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Abstract: Proper road network maintenance is essential for ensuring safety, reducing transportation
costs, and improving fuel efficiency. Traditional pavement condition assessments rely on special-
ized equipment, limiting the frequency and scope of inspections due to technical and financial
constraints. In response, crowdsourcing data from connected and autonomous vehicles (CAVs) offers
an innovative alternative. CAVs, equipped with sensors and accelerometers by Original Equipment
Manufacturers (OEMs), continuously gather real-time data on road conditions. This study evaluates
the feasibility of using CAV data to assess pavement condition through the International Roughness
Index (IRI). By comparing CAV-derived data with traditional pavement auscultation results, various
thresholds were established to quantitatively and qualitatively define pavement conditions. The
results indicate a moderate positive correlation between the two datasets, particularly in segments
with good-to-satisfactory surface conditions (IRI 1 to 2.5 dm/km). Although the IRI values from CAVs
tended to be slightly lower than those from auscultation surveys, this difference can be attributed to
driving behavior. Nonetheless, our analysis shows that CAV data can be used to reliably identify
pavement conditions, offering a scalable, non-destructive, and continuous monitoring solution. This
approach could enhance the efficiency and effectiveness of traditional road inspection campaigns.

Keywords: pavement; road maintenance; International Roughness Index; connected and autonomous
vehicles

1. Introduction

The proper maintenance of road networks is crucial for preserving and enhancing
citizens’ quality of life [1,2]. Otherwise, the costs associated with the transportation of
goods and people would increase due to poor road conditions, which lead to higher fuel
consumption and, consequently, increased greenhouse gas emissions. Additionally, poor
pavement conditions pose significant dangers to road users, cause greater tire wear, and
can damage vehicles [3,4].

Therefore, it is essential for highway authorities to develop a pavement management
system to analyze the lifecycle of road infrastructure and create optimal pavement condi-
tions. This requires evaluating pavement condition and developing predictive models to
understand how pavement deterioration will evolve [5].

In this context, the Spanish Highway Administration, like many national highway
agencies, has implemented a pavement management system designed to effectively and
efficiently manage road maintenance. This system facilitates the creation of inventories, the
maintenance of a database for surveys and inspections, and the assessment of pavement
condition using various indices. There are, however, areas for improvement regarding
the availability of information on pavement condition, as auscultation systems require
significant investment. Additionally, while visual inspections are necessary before making
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decisions, they may introduce variability in assessments. Exploring the use of evolutionary
models to predict pavement condition, estimate pavement life, and determine the optimal
timing for interventions could further enhance management efficiency and effectiveness.

As a result, according to the Spanish Road Association, Spanish roads are in a “poor”
state of conservation, nearing the “very poor” threshold [6]. One out of thirteen kilometers
of the Spanish road and highway network shows significant deterioration in over 50% of
the pavement surface, featuring potholes, rutting, and longitudinal and transverse cracks.
This lack of maintenance is severely impacting Spanish road infrastructure, with a 36% loss
in asset value between 2001 and 2017 for national roads and a 38% loss for regional and
local roads. This progressive deterioration leads to uncomfortable driving conditions, road
safety issues, inter-territorial and European competitiveness losses, exponential increases in
pavement repair costs, higher vehicle maintenance costs, and increased pollutant emissions.

Current methods for evaluating pavement condition involve conducting inspections
with specialized equipment to assess pavement condition and driving comfort [7–10]. Due
to economic and technical constraints, administrations cannot cover the entire road network
on an annual basis. This typically results in detailed data collection only for high-volume
roads, with less attention given to lower-priority roads.

Despite advancements in image processing and specialized vehicle instrumenta-
tion [11–16], a significant gap exists in terms of scalability and continuous monitoring
across all road types. The current methods, including those based on image processing,
are limited by their dependency on equipment setup, cost, and infrequent data collection
cycles. Additionally, the reliance on specific vehicles or routes further restricts the ability to
gather consistent, real-time pavement data.

An alternative to these instrumented vehicles is crowdsourcing data from connected
and autonomous vehicles (CAVs). Original Equipment Manufacturers (OEMs) integrate
sensors, accelerometers, and mobile network connections in vehicles, providing a data
source on current road conditions. Integrating and utilizing vehicle data have enabled
the assessment of road markings, traffic signs, and crash mitigation through surrogate
safety measures [17–21]. In pavement condition evaluation, vehicles use a system that
leverages individual wheel speed through rotational sensors combined with transmission
information to provide data on ride quality or comfort [22]. This information can be used
to estimate the International Roughness Index (IRI) using a fleet of crowdsourced vehicles.

Unlike auscultation methods, whose results depend significantly on the path of the
specialized equipment at the time of measurement and have very low data collection
frequency, data from CAVs constitute a more reliable type of real-time road condition
information, with data from hundreds or thousands of vehicles at each road point.

Thus, this study fills the gap by leveraging crowdsourced data from CAVs to provide
continuous, scalable, and cost-effective pavement monitoring. The novelty of this approach
lies in its ability to utilize data from a vast fleet of vehicles, offering higher data frequency
and broader network coverage than traditional methods.

2. Materials and Methods

This study aims to analyze the relationship between International Roughness Index
(IRI) data obtained from pavement assessments made via specialized equipment and IRI
values derived from data collected by Connected and Autonomous Vehicles (CAVs) to
explore the feasibility of using the latter for assessing the roughness of rural roads.

To achieve this objective, this study will first provide a description of available rough-
ness data, identifying the specific road where these data were collected. Next, a descriptive
and graphical analysis of IRI values obtained from both pavement assessments and CAVs
will be conducted to assess their initial correlation.

Following the descriptive analysis, a statistical analysis using paired sample tests will
be performed by matching IRI data from both sources at each kilometer and hectometer
point along the road. The null hypothesis for this statistical test assumes there is no
difference in means between the two datasets, subject to prior evaluation of data normality.
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Finally, this study proposes establishing various thresholds to quantitatively and
qualitatively determine pavement conditions based on data collected from connected and
autonomous vehicles.

2.1. Road Segment

The road section used for the development of this study is a segment of road N-310,
from station 144 + 990 (San Clemente) to station 198 + 710 (Villanueva de la Jara), in the
province of Cuenca (Spain).

This road segment is a two-lane rural road with a total cross-section width of 10 m
composed of asphalt pavement. The width of each lane and shoulder is 3.5 m and 1.5 m,
respectively. Specifically, along this segment, there are a total of six traffic-counting stations
(see Table 1). The Average Annual Daily Traffic (AADT) along this road segment in 2021
ranged from approximately 1000 to 3000 vehicles per day.

Table 1. Annual Average Daily Traffic (AADT) on the road segment in question in 2021 [23].

Start Station Final Station Length (m) AADT (veh/day)

144 + 990 154 + 140 9150 1993
154 + 140 158 + 960 4820 1819
158 + 960 174 + 158 15,198 1379
174 + 158 180 + 950 6792 3224
180 + 950 191 + 280 10,330 2680
191 + 280 198 + 710 7430 1026

2.2. Auscultation Data

The pavement condition data were provided by the Highway Department of Castilla–
La Mancha, a division of the Highway Administration of the Spanish Ministry of Transport
and Sustainable Mobility.

The field data were collected on 15 June 2023. Specifically, the following variables
were obtained: (i) section identifier (IdSection), (ii) highway (IdRoad), (iii) initial station
(PKIHito and PKIDist), (iv) final station (PKFHito and PKFDist), (v) right wheel track IRI
(IRI_der), (vi) left wheel track IRI (IRI_izq), and (vii) average IRI (IRI_med).

In addition to these data, another set of georeferencing data were provided, with the
following information: (i) section identifier (IdSection), (ii) highway (IdRoad), (iii) initial
station (PKIHito and PKIDist), (iv) final station (PKFHito and PKFDist), and (v) UTM
coordinates (UTMx and UTMy). From these data, IRI values could be assigned to the
highway and the corresponding measurement unit, as the data related to the station points
might not be sufficiently accurate. In short, IRI data are available every hectometer.

2.3. Data from Connected and Autonomous Vehicles

Data regarding pavement condition from connected and autonomous vehicles were
downloaded on the same day as the pavement assessment, specifically on 15 June 2023.
These data were provided by NIRA Dynamics, which manages a vehicle fleet consisting of
close to two million cars around the world.

These vehicles are equipped with software that collects real-time data from the existing
onboard sensors. Thus, the vehicles serve as a continuous sensor of infrastructure condi-
tions whenever they travel on it with the minimum sample size required to ensure that
the measurement is not biased by a single vehicle. For this study, data from the connected
vehicles were collected not only on the specified day but also aggregated over a 30-day
period to provide a more comprehensive overview. This product is called the long-term
value of road roughness.

Original Equipment Manufacturers (OEMs) integrate enhanced sensors, accelerome-
ters, and mobile connections into vehicles to provide a rich data source on current road
conditions. Wheel speed is leveraged through rotation sensors in combination with drive-
train information to assess pavement quality across vehicle fleets. These measurements are
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processed through NIRA Dynamics’ sensor fusion algorithms, which uses the calibration
data to translate raw sensor outputs into roughness indicators, including the International
Roughness Index (IRI). This method ensures that the IRI values are consistent with standard
pavement assessment methodologies.

Data provided by the supplier were aggregated into segments of approximately
20 m based on mapping from navigation and mapping companies. Once a segment was
obtained, it was georeferenced and assigned to the road under study. Specifically, the
data structure available for each road segment includes (i) segment identifier (IdSection),
(ii) International Roughness Index (IRI) value in dm/hm (IRI), (iii) UTM coordinates of
points within the segment (geometry), (iv) UTM coordinates of the starting point of the
road segment (GeometryInitialPoint), and (v) UTM coordinates of the endpoint of the road
segment (GeometryFinalPoint). As with the auscultation data, a value of IRI per hectometer
was available.

3. Results
3.1. Descriptive Analysis

Table 2 presents a statistical summary of the IRI data obtained, expressed in dm/hm.
As can be seen, the mean IRI value obtained from the data recorded by the CAVs (IRI_cavs)
closely resembles, in overall terms, the mean IRI from auscultations (IRI_med), calculated
as the average of the maximum and minimum values. However, the positional parameters—
minimum value, maximum value, and percentiles—indicate that the minimum IRI values
(IRI_min) dataset is the most similar to the distribution of the IRI_cavs data.

Table 2. Statistical summary for IRI.

IRI_cavs
IRI_auscultation

IRI_max IRI_min IRI_med

Average 1.70024 2.04155 1.56469 1.80170
Standard deviation 0.55467 0.64284 0.44336 0.51644

Min. 0.86038 0.86000 0.74000 0.83000
25th percentile 1.32116 1.57750 1.27000 1.43000
50th percentile 1.56672 1.95000 1.49000 1.74250
75th percentile 1.94227 2.39250 1.76000 2.07500

Max. 4.19950 5.46000 4.29000 4.47500

To further explore the aforementioned points, density distributions of all the IRI
datasets are represented (Figure 1). Firstly, it is noteworthy that all the distributions exhibit
positive skewness, meaning the data cluster at lower IRI values, with a tail towards higher
values. This suggests that the mean values of the datasets are higher than the median or the
50th percentile (see Table 2). Additionally, it can be observed that the density curve most
similar to that described by the IRI_cavs data is that of the minimum values obtained from
auscultation (IRI_min). However, in the tail of the distribution, the IRI dataset from CAVs
(IRI_cavs) more closely resembles the distribution of the mean auscultation data (IRI_med).

Nevertheless, similarity between distributions does not necessarily imply a higher
correlation between the datasets, especially considering that the data are actually paired by
the location of the observations.

Figure 2 includes the correlation matrix between the different IRI datasets analyzed,
as well as the corresponding scatter plots comparing the IRI values from CAVs with those
from the other datasets. As expected, the correlations between the auscultation datasets
are strong (>0.8). Regarding the correlation between IRI_cavs and IRI from auscultation, it
is noteworthy that they are very similar across all the datasets considered. However, the
correlation between IRI_cavs and the datasets of minimum and mean IRI is very similar
(>0.5), despite identifying earlier that the density distribution most similar to the IRI_cavs
data was that of the minimum auscultation values.
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Additionally, a scatter plot was created, which includes the point density in the rep-
resented region (see Figure 3). Specifically, only the relationship between IRI_cavs and
IRI_min is represented, which is indicative of the other cases. As observed, most observa-
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tions are situated between values of IRI of 1 dm/hm and 2.5 dm/hm, and these values
appear to concentrate very close to the line representing IRI_cavs = IRI_min. Specifically,
the values obtained from vehicles seem slightly lower than those obtained from auscul-
tation, particularly as the IRI value increases (see Figure 2). This phenomenon could be
explained by the behavior of road users, who tend to avoid the most deteriorated parts
of the road. Given that these parts usually correspond to lane-centered driving and that
auscultation methods try to trace this trajectory, it was expected that the values of the rough-
ness data obtained from CAVs would be slightly lower than those of the data obtained via
auscultation, mainly as users’ discomfort increases.
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3.2. Statistical Analysis

This section aims to determine whether IRI data from Connected and Autonomous
Vehicles (CAVs) can be considered equivalent to those obtained through auscultation
methods. For this purpose, the chosen statistical test is the paired samples comparison. The
primary aim of this type of test is to compare IRI values obtained from auscultation and
those derived from CAVs for each hectometer point.

Specifically, to determine the statistical test to be applied, it is necessary first to
evaluate the normality of the data. As mentioned during the descriptive analysis, all
the datasets exhibit strong positive skewness. Therefore, according to the results of the
Shapiro–Wilk test, it cannot be confirmed with 95% confidence that the datasets follow a
normal distribution, as the p-values are less than 0.05 (Table 3).

Table 3. Assessment of data normality: Shapiro–Wilk test.

IRI_cavs IRI_med IRI_min IRI_max

W 0.876208 0.917700 0.893479 0.920585
p-value 4.959857 × 10−20 2.608296 × 10−16 1.298214 × 10−18 5.271826 × 10−16

This implies that the paired data test using the usual t-test cannot be performed.
Thus, the following alternative tests were proposed: (i) the Wilcoxon signed-rank test and
(ii) the Kruskal–Wallis test. Both these tests are non-parametric and therefore require fewer
assumptions compared to the t-test for dependent samples. Specifically, the Wilcoxon test
checks whether the mean values of two dependent groups differ significantly from each
other. On the other hand, the Kruskal–Wallis test determines whether the medians of two
or more groups are different.
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Tables 4 and 5 present the results of the Wilcoxon signed-rank test and the Kruskal–
Wallis test, respectively, conducted for each pair of datasets. As a result, at a 95% confidence
level, neither of the null hypotheses of the considered tests can be confirmed. There-
fore, we concluded that the IRI data from CAVs are not equivalent to the data obtained
through auscultation.

Table 4. Wilcoxon test.

IRI_cavs and
IRI_med

IRI_cavs and
IRI_min

IRI_cavs and
IRI_max

W 49,426 50,286 28,106
p-value 1.705195 × 10−8 6.959174 × 10−8 5.549335 × 10−32

Table 5. Kruskal-Wallis test.

IRI_cavs and
IRI_med

IRI_cavs and
IRI_min

IRI_cavs and
IRI_max

W 20,068,770 12,903,457 99,849,646
p-value 7.470667 × 10−6 0.000328 1.644166 × 10−23

Despite not being equivalent, a relationship between both datasets could be established
to, for example, estimate auscultation data using the IRI values from CAVs.

3.3. Proposal of Thresholds for Pavement Evaluation

Considering that it is not possible to assert, with a 95% confidence level, that the
IRI values obtained from connected and autonomous vehicles (CAVs) are similar to those
obtained from auscultation equipment, the relationship between IRI_cavs and IRI_min was
analyzed in greater depth since there exists a moderate correlation between both datasets.

The qualitative evaluation of pavement condition established by the Spanish Highway
Administration based on the IRI value for conventional road network routes served as the
basis for this assessment (see Table 6).

Table 6. Qualitative levels of pavement condition according to the Spanish Highway Administration.

Pavement Condition IRI (dm/hm)

Very good IRI ≤ 1.5
Good 1.5 < IRI ≤ 2.0

Satisfactory 2.0 < IRI ≤ 2.5
Fair 2.5 < IRI ≤ 3.0
Poor 3.0 < IRI ≤ 4.0

Very poor >4.0

Using these qualitative pavement condition levels and the IRI_min value, the IRI data
from CAVs were classified into different subsets, with each subset’s outcome represented in
a box–whisker plot (see Figure 4). As pavement condition worsens, the mean and median
values of the IRI_cavs subset increase, demonstrating a clear relationship between the
IRI value obtained from CAV data and pavement condition. It is important to note that
most available IRI_cavs values range between 1.0 and 2.5 dm/hm; hence, for pavement
conditions rated as fair, poor, or very poor, variability is quite high. A larger volume of
data is needed to study these pavement condition levels in greater detail.

Additionally, the confusion matrix generated when classifying pavement condition
based on the variables IRI_cavs and IRI_min was estimated. To achieve this, the number of
thresholds previously shown in Table 6 was reduced due to the low representativeness of
levels associated with high IRI values, resulting in the thresholds presented in Table 7.
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Figure 4. Box–whisker diagrams for IRI_cavs according to pavement condition level.

Table 7. Qualitative levels of pavement condition (adaptation from Spanish Highway Administration).

Pavement Condition IRI (dm/hm)

Good IRI ≤ 2.0
Fair 2.0 < IRI ≤ 3.0
Poor IRI > 3.0

Table 8 shows the confusion matrix considering the IRI values obtained from ausculta-
tion to be true. Each row of the matrix sums to 100%, indicating for a given IRI_min thresh-
old the proportion of data classified into the proposed thresholds according to IRI_cavs.
Notably, more than 80% of the data classified as corresponding to good pavement condition
according to IRI_min were similarly classified according to IRI_cavs. However, 50% of the
data evaluated as corresponding to fair pavement condition according to IRI_min were
classified as corresponding to good condition according to IRI_cavs, potentially leading
to inadequate pavement management. These results were anticipated based on Figure 3
and the statistical analysis, suggesting that the thresholds used to determine pavement
condition from auscultation-derived IRI values may differ from those for CAV-derived
IRI values.

Table 8. Confusion matrix according to the qualitative levels defined by the Spanish Highway
Administration.

IRI_cavs

Good Fair Poor

IRI_min
Good 82.18% 16.26% 1.56%
Fair 47.14% 38.57% 14.29%
Poor 20.00% 20.00% 60.00%

Thus, new thresholds were calibrated to determine pavement conditions based on the
IRI values from vehicles. The objective function was designed to maximize the values on
the diagonal of the confusion matrix, with fixed IRI_min thresholds according to Table 7
and varying IRI_cavs thresholds. As a result, the thresholds presented in Table 9 were
obtained. The updated confusion matrix is shown in Table 10, indicating that approximately
70% of the data were appropriately classified. However, we recommend recalibrating these
thresholds and validating the results with a larger dataset that includes a greater range of
pavement condition levels, particularly with data on pavements in poor condition.
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Table 9. Qualitative pavement condition levels according to IRI_cavs.

Pavement Condition IRI (dm/hm)

Good IRI ≤ 1.75
Fair 1.75 < IRI ≤ 3.5
Poor IRI > 3.5

Table 10. Confusion matrix considering the thresholds defined in Tables 7 and 9 for IRI_min and
IRI_cavs, respectively.

IRI_cavs

Good Fair Poor

IRI ≤ 1.75 1.75 < IRI ≤ 3.5 IRI > 3.5

IRI_min
Good IRI ≤ 2.0 70.82% 28.73% 0.45%
Fair 2.0 < IRI ≤ 3.0 24.29% 70.00% 5.71%
Poor IRI > 3.0 20.00% 20.00% 60.00%

4. Discussion

This study delves into the potential of using data from connected and autonomous
vehicles (CAVs) to assess pavement condition, specifically through the International Rough-
ness Index (IRI). The results presented here contribute to understanding how CAV data
can complement or even substitute for traditional manual survey methods in pavement
management systems.

4.1. Comparison of IRI Data Sources

The moderate positive correlation observed between the IRI values derived from CAVs
and those from manual surveys underscores the utility of CAV data in assessing pavement
conditions. However, the discrepancies between the datasets, particularly noticeable
at higher IRI values, suggest the need for cautious interpretation. Variations can arise
from differences in measurement precision, vehicle-sampling biases, and environmental
factors affecting data collection. For instance, while CAVs provide extensive coverage
across road networks, variations in vehicle speeds and path selections may influence the
accuracy and representativeness of the data, especially in segments with more severe
pavement degradation.

These practical considerations indicate that while CAVs offer a valuable and scalable
alternative for road condition monitoring, their results should be carefully interpreted,
particularly in the case of severely deteriorated roads where traditional methods might still
provide a more precise evaluation.

4.2. Data Distribution and Pavement Condition

The density distributions of the IRI datasets, which skew towards lower values,
predominantly align with segments categorized as “Very Good” to “Satisfactory” according
to established thresholds. This distribution pattern reflects the suitability of CAV data for
identifying well-maintained pavement sections but highlights the need for increased data
sampling in poorer conditions. This expansion would enhance the robustness of correlation
analyses across a broader spectrum of pavement states, thereby improving the reliability of
condition assessments.

From a road maintenance perspective, these results suggest that CAV-derived data could
be integrated into existing pavement management strategies to provide continuous updates
on well-maintained roads, with additional efforts required for roads in poorer condition.

4.3. Implications for Pavement Management

Integrating CAV data into pavement management systems offers several operational
advantages. By providing real-time and continuous data streams, CAVs enable timely
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updates on pavement conditions without the logistical and cost constraints associated with
periodic manual surveys. This capability enhances the scalability and efficiency of mainte-
nance planning and decision-making processes, potentially reducing operational costs and
minimizing disruptions to road users. Furthermore, the comprehensive coverage provided
by CAVs facilitates a more equitable distribution of monitoring efforts across entire road
networks, ensuring that critical maintenance needs are identified and addressed promptly.

These practical implications underscore the potential for road authorities to adopt
CAV-based systems as part of a proactive maintenance strategy, allowing for more efficient
resource allocation and timely intervention before road conditions worsen.

4.4. Practical Considerations and Recommendations

The establishment of distinct IRI thresholds for CAV-derived data has proven to
be effective in categorizing pavement conditions into qualitative states. However, this
study highlights the importance of refining these thresholds through extensive validation
exercises involving diverse pavement conditions and geographic contexts. Such validations
are crucial for ensuring the accuracy and applicability of CAV data in supporting informed
decision-making by road authorities and stakeholders. Moreover, advancements in sensor
technology and data analytics present opportunities to enhance the precision and reliability
of CAV-based pavement assessments, warranting continued research and innovation in
this field.

While CAV data offer several advantages, practical limitations remain, particularly re-
garding real-time applications. Variability in data due to vehicle behavior—such as changes
in driving patterns to avoid road defects—and environmental conditions like weather can
introduce noise into data, making calibration essential to minimize these influences.

4.5. Future Research Directions

Future research efforts should focus on addressing several key areas to further advance
the integration of CAV data into pavement management:

• Enhanced data sampling—increasing the diversity and volume of CAV data collected,
particularly in segments exhibiting greater pavement deterioration, to improve the
robustness of correlation analyses.

• Validation and calibration—conducting extensive validation studies across varied
environmental and traffic conditions to refine and validate proposed IRI thresholds
derived from CAV data.

• Sensor technology advancements—exploring advancements in sensor technologies
and data-processing algorithms to enhance the accuracy, reliability, and real-time
capabilities of CAV-based pavement assessments.

• Lifecycle analysis—developing predictive models that leverage CAV data to forecast
pavement deterioration and optimize maintenance strategies over the lifecycle of
road infrastructure.

In conclusion, while CAV data have substantial potential for revolutionizing pavement
management practices, further research efforts are essential to address relevant technical,
methodological, and operational challenges. By advancing these fronts, the transportation
sector can leverage CAV technologies to achieve more sustainable, cost-effective, and
resilient pavement management solutions in the future.

5. Conclusions

This study presents an analysis of the relationship between International Roughness
Index (IRI) values obtained through auscultation methods and those gathered by Connected
and Autonomous Vehicles (CAVs). The most noteworthy conclusions are as follows:

• The density distributions of the IRI datasets exhibit positive skewness, with obser-
vations predominantly clustering at lower IRI values. Thus, expanding the dataset
to include higher IRI values would refine the correlation analysis between the two
datasets, particularly under poor pavement conditions.
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• The results of the correlation analysis indicate there is a moderate positive correla-
tion between IRI values recorded by connected and autonomous vehicles and those
obtained through manual surveys

• The majority of observations fall within an IRI range of 1 dm/km to 2.5 dm/km, sug-
gesting road segments with a surface roughness level ranging from “Very Good” to
“Satisfactory” based on thresholds established by the Spanish Highway Administration.

• IRI values derived from vehicles are slightly lower than those obtained through manual
surveys as IRI values increase. This could be attributed to driver behavior, where
drivers tend to avoid more deteriorated paths, resulting in non-centered lane travel.

• Despite not being directly comparable to auscultation data, the IRI values from con-
nected and autonomous vehicles can be used to establish distinct IRI thresholds to
qualitatively assess pavement condition.

• The confusion matrix obtained (see Table 10) indicates that the defined IRI thresholds
from connected and autonomous vehicles effectively identify pavement condition.

• Considering that IRI values from connected and autonomous vehicles aggregate
data from hundreds or thousands of vehicles, they are deemed highly reliable for
initial pavement condition assessments. Thus, employing IRI data from these vehi-
cles presents a cost-effective and non-destructive alternative to traditional methods,
potentially enhancing and optimizing conventional field data collection campaigns.
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