Optimizing the Automated Analysis of Inorganic Gunshot Residue Particles by SEM-EDX: From Synthetic Particle Standards to More Time-Efficient Settings for Daily Casework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Specimen for GSR Proficiency Test
2.2. Test Specimen Containing Real GSR Particles
2.3. Scanning Electron Microscopy Coupled with X-ray Spectrometry
3. Results and Discussion
3.1. SEM-EDX System Optimization and Validation Using Synthetic GSR Reference Sample
3.2. Optimization of the Automatic Procedure for Real GSR Samples
3.3. Ensuring the Validity of the Results of the Automatic GSR Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample Name | Number of Pb-Sb-Ba Particles | Number of Pb-Sb-Ba Particles of Given Diameters | 90% Detection Capability | 50% Detection Capability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | Diameter | Diameter | ||
ENFSI GSR PT- C-11-10 | 138 | 4 1 | 15 | 20 | 27 | 25 | 27 | 24 | Mean Value [μm] | Mean Value [μm] |
GSR2021 IK 230621 | 138 | 4 | 15 | 20 | 27 | 25 | 27 | 24 | ≤0.50 | ≤0.50 |
GSR2021 ZBM 270821 | 135 | 4 | 15 | 20 | 26 | 24 | 26 | 24 | ≤0.50 | ≤0.50 |
GSR2021 ZBM 300821 | 137 | 4 | 15 | 20 | 27 | 25 | 27 | 23 | ≤0.50 | ≤0.50 |
Mean value: | 136.67 | 15.00 | 20.00 | 26.67 | 24.67 | 26.67 | 23.67 | |||
Standard deviation: | 1.53 | 0.00 | 0.00 | 0.58 | 0.58 | 0.58 | 0.58 | |||
Relative standard deviation: | 1.1% | 0.0% | 0.0% | 2.2% | 2.3% | 2.2% | 2.4% |
Measurement | Number of Detected Particles Pb-Sb-Ba | Number of Particles Pb-Sb-Ba of Given Diameters | 90% Detection Capability | 50% Detection Capability | z Score 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | Mean Value (μm) | Mean Value (μm) | |||
ENFSI GSR PT-B-08-04 | 151 | 4 1 | 26 | 24 | 25 | 26 | 27 | 23 | |||
GSR2022 | 148 | 4 | 26 | 24 | 25 | 26 | 27 | 20 | ≤0.50 | ≤0.50 | 0.56 |
ENFSI GSR PT- C-09-01 | 153 | 4 1 | 24 | 27 | 25 | 28 | 26 | 23 | |||
GSR2023 | 148 | 4 | 24 | 26 | 23 | 28 | 24 | 23 | 0.54 | ≤0.50 | 0.40 |
Measurement | Number of Assessed Particles Pb-Sb-Ba | Number of Particles Pb-Sb-Ba of Given Diameters | 90% Detection Capability | 50% Detection Capability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | Mean Value (μm) | Mean Value (μm) | ||
ENFSI GSR PT- C-11-10 | 87 | 4 1 | 15 2 | 20 2 | 27 2 | 25 2 | 27 | 24 | ||
GSR 2021 ZBM 121021 | 83 | 4 | 14 | 19 | 26 | 24 | 26 | 12 | 0.60 | ≤0.50 |
GSR 2021 ZBM 131021 | 82 | 4 | 14 | 19 | 25 | 24 | 26 | 14 | 0.59 | ≤0.50 |
GSR 2021 ZBM 141021a | 83 | 4 | 14 | 19 | 26 | 24 | 26 | 4 | 0.65 | ≤0.50 |
GSR 2021 ZBM 141021b | 83 | 4 | 14 | 19 | 26 | 24 | 26 | 10 | 0.61 | 0.51 |
GSR 2021 ZBM 211221 | 87 | 4 | 15 | 20 | 27 | 25 | 25 | 10 | 0.69 | 0.52 |
GSR 2021 ZBM 030222 | 84 | 4 | 15 | 20 | 26 | 23 | 26 | 12 | 0.80 | 0.55 |
Mean value: | 83.67 | 14.33 | 19.33 | 26.00 | 24.00 | |||||
Standard deviation: | 1.75 | 0.52 | 0.52 | 0.63 | 0.63 | |||||
Relative standard deviation: | 2.1% | 3.6% | 2.7% | 2.4% | 2.6% |
Measurement | Number of Assessed Particles Pb-Sb-Ba | Number of Particles Pb-Sb-Ba of Given Diameters | 90% Detection Capability | 50% Detection Capability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | Mean Value (μm) | Mean Value (μm) | ||
ENFSI GSR PT-C-11-10 | 87 | 4 1 | 15 2 | 20 2 | 27 2 | 25 2 | 27 | 24 | ||
12 October 2021 | 83 | 4 | 14 | 19 | 26 | 24 | 26 | 12 | 0.60 | ≤0.50 |
13 October 2021 | 82 | 4 | 14 | 19 | 25 | 24 | 26 | 14 | 0.59 | ≤0.50 |
14 October 2021a | 83 | 4 | 14 | 19 | 26 | 24 | 26 | 4 | 0.65 | ≤0.50 |
14 October 2021b | 83 | 4 | 14 | 19 | 26 | 24 | 26 | 10 | 0.61 | 0.51 |
21 December 2021 | 87 | 4 | 15 | 20 | 27 | 25 | 25 | 10 | 0.69 | 0.52 |
3 February 2022 | 84 | 4 | 15 | 20 | 26 | 23 | 26 | 12 | 0.80 | 0.55 |
23 March 2022 | 84 | 4 | 15 | 19 | 26 | 24 | 25 | 6 | 0.71 | 0.55 |
18 May 2022 | 84 | 4 | 14 | 19 | 27 | 24 | 25 | 13 | 0.68 | ≤0.50 |
30 May 2022 | 84 | 4 | 15 | 20 | 26 | 23 | 27 | 7 | 0.68 | ≤0.50 |
13 June 2022 | 85 | 4 | 15 | 20 | 26 | 24 | 25 | 7 | 0.73 | 0.55 |
22 August 2022 | 82 | 4 | 14 | 20 | 26 | 22 | 27 | 10 | 0.61 | 0.58 |
23 August 2022a | 84 | 4 | 15 | 20 | 25 | 24 | 26 | 7 | 0.63 | 0.63 |
23 August 2022b | 86 | 4 | 15 | 20 | 26 | 25 | 26 | 17 | 0.61 | ≤0.50 |
Mean value: | 83.92 | 14.54 | 19.54 | 26.00 | 23.85 | |||||
Standard deviation: | 1.44 | 0.52 | 0.52 | 0.58 | 0.80 | |||||
Relative standard deviation: | 1.7% | 3.6% | 2.7% | 2.2% | 3.4% |
Measurement Date | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FN | TP | S (%) | B (%) | FN | TP | S (%) | B (%) | FN | TP | S (%) | B (%) | FN | TP | S (%) | B (%) | |
12 October 2021 | 1 | 14 | 93 | −7 | 1 | 19 | 95 | −5 | 1 | 26 | 96 | −4 | 1 | 24 | 96 | −4 |
13 October 2021 | 1 | 14 | 93 | −7 | 1 | 19 | 95 | −5 | 2 | 25 | 93 | −7 | 1 | 24 | 96 | −4 |
14 October 2021a | 1 | 14 | 93 | −7 | 1 | 19 | 95 | −5 | 1 | 26 | 96 | −4 | 1 | 24 | 96 | −4 |
14 October 2021b | 1 | 14 | 93 | −7 | 1 | 19 | 95 | −5 | 1 | 26 | 96 | −4 | 1 | 24 | 96 | −4 |
21 December 2021 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 | 0 | 25 | 100 | 0 |
3 February 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 | 2 | 23 | 92 | −8 |
23 March 2022 | 0 | 15 | 100 | 0 | 1 | 19 | 95 | −5 | 1 | 26 | 96 | −4 | 1 | 24 | 96 | −4 |
18 May 2022 | 1 | 14 | 93 | −7 | 1 | 19 | 95 | −5 | 0 | 27 | 100 | 0 | 1 | 24 | 96 | −4 |
30 May 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 | 2 | 23 | 92 | −8 |
13 June 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 | 1 | 24 | 96 | −4 |
22 August 2022 | 1 | 14 | 93 | −7 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 | 3 | 22 | 92 | −8 |
23 August 2022a | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 2 | 25 | 93 | −7 | 1 | 24 | 96 | −4 |
23 August 2022b | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 | 0 | 25 | 100 | 0 |
Mean value: | 96.8 | −3.2 | 97.7 | −2.3 | 96.2 | −3.8 | 95.7 | −4.3 | ||||||||
Standard deviation: | 3.6 | 3.6 | 2.6 | 2.6 | 2.0 | 2.0 | 2.6 | 2.6 |
Measurement Date | Total Number of Particles | FN | TP | S (%) | B (%) |
---|---|---|---|---|---|
12 October 2021 | 83 | 4 | 83 | 95 | −5 |
13 October 2021 | 82 | 5 | 82 | 94 | −6 |
14 October 2021a | 83 | 4 | 83 | 95 | −5 |
14 October 2021b | 83 | 4 | 83 | 95 | −5 |
21 December 2021 | 87 | 0 | 87 | 100 | 0 |
3 February 2022 | 84 | 3 | 84 | 97 | −3 |
23 March 2022 | 84 | 3 | 84 | 97 | −3 |
18 May 2022 | 84 | 3 | 84 | 97 | −3 |
30 May 2022 | 84 | 3 | 84 | 97 | −3 |
13 June 2022 | 85 | 2 | 85 | 98 | −2 |
22 August 2022 | 82 | 5 | 82 | 94 | −6 |
23 August 2022a | 84 | 3 | 84 | 97 | −3 |
23 August 2022b | 86 | 1 | 86 | 99 | −1 |
Mean value: | 96.5 | −3.5 | |||
Standard deviation: | 1.9 | 1.9 |
References
- Luten, R.; Neimke, D.; Barth, M.; Niewoehner, L. Investigating airborne GSR particles by the application of impactor technology. Forensic Chem. 2018, 8, 72–81. [Google Scholar] [CrossRef]
- Blakey, L.S.; Sharples, G.P.; Chana, K.; Birkett, J.W. Fate and Behaviour of Gunshot Residue—A Review. J. Forensic Sci. 2018, 63, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Brożek-Mucha, Z. Trends in analysis of gunshot residue for forensic purposes. Anal. Bioanal. Chem. 2017, 409, 5803–5811. [Google Scholar] [CrossRef] [PubMed]
- Fojtašek, L.; Vacinova, J.; Kolar, P.; Kotrly, M. Distribution of GSR particles in the surroundings of shooting pistol. Forensic Sci. Int. 2003, 132, 99–105. [Google Scholar] [CrossRef]
- Ristova, M.; Skenderovska, M.; Skulic, Z.; Brożek-Mucha, Z. A study of dispersion of gunshot residue from a frequently used Serbian ammunition cal. 7.65 mm to support selected aspects of casework in North Macedonia. Sci. Justice 2023, 63, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J. Chemical Analysis of Firearms, Ammunition and Gunshot Residue; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Germani, M.S. Evaluation of instrumental parameters for automated scanning electron microscopy/gunshot residue particle analysis. J. Forensic Sci. 1991, 36, 331–342. [Google Scholar] [CrossRef]
- ASTM E1588-20; Standard Practice for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry. Available online: https://www.astm.org/e1588-20.html (accessed on 19 October 2023).
- Niewoehner, L.; Barth, M.; Brouwer-Stamouli, A.; Gunaratnam, L.; Brożek-Mucha, Z.; Nys, B.; Steffen, S. Best Practice Manual for the Forensic Examination of Inorganic Gunshot Residue by SEM/EDS, ENFSI-GSR-BPM-02, Issue 1 May 2022. Available online: https://enfsi.eu/wp-content/uploads/2022/12/3.-ENFSI-GSR-BPM-02-1.pdf (accessed on 19 October 2023).
- Standard Practice for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry Gunshot Residue Subcommittee Chemistry Scientific Area Committee Organization of Scientific Area Committees (OSAC) for Forensic Science, Prepared by Gunshot Residue Subcommittee Version: 1.0 March 2020. Available online: https://www.nist.gov/system/files/documents/2020/05/22/OSAC%20GSR%20SEM%20ED%20X-ray%20spec.pdf (accessed on 19 October 2023).
- Ritchie, N.W.M.; DeGaetano, D.; Edwards, D.; Niewoehner, L.; Platek, F.; Wyatt, J.M. Proposed practices for validating the performance of instruments used for automated inorganic gunshot residue analysis. Forensic Chem. 2020, 20, 20100252. [Google Scholar] [CrossRef]
- Niewoehner, L.; Wenz, H.W.; Inventors, L. Niewoehner. Assignee. Patent DE 199 32 357, 8 February 2001. [Google Scholar]
- Niewoehner, L.; Andrasko, J.; Biegstraaten, J.; Gunaratnam, L.; Steffen, S.; Uhlig, S. GSR2005—Continuity of the ENFSI Proficiency Test on Identification of GSR by SEM/EDX. J. Forensic Sci. 2008, 53, 162–167. [Google Scholar] [CrossRef] [PubMed]
- ISO/IEC 17025; Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- ISO 5725-1:2023; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. ISO: Geneva, Switzerland, 2023.
- Charles, S.; Dehan, D.; Guesens, N.; Nys, B. Quality Assurance Aspects of GSR Analysis by SEM/EDX: A Report of First-Hand Experiences. In Proceedings of the Scanning Microscopy, Monterey, CA, USA, 5–7 May 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7378, pp. 424–435. [Google Scholar] [CrossRef]
- Izraeli, E.S.; Tsach, T.; Levin, N. Optimizing FEG-SEM combined with an SDD EDX system for automated GSR analysis. X-ray Spectrom. 2013, 43, 29–37. [Google Scholar] [CrossRef]
- Tahirukaj, M.; Olluri, B.; Surleva, A. A study of the effect of working parameters and validation of SEM/EDS method for determination of elemental composition of commonly encountered GSR samples in shooting events in Kosovo. J. Forensic Sci. 2021, 66, 2393–2404. [Google Scholar] [CrossRef] [PubMed]
- De Baere, T.; Dmitruk, W.; Magnusson, B.; Meuwly, D.; O’Donnell, G. Guidelines for the Single Laboratory Validation of Instrumental and Human Based Methods in Forensic Science, Version 2.0, 2014, European Network of Forensic Science Institutes. Available online: https://enfsi.eu/wp-content/uploads/2017/06/Guidance-QCC-VAL-002.pdf (accessed on 19 October 2023).
- Lopez, M.I.; Callao, M.P.; Ruisanchez, I. A tutorial on the validation of qualitative methods: From the univariate to the multivariate approach. Anal. Chim. Acta 2015, 891, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://quodata.de/sites/default/files/documents/GSR%20PT%20Scheme%20Description.pdf (accessed on 19 April 2024).
Sample Name | Number of Pb-Sb-Ba Particles | |||||||
---|---|---|---|---|---|---|---|---|
All Assessed | 12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | |
GSR2020 ENFSI GSR PT-B-08-02 | 153 | 4 1 | 24 | 27 | 25 | 28 | 26 | 23 |
GSR2021 ENFSI GSR PT-C-11-10 | 138 | 4 1 | 15 | 20 | 27 | 25 | 27 | 24 |
GSR2022 ENFSI GSR PT-B-08-04 | 151 | 4 1 | 26 | 24 | 25 | 26 | 27 | 23 |
GSR2023 ENFSI GSR PT-C-09-01 | 153 | 4 1 | 24 | 27 | 25 | 28 | 26 | 23 |
Accelerating voltage | 20 kV | |
Working distance | 10 mm | |
High vacuum | 0.1 mPa | |
Image resolution | 2048 × 1536 pixels | |
Magnification:
| 250× 0.50 μm 0.197 mm2 0.28 μm ecd | 120× 1.04 μm 0.889 mm2 0.59 μm ecd |
Sample Name | Number of Pb-Sb-Ba Particles | Number of Pb-Sb-Ba Particles of Given Diameters | 90% Detection Capability | 50% Detection Capability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | Diameter | Diameter | ||
ENFSI GSR PT-B-08-02 | 153 | 4 1 | 24 | 27 | 25 | 28 | 26 | 23 | Mean Value [μm] | Mean Value [μm] |
GSR2020 ZBM 300421 | 146 | 4 | 23 | 27 | 24 | 27 | 25 | 20 | 0.54 | ≤0.50 |
GSR2020 ZBM 080621 | 144 | 4 | 23 | 27 | 22 | 28 | 25 | 19 | 0.60 | ≤0.50 |
GSR2020 ZBM 090621 | 148 | 4 | 23 | 27 | 24 | 28 | 26 | 20 | 0.51 | ≤0.50 |
Mean value: | 146.00 | 23.00 | 27.00 | 23.33 | 27.67 | 25.33 | 19.67 | |||
Standard deviation: | 2.00 | 0.00 | 0.00 | 1.15 | 0.58 | 0.58 | 0.58 | |||
Relative standard deviation: | 1.4% | 0.0% | 0.0% | 5.0% | 2.0% | 2.3% | 3.0% |
GSR2021 ENFSI GSR PT- C-11-10 | Feature Det. | Spectrum Setup | Detection Setup | Number of Particles (Detected Automatically) | Time of Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spot Size | BSE | Passes [s] | Process Time | Passes [μs] | LE, TE | Pb-Sb-Ba | Pb-Ba | Sb-Pb | Sb-Ba | Sum | [min] | ||
P1 | GSR2021 IK 150621a | 60 | Co: 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 151 | 151 | 110.6 | |||
GSR2021 IK 150621b | 60 | 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 151 | 1 | 152 | 109.4 | |||
GSR2021 ZBM 170621a | 60 | 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 150 | 150 | 112.5 | ||||
GSR2021 ZBM 170621b | 60 | 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 150 | 150 | 112.9 | ||||
GSR2021 ZBM 180621 | 60 | 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 151 | 151 | 113.4 | ||||
GSR2021 IK 230621a | 60 | 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 151 | 1 | 152 | 111.8 | |||
GSR2021 IK 230621b | 60 | 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 151 | 1 | 152 | 112.8 | |||
GSR2021 ZBM 300821 | 62 | 250 | 2, 5 | 3 | 5, 50 | 40, 40 | 152 | 152 | 114.7 | ||||
P2 | GSR 2021 IK 111021 | 58 | Cu: 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 147 | 1 | 148 | 82.7 | ||
GSR 2021 IK 121021a | 58 | 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 149 | 1 | 149 | 84.8 | |||
GSR 2021 IK 121021b | 61 | 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 148 | 148 | 85.8 | ||||
GSR 2021 ZBM 181021a | 60 | 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 150 | 150 | 81.7 | ||||
GSR 2021 ZBM 181021b | 60 | 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 150 | 150 | 83.7 | ||||
GSR 2021 ZBM 181021c | 60 | 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 149 | 149 | 82.6 |
Measurement | Number of Detected Particles Pb-Sb-Ba | Number of Particles Pb-Sb-Ba of Given Diameters | 90% Detection Capability | 50% Detection Capability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | Mean Value (μm) | Mean Value (μm) | ||
ENFSI GSR PT- C-11-10 | 138 | 4 1 | 15 | 20 | 27 | 25 | 27 | 24 | ||
GSR 2021 IK 111021 | 133 | 4 | 15 | 19 | 26 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
GSR 2021 IK 121021a | 135 | 4 | 15 | 19 | 27 | 25 | 27 | 22 | ≤0.50 | ≤0.50 |
GSR 2021 IK 121021b | 134 | 4 | 15 | 19 | 27 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
Mean value: | 134.00 | 15.00 | 19.00 | 26.67 | 25.00 | 26.33 | 22.00 | |||
Standard deviation: | 1.00 | 0.00 | 0.00 | 0.58 | 0.00 | 0.58 | 0.00 | |||
Relative standard deviation: | 0.7% | 0.0% | 0.0% | 0.0% | 0.0% | 2.2% | 0.0% | |||
GSR 2021 ZBM 181021a | 136 | 4 | 15 | 20 | 27 | 25 | 26 | 23 | ≤0.50 | ≤0.50 |
GSR 2021 ZBM 181021b | 136 | 4 | 15 | 20 | 27 | 25 | 26 | 23 | ≤0.50 | ≤0.50 |
GSR 2021 ZBM 181021c | 135 | 4 | 15 | 20 | 27 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
Mean value: | 135.67 | 15.00 | 20.00 | 27.00 | 25.00 | 26.00 | 22.67 | |||
Standard deviation: | 0.58 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.58 | |||
Relative standard deviation: | 0.4% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 2.6% |
Measurement Date | Number of Detected Particles Pb-Sb-Ba | Number of Particles Pb-Sb-Ba of Given Diameters | 90% Detection Capability | 50% Detection Capability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
12 μm | 2.00 μm | 1.50 μm | 1.25 μm | 1.00 μm | 0.75 μm | 0.50 μm | Mean Value (μm) | Mean Value (μm) | ||
ENFSI GSR PT- C-11-10 | 138 | 4 1 | 15 | 20 | 27 | 25 | 27 | 24 | ||
11 October 2021 | 133 | 4 | 15 | 19 | 26 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
12 October 2021a | 135 | 4 | 15 | 19 | 27 | 25 | 27 | 22 | ≤0.50 | ≤0.50 |
12 October 2021b | 134 | 4 | 15 | 19 | 27 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
18 October 2021a | 136 | 4 | 15 | 20 | 27 | 25 | 26 | 23 | ≤0.50 | ≤0.50 |
18 October 2021b | 136 | 4 | 15 | 20 | 27 | 25 | 26 | 23 | ≤0.50 | ≤0.50 |
18 October 2021c | 135 | 4 | 15 | 20 | 27 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
21 December 2021 | 131 | 4 | 15 | 20 | 26 | 24 | 24 | 22 | 0.59 | ≤0.50 |
3 February 2022a | 132 | 4 | 15 | 20 | 26 | 25 | 23 | 23 | 0.59 | ≤0.50 |
3 February 2022b | 134 | 4 | 15 | 20 | 26 | 25 | 24 | 24 | 0.59 | ≤0.50 |
23 March 2022 | 133 | 4 | 15 | 20 | 27 | 25 | 23 | 23 | 0.51 | ≤0.50 |
24 March 2022 | 135 | 4 | 15 | 20 | 27 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
17 May 2022 | 135 | 4 | 15 | 19 | 27 | 24 | 27 | 23 | ≤0.50 | ≤0.50 |
30 May 2022 | 135 | 4 | 15 | 20 | 27 | 25 | 26 | 22 | ≤0.50 | ≤0.50 |
13 June 2022 | 135 | 4 | 15 | 20 | 27 | 24 | 27 | 22 | ≤0.50 | ≤0.50 |
22 August 2022 | 136 | 4 | 15 | 20 | 25 | 25 | 27 | 24 | ≤0.50 | ≤0.50 |
23 August 2022 | 136 | 4 | 15 | 19 | 27 | 25 | 26 | 24 | ≤0.50 | ≤0.50 |
Mean value: | 134.44 | 15.00 | 19.69 | 26.63 | 24.81 | 25.63 | 22.69 | |||
Standard deviation: | 1.50 | 0.00 | 0.48 | 0.62 | 0.40 | 1.36 | 0.79 | |||
Relative standard deviation: | 1.1% | 0.0% | 2.4% | 2.3% | 1.6% | 5.3% | 3.5% |
Measurement Date | 2.00 μm | 1.50 μm | 1.25 μm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FN | TP | S (%) | B (%) | FN | TP | S (%) | B (%) | FN | TP | S (%) | B (%) | |
11 October 2021 | 0 | 15 | 100 | 0 | 1 | 19 | 95 | −5 | 1 | 26 | 96 | −4 |
12 October 2021a | 0 | 15 | 100 | 0 | 1 | 19 | 95 | −5 | 0 | 27 | 100 | 0 |
12 October 2021b | 0 | 15 | 100 | 0 | 1 | 19 | 95 | −5 | 0 | 27 | 100 | 0 |
18 October 2021a | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 |
18 October 2021b | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 |
18 October 2021c | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 |
21 December 2021 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 |
3 February 2022a | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 |
3 February 2022b | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 1 | 26 | 96 | −4 |
23 March 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 |
24 March 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 |
17 May 2022 | 0 | 15 | 100 | 0 | 1 | 19 | 95 | −5 | 0 | 27 | 100 | 0 |
30 May 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 |
13 June 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 0 | 27 | 100 | 0 |
22 August 2022 | 0 | 15 | 100 | 0 | 0 | 20 | 100 | 0 | 2 | 25 | 93 | −7 |
23 August 2022 | 0 | 15 | 100 | 0 | 1 | 19 | 95 | −5 | 0 | 27 | 100 | 0 |
Mean value: | 100.0 | 0.0 | 98.4 | −1.6 | 98.6 | −1.4 | ||||||
Standard deviation: | 0.0 | 0.0 | 2.4 | 2.4 | 2.3 | 2.3 |
Measurement Date | 1.00 μm | 0.75 μm | 0.50 μm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FN | TP | S (%) | B (%) | FN | TP | S (%) | B (%) | FN | TP | S (%) | B (%) | |
11 October 2021 | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 2 | 22 | 92 | −8 |
12 October 2021a | 0 | 25 | 100 | 0 | 0 | 27 | 100 | 0 | 2 | 22 | 92 | −8 |
12 October 2021b | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 2 | 22 | 92 | −8 |
18 October 2021a | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 1 | 23 | 96 | −4 |
18 October 2021b | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 1 | 23 | 96 | −4 |
18 October 2021c | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 2 | 22 | 92 | −8 |
21 December 2021 | 1 | 24 | 96 | −4 | 3 | 24 | 89 | −11 | 2 | 22 | 92 | −8 |
3 February 2022a | 0 | 25 | 100 | 0 | 4 | 23 | 85 | −15 | 1 | 23 | 96 | −4 |
3 February 2022b | 0 | 25 | 100 | 0 | 3 | 24 | 89 | −11 | 0 | 24 | 100 | 0 |
23 March 2022 | 0 | 25 | 100 | 0 | 4 | 23 | 85 | −15 | 1 | 23 | 96 | −4 |
24 March 2022 | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 2 | 22 | 92 | −8 |
17 May 2022 | 1 | 24 | 96 | −4 | 0 | 27 | 100 | 0 | 1 | 23 | 96 | −4 |
30 May 2022 | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 2 | 22 | 92 | −8 |
13 June 2022 | 1 | 24 | 96 | −4 | 0 | 27 | 100 | 0 | 2 | 22 | 92 | −8 |
22 August 2022 | 0 | 25 | 100 | 0 | 0 | 27 | 100 | 0 | 0 | 24 | 100 | 0 |
23 August 2022 | 0 | 25 | 100 | 0 | 1 | 26 | 96 | −4 | 0 | 24 | 100 | 0 |
Mean value: | 99.3 | −0.8 | 94.8 | −5.3 | 94.8 | −5.3 | ||||||
Standard deviation: | 1.6 | 1.6 | 5.0 | 5.0 | 3.2 | 3.2 |
Measurement Date | Total Number of Particles | FN | TP | S (%) | B (%) |
---|---|---|---|---|---|
11 October 2021 | 133 | 5 | 133 | 96 | −4 |
12 October 2021a | 135 | 3 | 135 | 98 | −2 |
12 October 2021b | 134 | 4 | 134 | 97 | −3 |
18 October 2021a | 136 | 2 | 136 | 99 | −1 |
18 October 2021b | 136 | 2 | 136 | 99 | −1 |
18 October 2021c | 135 | 3 | 135 | 98 | −2 |
21 December 2021 | 131 | 7 | 131 | 95 | −5 |
3 February 2022a | 132 | 6 | 132 | 96 | −4 |
3 February 2022b | 134 | 4 | 134 | 97 | −3 |
23 March 2022 | 133 | 5 | 133 | 96 | −4 |
24 March 2022 | 135 | 3 | 135 | 98 | −2 |
17 May 2022 | 135 | 3 | 135 | 98 | −2 |
30 May 2022 | 135 | 3 | 135 | 98 | −2 |
13 June 2022 | 135 | 3 | 135 | 98 | −2 |
22 August 2022 | 136 | 2 | 136 | 99 | −1 |
23 August 2022 | 136 | 2 | 136 | 99 | −1 |
Mean value: | 97.6 | −2.4 | |||
Standard deviation: | 1.3 | 1.3 |
FTS-2021-GSR | Feature Detection | Spectrum Setup | Detection Setup | Number of Particles | Analysis Time | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BSE (Cu) | Passes [s] | Process Time | Passes [μs] | LE, TE [μs] | Characteristic | Consistent | Environmental | Unclassified | All | % Unclassified | [min] | |
FTS ZBM 201021 250× | 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 520 | 519 | 789 | 1707 | 3535 | 48.29 | 347.5 |
FTS ZBM 221021 120× | 250 | 1.5, 1.5 | 3 | 4, 50 | 40, 20 | 240 | 166 | 318 | 552 | 1276 | 43.26 | 106.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brożek-Mucha, Z.; Klag, I. Optimizing the Automated Analysis of Inorganic Gunshot Residue Particles by SEM-EDX: From Synthetic Particle Standards to More Time-Efficient Settings for Daily Casework. Quantum Beam Sci. 2024, 8, 28. https://doi.org/10.3390/qubs8040028
Brożek-Mucha Z, Klag I. Optimizing the Automated Analysis of Inorganic Gunshot Residue Particles by SEM-EDX: From Synthetic Particle Standards to More Time-Efficient Settings for Daily Casework. Quantum Beam Science. 2024; 8(4):28. https://doi.org/10.3390/qubs8040028
Chicago/Turabian StyleBrożek-Mucha, Zuzanna, and Iga Klag. 2024. "Optimizing the Automated Analysis of Inorganic Gunshot Residue Particles by SEM-EDX: From Synthetic Particle Standards to More Time-Efficient Settings for Daily Casework" Quantum Beam Science 8, no. 4: 28. https://doi.org/10.3390/qubs8040028
APA StyleBrożek-Mucha, Z., & Klag, I. (2024). Optimizing the Automated Analysis of Inorganic Gunshot Residue Particles by SEM-EDX: From Synthetic Particle Standards to More Time-Efficient Settings for Daily Casework. Quantum Beam Science, 8(4), 28. https://doi.org/10.3390/qubs8040028