Durability of Steel-Reinforced Concrete Structures Under Effect of Climatic Temporality and Aggressive Agents (CO2, SO2) in Boca del Rio, Veracruz
<p>Effect of coastal environment on reinforced concrete infrastructure for community needs.</p> "> Figure 2
<p>Deterioration process of chloride corrosion in steel and CO<sub>2</sub> carbonation in reinforced concrete structures.</p> "> Figure 3
<p>Exposure zone for concrete specimens.</p> "> Figure 4
<p>Arrangement of concrete specimens for experimentation.</p> "> Figure 5
<p>Corrosion potential in AISI 1018 and galvanized steel bars in control mixtures, with 15% replacement of Portland cement by silica fume and 15% replacement of Portland cement by sugarcane bagasse ash.</p> "> Figure 6
<p>Corrosion rate in AISI 1018 and galvanized steel bars in control mixtures, with 15% replacement of Portland cement by silica fume and 15% replacement of Portland cement by sugarcane bagasse ash.</p> "> Figure 7
<p>Evolutionary profiles of carbonation in different mixtures.</p> "> Figure 8
<p>Correlation between temperature, CO<sub>2,</sub> and SO<sub>2</sub> from 2017 to 2019 in this study area.</p> "> Figure 9
<p>Correlation between SBA, silica fume, carbonation depth, and temperature in this study area during the exposure period.</p> "> Figure 10
<p>Correlation between wind speed, CO<sub>2,</sub> and SO<sub>2</sub> content in this study area during the exposure period.</p> "> Figure 11
<p>Correlation between relative humidity, CO<sub>2,</sub> and SO<sub>2</sub> for the period 2017–2019.</p> "> Figure 12
<p>Correlation between precipitation, CO<sub>2,</sub> and SO<sub>2</sub> for the period 2017–2019.</p> "> Figure 13
<p>Compressive strength of conventional mixtures (control), Silica Fume (SF) mixture, and sugarcane bagasse ash (SBA) mixture at 110 and 165 days.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
Placement of Concrete Specimens
3. Results and Discussions
3.1. Potential (Ecorr) and Corrosion Rate (Icorr)
3.2. Carbonation Depth
3.3. Correlation Analyses
3.4. Sulfur Dioxide (SO2) and Carbon Dioxide (CO2) Levels
3.5. Compressive Strength
4. Conclusions
- The use of partially sustainable alternatives to Conventional Portland Cement (CPC) using sugarcane bagasse ash (SBA) and silica fume (SF) demonstrates significant potential in the production of high-durability concrete. The incorporation of SBA percentages produced a compressive strength comparable to that of CPC, reaching strength levels of 250 kg/cm2. However, with the addition of SF, there was up to a 21% increase in strength at 28 days compared to the control samples over the 302-day duration of the experiment, without compromising the integrity of the structural element and aligned with ecological objectives.
- Regarding the use of concrete in coastal climatic conditions (Boca del Rio, Veracruz, Mexico), which are exposed to aggressive agents such as CO2 and SO2, there is an increase in carbonation depths and corrosion rates. The mixtures utilizing SF exhibited lower depths (not exceeding 12 mm over the 302 days) compared to control mixtures, thus providing effective protection against environmental degradation.
- The implementation of sustainable alternative materials promotes their use and may inform public policies aimed at reducing the environmental footprint caused by construction activities. Additionally, the utilization of SBA contributes to the economic development of the sugar sector, as the commercialization of this agricultural byproduct generates a sustainable alternative to cement and creates economic opportunities.
- The performance of concrete modified with alternative cementitious materials, its behavior in the presence of aggressive agents from hostile environments such as coastal zones, and its resistance over time provide valuable information regarding performance, structural reliability, and numerous real-world applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Publicado por las Naciones Unidas (Oficina del Alto Comisionado para los Derechos Humanos) y la Fundación Heinrich Böll. Available online: https://www.ohchr.org/sites/default/files/Documents/Publications/InfrastructureGapSummary_SP.pdf (accessed on 23 August 2024).
- Andersson, C.; Rosemarin, K.; Lamizana, B.; Kvarnström, E.; McConville Seidu, J.; Dickin, R.; Trimmer, S. Wastewater Management and Sustainability: From Waste Disposal to Resource Recovery; United Nations Environment Programme and Stockholm Environment Institute: Nairobi, Kenya; Stockholm, Sweden, 2016. [Google Scholar]
- Zielinski, S.; Jeong, Y.; Milanés, C.B. Factors that influence community-based tourism (CBT) in developing and developed countries. Tour. Geogr. 2021, 23, 1040–1072. [Google Scholar] [CrossRef]
- Guajardo Soto, G. What is infrastructure? Origins, twists and continuities of the concept. ARQ 2023, 114, 4–15. [Google Scholar] [CrossRef]
- Thomas, B.S.; Yang, J.; Mo, K.H.; Abdalla, J.A.; Hawileh, R.A.; Ariyachandra, E. Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. J. Build. Eng. 2021, 40, 102332. [Google Scholar] [CrossRef]
- Sunayana, S.; Barai, S.V. Recycled aggregate concrete incorporating fly ash: Comparative study on particle packing and conventional method. Constr. Build. Mater. 2017, 156, 376–386. [Google Scholar] [CrossRef]
- Aslam, F.; Zaid, O.; Althoey, F.; Alyami, S.H.; Qaidi, S.M.; de Prado Gil, J.; Martínez-García, R. Evaluating the influence of fly ash and waste glass on the charactristics of coconut fibers reinforced concrete. Struct. Concr. 2023, 24, 2440–2459. [Google Scholar] [CrossRef]
- Nayak, D.K.; Abhilash, P.P.; Singh, R.; Kumar, R.; Kumar, V. Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Clean. Mater. 2022, 6, 100143. [Google Scholar] [CrossRef]
- Ibrahim, K.I.M. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud. Constr. Mater. 2021, 15, e00630. [Google Scholar]
- Lakhiar, M.T.; Kong, S.Y.; Bai, Y.; Susilawati, S.; Zahidi, I.; Paul, S.C.; Raghunandan, M.E. Thermal and mechanical properties of concrete incorporating silica fume and waste rubber powder. Polymers 2022, 14, 4858. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.; Aguilar, C.; Madureira, A.; Pintado, M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Peñaranda Gonzalez, L.; Montenegro Gómez, S.; Giraldo Abad, S. Exploitation of agroindustrial waste in Colombia. Rev. Investig. Agrar. Ambient. 2017, 8, 141–150. [Google Scholar] [CrossRef]
- Cury, K.; Aguas, Y.; Martinez, A.; Olivero, R.; Chams, L. Residuos agroindustriales su impacto, manejo y aprovechamiento. Rev. Colomb. Cienc. Anim. RECIA 2017, 9, 122–132. [Google Scholar] [CrossRef]
- Cabello, S.; Campuzano, V.L.; Espinosa, C.J.; Sánchez, M. Porous concrete, constitution, influencing variables and protocols for its characterization. Rev. IBRACON Estrut. Mater. 2015, 13, 64–69. [Google Scholar]
- Campos, H.; Klein, N.; Marques Filho, J. Comparison of the Silica Fume Content for High-Strength Concrete Production: Chemical Analysis of the Pozzolanic Reaction and Physical Behavior by Particle Packing. Cumbres Rev. Científica. 2020, 23, 5. [Google Scholar] [CrossRef]
- Abdalla, T.A.; Koteng, D.O.; Shitote, S.M.; Matallah, M. Mechanical and durability properties of concrete incorporating silica fume and a high volume of sugarcane bagasse ash. Results Eng. 2022, 16, 100666. [Google Scholar] [CrossRef]
- Landa-Ruiz, L.; Landa-Gomez, A.; Mendoza-Rangel, J.M.; Landa-Sanchez, A.; Ariza-Figueroa, H.; Méndez-Ramírez, C.T.; Baltazar-Zamora, M.A. Physical, mechanical and durability properties of ecofriendly ternary concrete made with sugar cane bagasse ash and silica fume. Crystals 2021, 11, 1012. [Google Scholar] [CrossRef]
- Farrant, W.E.; Babafemi, A.J.; Kolawole, J.T.; Panda, B. Influence of sugarcane bagasse ash and silica fume on the mechanical and durability properties of concrete. Materials 2022, 15, 3018. [Google Scholar] [CrossRef]
- Landa-Ruiz, L.; Baltazar-Zamora, M.A.; Bosch, J.; Ress, J.; Santiago-Hurtado, G.; Moreno-Landeros, V.M.; Bastidas, D.M. Electrochemical corrosion of galvanized steel in binary sustainable concrete made with sugar cane bagasse ash (SBA) and silica fume (SF) exposed to sulfates. Appl. Sci. 2021, 11, 2133. [Google Scholar] [CrossRef]
- Neto, J.D.S.A.; de França, M.J.S.; de Amorim Júnior, N.S.; Ribeiro, D.V. Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Constr. Build. Mater. 2021, 266, 120959. [Google Scholar] [CrossRef]
- Wu, N.; Ji, T.; Huang, P.; Fu, T.; Zheng, X.; Xu, Q. Use of Sugar Cane Bagasse Ash in Ultra-High Performance Concrete (UHPC) as Cement Replacement. Constr. Build. Mater. 2022, 317, 125881. [Google Scholar] [CrossRef]
- Shah, I.; Miller, S.; Jiang, D.; Myers, R. Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nat. Commun. 2022, 13, 5758. [Google Scholar] [CrossRef]
- Li, F.; Fan, S.; Cai, C.; Huo, J.; Su, Q.; Jin, H.; Li, X.; Xu, W.; Song, B.; Yang, X.; et al. Comprehensive research of the durability, bending deterioration and micro properties of lining concrete in an environment with bending stress–chloride salt–large temperature difference coupling. Constr. Build. Mater. 2024, 439, 137337. [Google Scholar] [CrossRef]
- Moreno, M.; Morris, W.; Alvarez, M.; Duffó, G. Corrosion of reinforcing steel in simulated concrete pore solutions. Corros. Sci. 2004, 46, 2681–2699. [Google Scholar] [CrossRef]
- American Concrete Institute (ACI). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; ACI 211.1; American Concrete Institute: Farmington Hills, MI, USA, 2002. [Google Scholar]
- Monreal-Gómez, M.; Salas de León, D.; Velasco-Mendoza, H. The hydrodynamics of the Gulf of Mexico. Diagn. Ambient. Del. Golf. México. 2024, 1, 47–69. [Google Scholar]
- Singh, S.; Munjal, P.; Thammishetti, N. Role of water/cement ratio on strength development of cement mortar. J. Build. Eng. 2015, 4, 94–100. [Google Scholar] [CrossRef]
- Ali, B.; Fahad, M.; Ullah, S.; Ahmed, H.; Alyousef, R.; Deifalla, A. Development of Ductile and Durable High Strength Concrete (HSC) through Interactive Incorporation of Coir Waste and Silica Fume. Materials 2022, 15, 2616. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.; Argolo, R.; Ribeiro, D. The Effect of the Calcination Temperature on the Physical, Chemical and Mineralogical Characteristics of Sugar Cane Bagasse Ash (SBA) for Use as Pozzolan. J. Solid Waste Technol. Manag. 2021, 47, 546–556. [Google Scholar] [CrossRef]
- Liu, T.; Xie, Y.; Guo, X.; Zhang, J.; Zhu, L.; Luo, Z.; Tang, Y.; Lu, A. The role and stabilization behavior of heavy metal ions in eco-friendly porous semi-vitrified ceramics for construction application. J. Clean. Prod. 2021, 292, 125855. [Google Scholar] [CrossRef]
- Ahmad, S.; Al-Amoudi, O.S.B.; Khan, S.M.S.; Maslehuddin, M. Effect of Silica Fume Inclusion on the Strength, Shrinkage and Durability Characteristics of Natural Pozzolan-Based Cement Concrete. Case Stud. Constr. Mater. 2022, 17, e01255. [Google Scholar] [CrossRef]
- Alvarenga, K.P.; Cordeiro, G.C. Evaluating Sugarcane Bagasse Fly Ash as a Sustainable Cement Replacement for Enhanced Performance. Clean. Eng. Technol. 2024, 20, 100751. [Google Scholar] [CrossRef]
- Singh, R.P.; Vanapalli, K.R.; Jadda, K.; Mohanty, B. Durability Assessment of Fly Ash, GGBS, and Silica Fume Based Geopolymer Concrete with Recycled Aggregates Against Acid and Sulfate Attack. J. Build. Eng. 2024, 82, 108354. [Google Scholar] [CrossRef]
- Yavuz, D.; Akbulut, Z.F.; Guler, S. Porous Concrete Modification with Silica Fume and Ground Granulated Blast Furnace Slag: Hydraulic and Mechanical Properties Before and After Freeze-Thaw Exposure. Constr. Build. Mater. 2024, 447, 138099. [Google Scholar] [CrossRef]
- Harilal, M.; Anandkumar, B.; George, R.P.; Albert, S.K.; Philip, J. High-Performance Eco-Friendly Ternary Blended Green Concrete in Seawater Environment. Hybrid Adv. 2023, 3, 100037. [Google Scholar] [CrossRef]
- UNE-EN ISO 16773-2:2017; Electrochemical Impedance Spectroscopy (EIS) on Coated and Uncoated Metallic Specimens. Part 2: Data Collection. Spanish Association for Standardization (AENOR): Madrid, Spain, 2017.
- Sahu, A.; Prakash, S. Effects of Silica Fume on the Properties of Concrete: A Review. Materials 2020, 13, 2471. [Google Scholar] [CrossRef]
- Moreno, E.; Torres, A.; Perez, J.; Martínez, M.; Martinez, W.; Guzman, A.; Castro, P.; Genesca, J.; Valdez-Salas, B.; Ariza, L.; et al. Concrete Carbonation in Mexico and Spain: DURACON Project, Four Year Evaluation. Key Eng. Mater. 2016, 711, 12–20. [Google Scholar] [CrossRef]
- NMX-C-083-ONNCCE-2014; Methods of Testing for Compressive Strength of Construction Materials. National Organization for Standardization and Certification of Construction and Building (ONNCCE): Mexico City, Mexico, 2014.
- Verma, S.K.; Singla, C.S.; Nadda, G.; Kumar, R. Development of Sustainable Concrete Using Silica Fume and Stone Dust. Materials. Today Proc. 2020, 32, 882–887. [Google Scholar] [CrossRef]
- Spósito, C.C.A.; Fazzan, J.V.; Rossignolo, J.A.; Bueno, C.; Spósito, F.A.; Akasaki, J.L.; Tashima, M.M. Ecodesign: Approaches for Sugarcane Bagasse Ash Mortars in a Brazilian Context. J. Clean. Prod. 2023, 385, 135667. [Google Scholar] [CrossRef]
- Yao, J.; Chen, J.; Lu, C. Entropy Evolution during Crack Propagation in Concrete under Sulfate Attack. Constr. Build. Mater. 2019, 209, 492–498. [Google Scholar] [CrossRef]
- Ríos Parada, V.; Jiménez Quero, V.G.; Valdez Tamez, P.L.; Montes García, P. Characterization and Use of an Untreated Mexican Sugarcane Bagasse Ash as Supplementary Material for the Preparation of Ternary Concretes. Constr. Build. Mater. 2017, 157, 83–95. [Google Scholar] [CrossRef]
- Abed, A.A.; Kamal, I.; Mojtahedi, A. Enhancing Concrete Properties Using Silica Fume: Optimized Mix Design. J. Smart Build. Constr. Technol. 2023, 5, 84–91. [Google Scholar] [CrossRef]
- Sobuz, M.H.R.; Al-Imran; Datta, S.D.; Jabin, J.A.; Aditto, F.S.; Hasan, N.M.S.; Hasan, M.; Zaman, A.A.U. Assessing the Influence of Sugarcane Bagasse Ash for the Production of Eco-Friendly Concrete: Experimental and Machine Learning Approaches. Case Stud. Constr. Mater. 2024, 20, e02839. [Google Scholar] [CrossRef]
- Bušić, R.; Miličević, I.; Dokšanović, T.; Grubišić, M. Rendimiento de durabilidad y resistencia térmica del hormigón estructural autocompactante mejorado con caucho de desecho y humo de sílice. Buildings 2023, 13, 1331. [Google Scholar] [CrossRef]
Study | Materials Used | Type of Exposure | Duration of Exposure | Key Results | Conclusions |
---|---|---|---|---|---|
Ahmad et al. (2022) [31] | Silica Fume | Exposure to weather | 90 days | Improvement in compressive strength and durability | Silica fume enhances durability in aggressive environments. |
Alvarenga et al. (2024) [32] | Bagasse Ash | Cycles of moisture and dryness | 120 days | Reduction in cracking and improved mechanical performance | Bagasse Ash contributes to the stability of concrete. |
Singh et al. (2024) [33] | Silica Fume and Bagasse Ash | Exposure under extreme climate conditions | 180 days | Increased resistance to chloride attack | Combined mixtures optimize concrete properties. |
Andrade et al. (2020) [20] | Bagasse Ash | Exposure to water and sun | 300 days | Low permeability and reduced water absorption | Bagasse ash enhances water resistance. |
Yavuz et al. (2024) [34] | Silica Fume | Exposure to freezing cycles | 60 days | Superior freeze and thaw resistance | Recommended for cold climates, increases concrete lifespan. |
Harilal et al. (2023) [35] | Silica Fume and Bagasse Ash | Exposure to coastal environments | 90 days | Protection against corrosion in saline environments | Suitable for coastal areas, improves durability. |
Reference | Cement Substitute | Replacement Percentage | Key Results | Region | Year |
---|---|---|---|---|---|
[40] | Silica Fume | 10–30% | Improvement in compressive strength and durability | India | 2020 |
[41] | Bagasse Ash | 5–15% | Reduction in cement consumption and CO2 emissions | Brazil | 2023 |
[42] | Silica Fume | 15% | Significant increase in sulfate resistance | China | 2021 |
[43] | Bagasse Ash | 20% | Improvements in workability and cost reduction | México | 2017 |
[18] | Silica Fume and Bagasse Ash | 10% Silica 10% Ash | Synergy in mechanical properties and durability | South Africa | 2022 |
[44] | Silica Fume | 25% | Optimization of mix superior properties | Iraq | 2023 |
[45] | Bagasse Ash | 10–20% | Increase in carbonation resistance | Bangladesh | 2024 |
[46] | Silica Fume | 20% | Positive effect on concrete sustainability | Croatia | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Moreno, H.R.; Marín-Muñiz, J.L.; López-Gonzalez, P.J.; Moreno-Vazquez, O.; Zamora-Castro, S.A.; Monzón-Reyes, B.L.; Sangabriel-Lomeli, J. Durability of Steel-Reinforced Concrete Structures Under Effect of Climatic Temporality and Aggressive Agents (CO2, SO2) in Boca del Rio, Veracruz. Infrastructures 2024, 9, 207. https://doi.org/10.3390/infrastructures9110207
González-Moreno HR, Marín-Muñiz JL, López-Gonzalez PJ, Moreno-Vazquez O, Zamora-Castro SA, Monzón-Reyes BL, Sangabriel-Lomeli J. Durability of Steel-Reinforced Concrete Structures Under Effect of Climatic Temporality and Aggressive Agents (CO2, SO2) in Boca del Rio, Veracruz. Infrastructures. 2024; 9(11):207. https://doi.org/10.3390/infrastructures9110207
Chicago/Turabian StyleGonzález-Moreno, Humberto Raymundo, Jose Luis Marín-Muñiz, Pablo Julian López-Gonzalez, Oscar Moreno-Vazquez, Sergio Aurelio Zamora-Castro, Brenda Lizeth Monzón-Reyes, and Joaquin Sangabriel-Lomeli. 2024. "Durability of Steel-Reinforced Concrete Structures Under Effect of Climatic Temporality and Aggressive Agents (CO2, SO2) in Boca del Rio, Veracruz" Infrastructures 9, no. 11: 207. https://doi.org/10.3390/infrastructures9110207
APA StyleGonzález-Moreno, H. R., Marín-Muñiz, J. L., López-Gonzalez, P. J., Moreno-Vazquez, O., Zamora-Castro, S. A., Monzón-Reyes, B. L., & Sangabriel-Lomeli, J. (2024). Durability of Steel-Reinforced Concrete Structures Under Effect of Climatic Temporality and Aggressive Agents (CO2, SO2) in Boca del Rio, Veracruz. Infrastructures, 9(11), 207. https://doi.org/10.3390/infrastructures9110207