The Heme Cavity Is Essential for the Peroxidase and Antibacterial Activity of Homodimer Hemoglobin from the Blood Clam Tegillarca granosa
<p>Effects of SDS on the peroxidase and antibacterial activities of Tg-HbI. (<b>a</b>) Inactivation of Tg-HbI in the presence of SDS. (<b>b</b>) Effects of SDS on the antibacterial activity of Tg-HbI against <span class="html-italic">B. subtilis</span>. 1, SDS; 2, Tg-HbI; 3, mixed solution of Tg-HbI and SDS.</p> "> Figure 2
<p>Effect of SDS on the fluorescence of Tg-HbI. (<b>a</b>) Alterations in the intrinsic fluorescence emission spectra of Tg-HbI in the presence of SDS. (<b>b</b>) Intrinsic fluorescence intensity changes. (<b>c</b>) Maximum emission wavelength changes. (<b>d</b>) Alterations in the ANS binding fluorescence spectra of Tg-HbI in the presence of SDS. (<b>e</b>) ANS fluorescence intensity changes. (<b>f</b>) Alterations in the maximum emission wavelength of ANS.</p> "> Figure 3
<p>Effect of SDS on the UV-Vis absorbance spectra of Tg-HbI. (<b>a</b>) Alterations in the UV-Vis absorbance spectra of Tg-HbI in the presence of SDS. (<b>b</b>) Maximum absorbance changes. (<b>c</b>) Maximum absorption wavelength changes.</p> "> Figure 4
<p>Minimum energy docked pose of the complex with SDS and Tg-HbI. (<b>a</b>) Overall structure of SDS in complex with Tg-HbI. The structure of the Tg-HbI subunit displayed in cartoon form. SDS is colored green. (<b>b</b>) 3D interaction of SDS with the active site pocket of Tg-HbI. The key residues involved in ligand binding are shown as blue sticks. Yellow dashed lines represent H-bonds. (<b>c</b>) 2D diagram of intermolecular interactions. H-bonds are depicted as green dashed lines. Residues involved in hydrophobic interactions are shown as the spoked arcs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peroxidase Activity Assay
2.2. Antibacterial Activity Assay
2.3. Intrinsic Fluorescence Spectroscopy Assay
2.4. ANS Fluorescence Spectroscopy Assay
2.5. UV-Vis Spectroscopy
2.6. Molecular Docking
3. Results
3.1. Effects of SDS on the Peroxidase and Antibacterial Activities of Tg-HbI
3.2. Effects of SDS on the Fluorescence Spectra of Tg-HbI
3.3. Effects of SDS on the UV-Vis Spectra of Tg-HbI
3.4. Molecular Docking of Tg-HbI and SDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.; Xu, L.; Wu, X.; Zhang, Z.; Wu, L.; Lou, H. Morphological, structural characteristics and phagocytic and enzymatic activities of haemocytes in blood clam Tegillarca granosa. J. Fish. China 2011, 34, 1494–1504. [Google Scholar]
- Chiancone, E.; Vecchini, P.; Verzili, D.; Ascoli, F.; Antonini, E. Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis. Structural and functional properties. J. Mol. Biol. 1981, 152, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Furuta, H.; Kajita, A. Dimeric hemoglobin of the bivalve mollusc Anadara broughtonii: Complete amino acid sequence of the globin chain. Biochemistry 1983, 22, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, X.; Lin, Z.; Zhang, S.; Xue, L.; Xue, Q.; Bao, Y. Hemoglobins likely function as peroxidase in blood clam Tegillarca granosa hemocytes. J. Immunol. Res. 2017, 2017, 7125084. [Google Scholar] [CrossRef]
- Pillai, A.S.; Chandler, S.A.; Liu, Y.; Signore, A.V.; Cortez-Romero, C.R.; Benesch, J.L.P.; Laganowsky, A.; Storz, J.F.; Hochberg, G.K.A.; Thornton, J.W. Origin of complexity in haemoglobin evolution. Nature 2020, 581, 480–485. [Google Scholar] [CrossRef]
- Pillai, A.S. Evolutionary Origins of Molecular Complexity in Hemoglobin. Ph.D. Thesis, The University of Chicago, Chicago, IL, USA, 2021. [Google Scholar] [CrossRef]
- Zhao, J. Research advances in animal respiratory proteins. J. Shandong Univ. 2009, 44, 1–7. [Google Scholar]
- Wang, S.; Bao, Y.; Shi, M.; Zhen, D.; Yang, T.; Lin, Z. Purification and antibacterial activity of hemoglobin from Tegillarca granosa. Acta Oceanol. Sin. 2014, 36, 67–73. [Google Scholar] [CrossRef]
- Hobson, D.; Hirsch, J.G. The antibacterial activity of hemoglobin. J. Exp. Med. 1958, 107, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Parish, C.A.; Jiang, H.; Tokiwa, Y.; Berova, N.; Nakanishi, K.; McCabe, D.; Zuckerman, W.; Xia, M.M.; Gabay, J.E. Broad-spectrum antimicrobial activity of hemoglobin. Bioorg. Med. Chem. 2001, 9, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Tan, N.S.; Ho, B.; Ding, J.L. Respiratory protein–generated reactive oxygen apecies as an antimicrobial strategy. Nat. Immunol. 2007, 8, 1114–1122. [Google Scholar] [CrossRef]
- Jiang, N. The Role of Respiratory Proteins in Innate Immunity. Master’s Thesis, TsingHua University, Beijing, China, 2008. [Google Scholar]
- Anderson, H.L.; Brodsky, I.E. Mangalmurti NS. The evolving erythrocyte: Red blood cells as modulators of innate immunity. J. Immunol. 2018, 201, 1343–1351. [Google Scholar] [CrossRef]
- Xu, B.; Zhao, J.; Jing, Z.; Zhang, Y.; Shi, Y.; Fan, T. Role of hemoglobin from blood clam Scapharca kagoshimensis beyond oxygen transport. Fish Shellfish Immunol. 2015, 44, 248–256. [Google Scholar] [CrossRef]
- Coates, C.J.; Decker, H. Immunological properties of oxygen-transport proteins: Hemoglobin, hemocyanin and hemerythrin. Cell. Mol. Life Sci. 2017, 74, 293–317. [Google Scholar] [CrossRef]
- Kvist, M.; Ryabova, E.S.; Nordlander, E.; Bülow, L. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. JBIC J. Biol. Inorg. Chem. 2007, 12, 324–334. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Liu, S.; Lin, Z.; Zhang, Y.; Bao, Y. Hemoglobins from Scapharca subcrenata (Bivalvia: Arcidae) likely play an bactericidal role through their peroxidase activity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2021, 253, 110545. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Pinontoan, R.; Hosoya, H.; Muto, S. Monoamine-dependent production of reactive oxygen species catalyzed by pseudoperoxidase activity of human hemoglobin. Biosci. Biotechnol. Biochem. 2002, 66, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, C. Oxidative burst without phagocytes: The role of respiratory proteins. Nat. Immunol. 2007, 8, 1029–1031. [Google Scholar] [CrossRef]
- Vlasova, I.I. Peroxidase activity of human hemoproteins: Keeping the fire under control. Molecules 2018, 23, 2561. [Google Scholar] [CrossRef] [PubMed]
- Galijasevic, S. Peroxidase activity of hemoglobin and heme destruction in the presence of hydrogen peroxide and CT-DNA. Glas. Hem. Tehnol. Bosne Herceg. 2020, 55, 19–24. [Google Scholar] [CrossRef]
- Du, R.; Ho, B.; Ding, J.L. Rapid reprogramming of haemoglobin structure-function exposes multiple dual-antimicrobial potencies. EMBO J. 2010, 29, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Vijayaraman, S.B.; Lin, H.; Dai, Y.; Zhao, L.; Xie, J.; Lin, W.; Wu, Z.; Li, J.; Lin, L. Antibacterial activity of erythrocyte from grass carp (Ctenopharyngodon idella) is associated with phagocytosis and reactive oxygen species generation. Fish Shellfish Immunol. 2019, 92, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z. The Immunity Features and the Underlying Anti-Bacterial Mechanism of Fish Erythrocyte and Shrimp Hemocyte. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2018. [Google Scholar]
- Wang, S.; Yu, X.; Zhang, S.; Jin, H.; Chen, Z.; Lin, Z.; Bao, Y. Cu2+ inhibits the peroxidase and antibacterial activity of homodimer hemoglobin from blood clam Tegillarca granosa by destroying its heme pocket structure. Front. Mar. Sci. 2021, 8, 635210. [Google Scholar] [CrossRef]
- Bhuyan, A.K. On the mechanism of SDS-induced protein denaturation. Biopolym. Orig. Res. Biomol. 2010, 93, 186–199. [Google Scholar] [CrossRef]
- Tejaswi Naidu, K.; Prakash Prabhu, N. Protein–surfactant interaction: Sodium dodecyl sulfate-induced unfolding of ribonuclease A. J. Phys. Chem. B 2011, 115, 14760–14767. [Google Scholar] [CrossRef]
- Jafari, M.; Mehrnejad, F.; Rahimi, F.; Asghari, S.M. The molecular basis of the sodium dodecyl sulfate effect on human ubiquitin structure: A molecular dynamics simulation study. Sci. Rep. 2018, 8, 2150. [Google Scholar] [CrossRef]
- Khan, J.M.; Malik, A.; Ahmed, A.; Alghamdi, O.H.A.; Ahmed, M. SDS induces cross beta-sheet amyloid as well as alpha-helical structure in conconavalin A. J. Mol. Liq. 2020, 319, 114154. [Google Scholar] [CrossRef]
- Hou, H.; He, H.; Wang, Y. Effects of SDS on the activity and conformation of protein tyrosine phosphatase from thermus thermophilus HB27. Sci. Rep. 2020, 10, 3195. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Miao, L.; Liu, J.; Jiang, X.; Wang, S.; Bao, Y.; Lin, Z. A consecutive monitoring method for determining peroxidase activity of hemoglobin from Tegillarca granosa. Pharm. Biotechnol. 2015, 22, 137–141. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Zhang, Q.; Woolford, D.; Schweikardt, T.; Khant, H.; Dougherty, M.; Ludtke, S.J.; Chiu, W.; Decker, H. Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure 2009, 17, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Ye, H.; Jiang, H.; Wang, X.; Yan, H. Study on specific interaction of new ferrocene-substituted carborane conjugates with hemoglobin protein. Sci. China Chem. 2012, 55, 594–603. [Google Scholar] [CrossRef]
- Ji, X.; Ma, X.; Bian, L. Spectral studies on the conformational transitions of bovine insulin during denaturant-induced unfolding. Chem. Res. Chin. Univ. 2014, 30, 222–227. [Google Scholar] [CrossRef]
- Someya, Y.; Yui, H. Fluorescence lifetime probe for solvent microviscosity utilizing anilinonaphthalene sulfonate. Anal. Chem. 2010, 82, 5470–5476. [Google Scholar] [CrossRef]
- Barros, A.E.; Carvalho, F.A.; Alves, F.R.; Carvalho, J.W.; Tabak, M. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe. Int. J. Biol. Macromol. 2015, 74, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Rout, J.; Swain, B.C.; Subadini, S.; Mishra, P.P.; Sahoo, H.; Tripathy, U. Spectroscopic and computational insight into the conformational dynamics of hemoglobin in the presence of vitamin B12. Int. J. Biol. Macromol. 2021, 189, 306–315. [Google Scholar] [CrossRef]
- Mahato, M.; Pal, P.; Kamilya, T.; Sarkar, R.; Chaudhuri, A.; Talapatra, G. Hemoglobin-silver interaction and bioconjugate formation: A spectroscopic study. J. Phys. Chem. B 2010, 114, 7062–7070. [Google Scholar] [CrossRef]
- Seal, P.; Sikdar, J.; Roy, A.; Haldar, R. Binding of ibuprofen to human hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry, and molecular modeling techniques. J. Biomol. Struct. Dyn. 2018, 36, 3137–3154. [Google Scholar] [CrossRef] [PubMed]
- Alayash, A.I.; Wilson, M.T. Hemoglobin can act as a (pseudo)-peroxidase in vivo. What is the evidence? Front. Mol. Biosci. 2022, 9, 910795. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, Q.; Lin, Z. Hemoglobin of the bloody clam Tegillarca granosa (Tg-HbI) is involved in the immune response against bacterial infection. Fish Shellfish Immunol. 2011, 31, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Behera, R.K.; Goyal, S.; Mazumdar, S. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: A rational approach. J. Inorg. Biochem. 2010, 104, 1185–1194. [Google Scholar] [CrossRef]
- Cheng, G.; Salerno, J.C.; Cao, Z.; Pagano, P.J.; Lambeth, J.D. Identification and characterization of VPO1, a new animal heme-containing peroxidase. Free Radic. Biol. Med. 2008, 45, 1682–1694. [Google Scholar] [CrossRef]
- Wu, L.B.; Du, K.J.; Nie, C.M.; Gao, S.Q.; Wen, G.B.; Tan, X.; Lin, Y.W. Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket. Oxizymes 2016, 134, 367–371. [Google Scholar] [CrossRef]
- Xiong, S.; Chen, J. Characterization of the interactions between alpha arbutin and human serum albumin with spectroscopic method and molecular docking. Spectrosc. Spectr. Anal. 2018, 38, 3489–3494. [Google Scholar]
- Sau, A.K.; Currell, D.; Mazumdar, S.; Mitra, S. Interaction of sodium dodecyl sulfate with human native and cross-linked hemoglobins: A transient kinetic study. Biophys. Chem. 2002, 98, 267–273. [Google Scholar] [CrossRef]
- Li, D.; Li, H.; Zou, G. Fluorescence spectra and enzymatic property of hemoglobin as mimetic peroxidase. Wuhan Univ. J. Nat. Sci. 2003, 8, 875–879. [Google Scholar] [CrossRef]
- Liu, W.; Guo, X.; Guo, R. The interaction between hemoglobin and two surfactants with different charges. Int. J. Biol. Macromol. 2007, 41, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Fotouhi, L.; Yousefinejad, S.; Salehi, N.; Saboury, A.; Sheibani, N.; Moosavi-Movahedi, A. Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 136, 1974–1981. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Wang, Y.; Hu, T.; Liu, Y. Interaction of the minocycline with extracelluar protein and intracellular protein by multi-spectral techniques and molecular docking. J. Mol. Struct. 2017, 1130, 425–433. [Google Scholar] [CrossRef]
Hydrophobic Interactions | Distance (Å) | H-Bond Interactions | Binding Energy 1 (kcal/mol) | Protein-Ligand Complex |
---|---|---|---|---|
Met38, Leu41, Thr48, Phe52, Leu74, Ile107, Glu111, Phe112, Ile115 | 3.14 Å 3.01 Å | His70 N-H…O His102 N-H…O | –6.0 | Tg-HbI-SDS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, L.; Dai, S.; Wu, Z.; Wang, S.; Bao, Y. The Heme Cavity Is Essential for the Peroxidase and Antibacterial Activity of Homodimer Hemoglobin from the Blood Clam Tegillarca granosa. Fishes 2024, 9, 512. https://doi.org/10.3390/fishes9120512
Pu L, Dai S, Wu Z, Wang S, Bao Y. The Heme Cavity Is Essential for the Peroxidase and Antibacterial Activity of Homodimer Hemoglobin from the Blood Clam Tegillarca granosa. Fishes. 2024; 9(12):512. https://doi.org/10.3390/fishes9120512
Chicago/Turabian StylePu, Lili, Shuting Dai, Zongming Wu, Sufang Wang, and Yongbo Bao. 2024. "The Heme Cavity Is Essential for the Peroxidase and Antibacterial Activity of Homodimer Hemoglobin from the Blood Clam Tegillarca granosa" Fishes 9, no. 12: 512. https://doi.org/10.3390/fishes9120512
APA StylePu, L., Dai, S., Wu, Z., Wang, S., & Bao, Y. (2024). The Heme Cavity Is Essential for the Peroxidase and Antibacterial Activity of Homodimer Hemoglobin from the Blood Clam Tegillarca granosa. Fishes, 9(12), 512. https://doi.org/10.3390/fishes9120512