1.50 |
12 p.m. | ||||||||||||||||
ST.1 | −0.26 | 0.11 | −0.65 | 0.05 | 0.52 | 0.28 | −0.02 | 1.44 | −3.02 | 3.12 | −15.12 | −0.33 | −0.91 | 0.76 | −4.07 | −0.23 |
ST.2 | −0.42 | 0.21 | −1.03 | 0.07 | 0.94 | 0.58 | −0.06 | 2.61 | −4.85 | 4.07 | −18.27 | −0.66 | −1.49 | 1.04 | −5.02 | −0.30 |
ST.3 | −0.50 | 0.24 | −1.27 | −0.09 | 1.16 | 0.71 | 0.05 | 3.67 | −5.68 | 4.56 | −18.74 | −0.69 | −1.74 | 1.16 | −5.15 | −0.37 |
GV.1 | −0.03 | 0.02 | −0.14 | 0.00 | 0.11 | 0.10 | −0.01 | 0.69 | −0.28 | 0.78 | −5.91 | 0.14 | −0.08 | 0.19 | −1.53 | 0.04 |
GV.2 | −0.07 | 0.03 | −0.21 | −0.03 | 0.30 | 0.17 | 0.10 | 1.00 | −0.81 | 1.40 | −6.62 | −0.01 | −0.24 | 0.35 | −1.73 | −0.03 |
VGS.1 | −0.02 | 0.02 | −0.10 | 0.06 | 0.33 | 0.30 | 0.03 | 1.40 | −0.72 | 0.80 | −4.91 | −0.01 | −0.16 | 0.17 | −1.13 | 0.04 |
C.1 | −0.55 | 0.26 | −1.46 | −0.11 | 1.38 | 0.79 | 0.13 | 4.50 | −6.02 | 4.85 | −19.21 | −0.76 | −1.84 | 1.23 | −5.23 | −0.41 |
C.2 | −0.57 | 0.26 | −1.50 | −0.12 | 1.79 | 0.93 | 0.22 | 5.46 | −6.48 | 4.80 | −19.70 | −0.80 | −1.93 | 1.22 | −5.41 | −0.43 |
3 p.m. | ||||||||||||||||
ST.1 | −0.28 | 0.09 | −0.55 | −0.03 | 0.65 | 0.27 | 0.15 | 1.28 | −3.11 | 3.45 | −18.27 | −0.35 | −0.93 | 0.84 | −4.93 | −0.14 |
ST.2 | −0.52 | 0.23 | −1.17 | −0.05 | 1.29 | 0.69 | 0.23 | 3.01 | −5.28 | 4.99 | −18.53 | −0.63 | −1.62 | 1.23 | −5.20 | −0.37 |
ST.3 | −0.60 | 0.26 | −1.22 | −0.20 | 1.52 | 0.81 | 0.34 | 3.47 | −6.15 | 5.65 | −21.19 | −0.66 | −1.88 | 1.39 | −5.47 | −0.42 |
GV.1 | −0.01 | 0.01 | −0.06 | 0.04 | 0.02 | 0.03 | −0.10 | 0.20 | −0.08 | 0.23 | −2.33 | 0.09 | −0.02 | 0.05 | −0.57 | 0.05 |
GV.2 | −0.04 | 0.02 | −0.10 | 0.02 | 0.12 | 0.06 | −0.01 | 0.50 | −0.29 | 0.51 | −3.38 | 0.00 | −0.09 | 0.12 | −0.89 | 0.01 |
VGS.1 | −0.08 | 0.05 | −0.27 | −0.02 | 0.53 | 0.46 | 0.05 | 2.07 | −0.73 | 0.86 | −4.84 | −0.01 | −0.18 | 0.19 | −1.20 | 0.00 |
C.1 | −0.65 | 0.26 | −1.32 | −0.23 | 1.71 | 0.85 | 0.43 | 4.09 | −6.36 | 5.79 | −22.32 | −0.71 | −1.96 | 1.42 | −5.91 | −0.44 |
C.2 | −0.71 | 0.27 | −1.40 | −0.26 | 2.19 | 0.97 | 0.47 | 5.25 | −6.83 | 5.64 | −22.56 | −0.78 | −2.06 | 1.38 | −5.98 | −0.51 |
6 p.m. | ||||||||||||||||
ST.1 | −0.12 | 0.05 | −0.39 | −0.05 | 0.54 | 0.34 | 0.09 | 2.47 | −0.01 | 0.32 | −1.54 | 1.71 | −0.04 | 0.12 | −0.50 | 0.51 |
ST.2 | −0.18 | 0.06 | −0.43 | −0.07 | 0.70 | 0.39 | 0.08 | 2.62 | 0.04 | 0.46 | −1.52 | 1.71 | −0.09 | 0.13 | −0.57 | 0.47 |
ST.3 | −0.21 | 0.08 | −0.44 | −0.08 | 0.80 | 0.44 | 0.13 | 2.67 | 0.04 | 0.49 | −1.85 | 1.82 | −0.11 | 0.14 | −0.62 | 0.49 |
GV.1 | −0.03 | 0.02 | −0.14 | −0.01 | 0.08 | 0.07 | 0.01 | 0.50 | 0.03 | 0.16 | −0.05 | 1.10 | −0.01 | 0.03 | −0.07 | 0.21 |
GV.2 | −0.07 | 0.03 | −0.22 | −0.03 | 0.22 | 0.12 | 0.06 | 0.76 | 0.06 | 0.23 | −0.10 | 1.16 | −0.04 | 0.05 | −0.12 | 0.18 |
VGS.1 | −0.04 | 0.04 | −0.18 | −0.01 | 0.21 | 0.19 | 0.022 | 0.92 | 0.12 | 0.24 | −0.54 | 1.13 | 0.00 | 0.05 | −0.17 | 0.22 |
C.1 | −0.27 | 0.09 | −0.54 | −0.10 | 0.99 | 0.50 | 0.21 | 2.90 | 0.07 | 0.55 | −1.87 | 2.05 | −0.14 | 0.16 | −0.67 | 0.51 |
C.2 | −0.30 | 0.11 | −0.57 | −0.11 | 1.17 | 0.61 | 0.22 | 3.46 | 0.23 | 0.59 | −1.86 | 2.21 | −0.11 | 0.17 | −0.65 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheuer, S.; Sumfleth, L.; Nguyen, L.D.H.; Vo, Y.; Hoang, T.B.M.; Jache, J. A Systematic Assessment of Greening Interventions for Developing Best Practices for Urban Heat Mitigation—The Case of Huế, Vietnam. Urban Sci. 2024, 8, 67. https://doi.org/10.3390/urbansci8020067
Scheuer S, Sumfleth L, Nguyen LDH, Vo Y, Hoang TBM, Jache J. A Systematic Assessment of Greening Interventions for Developing Best Practices for Urban Heat Mitigation—The Case of Huế, Vietnam. Urban Science. 2024; 8(2):67. https://doi.org/10.3390/urbansci8020067
Chicago/Turabian StyleScheuer, Sebastian, Luca Sumfleth, Long Dac Hoang Nguyen, Ylan Vo, Thi Binh Minh Hoang, and Jessica Jache. 2024. "A Systematic Assessment of Greening Interventions for Developing Best Practices for Urban Heat Mitigation—The Case of Huế, Vietnam" Urban Science 8, no. 2: 67. https://doi.org/10.3390/urbansci8020067
APA StyleScheuer, S., Sumfleth, L., Nguyen, L. D. H., Vo, Y., Hoang, T. B. M., & Jache, J. (2024). A Systematic Assessment of Greening Interventions for Developing Best Practices for Urban Heat Mitigation—The Case of Huế, Vietnam. Urban Science, 8(2), 67. https://doi.org/10.3390/urbansci8020067