Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology
<p>Technology applied for the preparation of microneedles: (<b>A</b>) Design of the microneedles; (<b>B</b>) Phrozen Sonic Mini 8k printer without and with the safety cover; (<b>C</b>) Anycubic Wash and Cure Machine.</p> "> Figure 2
<p>Microscopic image of 0.1% PPIX: (<b>A</b>) sodium alginate-based hydrogel, (<b>B</b>) xanthan-based hydrogel, and (<b>C</b>) poloxamer-based hydrogel at a magnification of 40×.</p> "> Figure 3
<p>Mass loss of hydrogels over time for hydrogels based on sodium alginate (<b>A</b>) (placebo) and (<b>B</b>) (containing 0.1% PPIX); xanthan (<b>C</b>) (placebo) and (<b>D</b>) (containing 0.1% PPIX); and poloxamer (<b>E</b>) (placebo) and (<b>F</b>) (containing 0.1% PPIX). The error bars represent standard deviations from measurements performed in triplicate.</p> "> Figure 4
<p>Plots of mean shear stress versus shear rate for different placebos ((<b>A</b>)—sodium alginate-based; (<b>B</b>)—xanthan-based; (<b>C</b>)—poloxamer-based) and 0.1% PPIX hydrogel samples ((<b>D</b>)—sodium alginate-based; (<b>E</b>)—xanthan-based; (<b>F</b>)—poloxamer-based).</p> "> Figure 5
<p>Photographs of microneedles: (<b>A</b>) uncoated; coated with 0.1% PPIX alginate sodium-based hydrogel (<b>B</b>); coated with 0.1% PPIX xanthan-based hydrogel (<b>C</b>); coated with 0.1% PPIX poloxamer-based hydrogel (<b>D</b>).</p> "> Figure 6
<p>SEM images of microneedles from side (magnification 80) and above (magnification 100) of (<b>A</b>) uncoated hydrogel; (<b>B</b>) hydrogel coated with 0.1% PPIX alginate sodium-based; (<b>C</b>) hydrogel coated with 0.1% PPIX xanthan-based; and (<b>D</b>) 0.1% PPIX poloxamer-based hydrogel.</p> "> Figure 7
<p>Fluorescence (F) of protoporphyrin 0.1% PPIX hydrogels in various solvents (Ethanol, PBS:ethanol [60:40], PBS, PBS:ethanol [80:20]), observed when examining microneedles coated with poloxamer-based gels. PBS—phosphate buffer pH 7.4.</p> "> Figure 8
<p>Graph of the amount of PPIX released over time from microneedles coated with poloxamer-based 0.1% PPIX hydrogel.</p> "> Figure 9
<p>Changes in <span class="html-italic">Aliivibrio fischeri</span> bioluminescence upon contact with the uncovered pyramid-shaped microneedles (empty) and the pyramid-shaped microneedles covered with 0.1% PPIX disodium salt (PP) after 5 and 15 min.</p> "> Scheme 1
<p>Summary of the methodology applied in the performed study.</p> ">
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials
- Sodium alginate (Sigma-Aldrich, St. Louis, MO, USA)
- Poloxamer (Kolliphor® P 407, Sigma-Aldrich, St. Louis, MO, USA)
- Protoporphyrin disodium (Sigma-Aldrich, St. Louis, MO, USA)
- Xanthan gum (POL-AURA, Dywity k/Olsztyna, Poland)
- Ethyl alcohol 96% (POCH, Gliwice, Poland)
- 2-Propanol (POCH, Gliwice, Poland)
- Phosphate buffer pH 7,4 (concentrate, Chempur, Piekary Śląskie, Poland)
- Light-curing resin (Phrozen Aqua Resin Blue, Hsinchu City, Taiwan)
- Ultra-pure deionized water (HLP 10UV, Hydrolab, Straszyn, Poland)
- Microtox Acute Reagent, Microtox Diluent, Microtox Osmotic Adjusting Solution, Microtox Reconstitution Solution (Modern Water plc, Cambridge, UK)
2.2. Equipment
- Magnetic stirrer with heating plate Heidolph MR Hei-Tec (Heidolph, Schwabach, Germany)
- Yellow line OST basic mixer (IKA, Staufen, Germany)
- Microscope Motic of B3 Professional Series (Motic, Xiamen, China) optical microscope equipped with Digital Moticam 2300 (Motic, Xiamen, China) camera
- Incubator WTB-BINDER KB 53/E2 (Binder + Co AG, Gleisdorf, Austria)
- Haake RheoStress 1 rheometer HAAKETM RheoStressTM1 (ThermoScientific, Waltham, MA, USA)
- Printer 3D Phrozen Sonic Mini 8k (Phrozen Tech Co., Ltd., Hsinchu, Taiwan)
- 3D Tronxy Moore 1 printer (Shenzhen Tronxy Technology Co., Ltd., Shenzhen, China)
- Anycubic Wash and Cure Machine v2.0 (Anycubic Technology Co., Ltd., Shenzhen, China)
- Portable WIFI digital microscope INSKAM316 (Shenzhen Yipincheng Technology Co., Ltd., Shenzhen, China)
- Spectrofluorimeter JASCO FP-6200 (Jasco, Tokyo, Japan)
- Franz diffusion cells (PermeGear, Hellertown, PA, USA)
- Tabletop SEM Microscope TM4000Plus Hitachi (Hitachi Ltd., Tokyo, Japan)
- Microtox M500 (Modern Water plc, Cambridge, UK)
3. Procedure
3.1. Preparation of Hydrogels
3.2. Optical Microscope Observation
3.3. Mass Loss on Drying
3.4. Rheological Properties of Hydrogels
3.5. Printing of Microneedles
3.6. Coating of Microneedles
3.7. Spectrofluorimetric Tests
- (a)
- 3 vials—7.7 cm3 of ethanol;
- (b)
- 3 vials—4.6 cm3 of previously prepared phosphate buffer (PB) + 3.1 cm3 of ethanol (ratio 60:40);
- (c)
- 3 vials—7.7 cm3 of phosphate buffer;
- (d)
- 3 vials—6.2 cm3 of phosphate buffer + 1.5 cm3 of ethanol (ratio 80:20).
3.8. The Release Study
- Q—the cumulative amount of PPIX;
- Cn—the concentration of active ingredient determined at the nth sampling interval;
- V—the volume of the Franz cell [cm3];
- —the sum of concentrations of active ingredient determined at sampling intervals 1 through n − 1;
- S—the volume of the sample [cm3];
- A—the diffusion surface [cm2], equal to 0.999 cm2, for the employed microneedles.
3.9. Acute Toxicity of the Coated Microneedles Measured Using Microtox Test
4. Expected Results
4.1. Optical Microscope Visualization of Hydrogels
4.2. Mass Loss on Drying of Hydrogels
4.3. Rheological Study of Gels
Placebo Hydrogels
4.4. The SLA Printing and Coating of the Microneedles Followed by SEM Assessment
4.5. Preliminary Spectrofluorimetric Tests and Release Study of PPIX from Microneedle Systems
4.6. Acute Toxicity of the Materials Measured Using Microtox Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adnane, F.; El-Zayat, E.; Fahmy, H.M. The Combinational Application of Photodynamic Therapy and Nanotechnology in Skin Cancer Treatment: A Review. Tissue Cell 2022, 77, 101856. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-L.; Wang, H.-W.; Guo, M.-X.; Xu, S.-Z. Treatment of Skin Cancer and Pre-Cancer Using Topical ALA-PDT—A Single Hospital Experience. Photodiagnosis Photodyn. Ther. 2008, 5, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; López-Higuera, J.M.; Rodríguez-Cobo, L.; Cobo, A. Advanced Light Source Technologies for Photodynamic Therapy of Skin Cancer Lesions. Pharmaceutics 2023, 15, 2075. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Moghissi, K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013, 46, 24. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, B.; Huang, H.; He, Z.; Sun, J.; Wang, G.; Gu, X.; Tang, B.Z. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. Biosensors 2022, 12, 348. [Google Scholar] [CrossRef]
- Calixto, G.; Bernegossi, J.; de Freitas, L.; Fontana, C.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016, 21, 342. [Google Scholar] [CrossRef]
- Shapoval, O.; Větvička, D.; Patsula, V.; Engstová, H.; Kočková, O.; Konefał, M.; Kabešová, M.; Horák, D. Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo. Pharmaceutics 2023, 15, 2694. [Google Scholar] [CrossRef]
- Loo, J.F.-C.; Chien, Y.-H.; Yin, F.; Kong, S.-K.; Ho, H.-P.; Yong, K.-T. Upconversion and Downconversion Nanoparticles for Biophotonics and Nanomedicine. Coord. Chem. Rev. 2019, 400, 213042. [Google Scholar] [CrossRef]
- Baldea, I.; Giurgiu, L.; Teacoe, I.D.; Olteanu, D.E.; Olteanu, F.C.; Clichici, S.; Filip, G.A. Photodynamic Therapy in Melanoma—Where Do We Stand? CMC 2019, 25, 5540–5563. [Google Scholar] [CrossRef]
- Ahmed Saeed AL-Japairai, K.; Mahmood, S.; Hamed Almurisi, S.; Reddy Venugopal, J.; Rebhi Hilles, A.; Azmana, M.; Raman, S. Current Trends in Polymer Microneedle for Transdermal Drug Delivery. Int. J. Pharm. 2020, 587, 119673. [Google Scholar] [CrossRef]
- Ziyad, S.; Iruela-Arispe, M.L. Molecular Mechanisms of Tumor Angiogenesis. Genes Cancer 2011, 2, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Kamarulzaman, E.-E.; Benachour, H.; Barberi-Heyob, M.; Frochot, C.; Wahab, H.; Guillemin, F.; Vanderesse, R. Vascular-Targeted Photodynamic Therapy (VTP). In Advances in Cancer Therapy; Gali-Muhtasib, H., Ed.; InTech: Rijeka, Croatia, 2011; pp. 99–122. ISBN 978-953-307-703-1. Available online: https://www.intechopen.com/chapters/23915 (accessed on 8 September 2024).
- Weiss, A.; van den Bergh, H.; Griffioen, A.W.; Nowak-Sliwinska, P. Angiogenesis Inhibition for the Improvement of Photodynamic Therapy: The Revival of a Promising Idea. Biochim. Biophys. Acta 2012, 1826, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Wachowska, M.; Muchowicz, A.; Golab, J. Targeting Epigenetic Processes in Photodynamic Therapy-Induced Anticancer Immunity. Front. Oncol. 2015, 5, 176. [Google Scholar] [CrossRef] [PubMed]
- Aebisher, D.; Woźnicki, P.; Bartusik-Aebisher, D. Photodynamic Therapy and Adaptive Immunity Induced by Reactive Oxygen Species: Recent Reports. Cancers 2024, 16, 967. [Google Scholar] [CrossRef]
- Pola, M.; Kolarova, H.; Bajgar, R. Generation of Singlet Oxygen by Porphyrin and Phthalocyanine Derivatives Regarding the Oxygen Level. J. Med. Sci. 2022, 91, e752. [Google Scholar] [CrossRef]
- Michalak, M.; Mazurkiewicz, S.; Szymczyk, J.; Ziental, D.; Sobotta, Ł. Photodynamic Therapy Applications—Review. J. Med. Sci. 2023, 92, e865. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Harada, Y.; Murayama, Y.; Takamatsu, T.; Otsuji, E.; Tanaka, H. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges. Int. J. Mol. Sci. 2022, 23, 6478. [Google Scholar] [CrossRef]
- Ozog, D.M.; Rkein, A.M.; Fabi, S.G.; Gold, M.H.; Goldman, M.P.; Lowe, N.J.; Martin, G.M.; Munavalli, G.S. Photodynamic Therapy: A Clinical Consensus Guide. Dermatol. Surg. 2016, 42, 804–827. [Google Scholar] [CrossRef]
- Bariya, S.H.; Gohel, M.C.; Mehta, T.A.; Sharma, O.P. Microneedles: An Emerging Transdermal Drug Delivery System. J. Pharm. Pharmacol. 2011, 64, 11–29. [Google Scholar] [CrossRef]
- Larrañeta, E.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Microneedles: A New Frontier in Nanomedicine Delivery. Pharm. Res 2016, 33, 1055–1073. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, D.; Xu, H.; Patra, H.K.; Liu, X.; Zhou, Z.; Tang, J.; Slater, N.; Shen, Y. Progress and Perspective of Microneedle System for Anti-Cancer Drug Delivery. Biomaterials 2021, 264, 120410. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kesharwani, P. Recent Advances in Microneedles-Based Drug Delivery Device in the Diagnosis and Treatment of Cancer. J. Control. Release 2021, 338, 394–409. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Kole, P.L.; Mahmood, T.M.T.; McCarthy, H.O.; Woolfson, A.D. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv. Funct. Mater. 2012, 22, 4879–4890. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Mahor, A.; Singh, G.; Bansal, K.; Singh, P.P.; Gupta, R.; Dutt, R.; Alanazi, A.M.; Khan, A.A.; Kesharwani, P. Formulation Development, In Vitro and In Vivo Evaluation of Topical Hydrogel Formulation of Econazole Nitrate-Loaded β-Cyclodextrin Nanosponges. J. Pharm. Sci. 2021, 110, 3702–3714. [Google Scholar] [CrossRef]
- Jain, A.K.; Lee, C.H.; Gill, H.S. 5-Aminolevulinic Acid Coated Microneedles for Photodynamic Therapy of Skin Tumors. J. Control. Release 2016, 239, 72–81. [Google Scholar] [CrossRef]
- Champeau, M.; Jary, D.; Mortier, L.; Mordon, S.; Vignoud, S. A Facile Fabrication of Dissolving Microneedles Containing 5-Aminolevulinic Acid. Int. J. Pharm. 2020, 586, 119554. [Google Scholar] [CrossRef]
- Al Sulaiman, D.; Chang, J.Y.H.; Bennett, N.R.; Topouzi, H.; Higgins, C.A.; Irvine, D.J.; Ladame, S. Hydrogel-Coated Microneedle Arrays for Minimally Invasive Sampling and Sensing of Specific Circulating Nucleic Acids from Skin Interstitial Fluid. ACS Nano 2019, 13, 9620–9628. [Google Scholar] [CrossRef]
- Jadach, B.; Nowak, A.; Długaszewska, J.; Kordyl, O.; Budnik, I.; Osmałek, T. Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses. Gels 2024, 10, 264. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Mei, R.; Lv, B.; Zhao, X.; Bi, L.; Xu, H.; Chen, L. Hydrogel-Coated SERS Microneedles for Drug Monitoring in Dermal Interstitial Fluid. ACS Sens. 2024, 9, 2567–2574. [Google Scholar] [CrossRef]
- Golshirazi, A.; Mohammadzadeh, M.; Labbaf, S. The Synergistic Potential of Hydrogel Microneedles and Nanomaterials: Breaking Barriers in Transdermal Therapy. Macromol. Biosci. 2024, 2024, 2400228. [Google Scholar] [CrossRef] [PubMed]
- Umeyor, C.E.; Shelke, V.; Pol, A.; Kolekar, P.; Jadhav, S.; Tiwari, N.; Anure, A.; Nayak, A.; Bairagi, G.; Agale, A.; et al. Biomimetic Microneedles: Exploring the Recent Advances on a Microfabricated System for Precision Delivery of Drugs, Peptides, and Proteins. Future J. Pharm. Sci. 2023, 9, 103. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Park, J.-H.; Prausnitz, M.R. Microneedles for Drug and Vaccine Delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, X.; Fu, Y.; Song, Y. Recent Advances of Microneedles for Biomedical Applications: Drug Delivery and Beyond. Acta Pharm. Sin. B 2019, 9, 469–483. [Google Scholar] [CrossRef]
- Froelich, A.; Osmałek, T.; Snela, A.; Kunstman, P.; Jadach, B.; Olejniczak, M.; Roszak, G.; Białas, W. Novel Microemulsion-Based Gels for Topical Delivery of Indomethacin: Formulation, Physicochemical Properties and In Vitro Drug Release Studies. J. Colloid Interface Sci. 2017, 507, 323–336. [Google Scholar] [CrossRef]
- Wegrzynowska-Drzymalska, K.; Mlynarczyk, D.T.; Chelminiak-Dudkiewicz, D.; Kaczmarek, H.; Goslinski, T.; Ziegler-Borowska, M. Chitosan-Gelatin Films Cross-Linked with Dialdehyde Cellulose Nanocrystals as Potential Materials for Wound Dressings. Int. J. Mol. Sci. 2022, 23, 9700. [Google Scholar] [CrossRef]
- Khan, H.; Mehta, P.; Msallam, H.; Armitage, D.; Ahmad, Z. Smart Microneedle Coatings for Controlled Delivery and Biomedical Analysis. J. Drug Target. 2014, 22, 790–795. [Google Scholar] [CrossRef]
- Gu, Z.; Alexandridis, P. Drying of Poloxamer Hydrogel Films. J. Pharm. Sci. 2004, 93, 1454–1470. [Google Scholar] [CrossRef]
- Silva, M.A.D.; Bierhalz, A.C.K.; Kieckbusch, T.G. Influence of Drying Conditions on Physical Properties of Alginate Films. Dry. Technol. 2012, 30, 72–79. [Google Scholar] [CrossRef]
- Rahimi, S.; Peretz, A.; Natan, B. On Shear Rheology of Gel Propellants. Propellants Explos. Pyrotech. 2007, 32, 165–174. [Google Scholar] [CrossRef]
- Ingrole, R.S.J.; Gill, H.S. Microneedle Coating Methods: A Review with a Perspective. J. Pharmacol. Exp. Ther. 2019, 370, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; McCarron, P.A.; Donnelly, R.F.; Woolfson, A.D.; McKenna, K. Evaluation of the Penetration of 5-aminolevulinic Acid through Basal Cell Carcinoma: A Pilot Study. Exp. Dermatol. 2004, 13, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, R.; Wang, S.; Yang, X.; Ling, G.; Zhang, P. Fabrication, Evaluation and Applications of Dissolving Microneedles. Int. J. Pharm. 2021, 604, 120749. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Denson, D.D.; Burris, B.A.; Prausnitz, M.R. Effect of Microneedle Design on Pain in Human Volunteers. Clin. J. Pain 2008, 24, 585–594. [Google Scholar] [CrossRef]
- Gupta, J.; Park, S.S.; Bondy, B.; Felner, E.I.; Prausnitz, M.R. Infusion Pressure and Pain during Microneedle Injection into Skin of Human Subjects. Biomaterials 2011, 32, 6823–6831. [Google Scholar] [CrossRef]
- Haq, M.I.; Smith, E.; John, D.N.; Kalavala, M.; Edwards, C.; Anstey, A.; Morrissey, A.; Birchall, J.C. Clinical Administration of Microneedles: Skin Puncture, Pain and Sensation. Biomed. Microdevices 2009, 11, 35–47. [Google Scholar] [CrossRef]
- Rossetti, F.C.; Depieri, L.V.; Tedesco, A.C.; Bentley, M.V.L.B. Fluorometric Quantification of Protoporphyrin IX in Biological Skin Samples from in Vitro Penetration/Permeation Studies. Braz. J. Pharm. Sci. 2010, 46, 753–760. [Google Scholar] [CrossRef]
- Dobretsov, G.E.; Syrejschikova, T.I.; Smolina, N.V. On Mechanisms of Fluorescence Quenching by Water. Biophysics 2014, 59, 183–188. [Google Scholar] [CrossRef]
- Maillard, J.; Klehs, K.; Rumble, C.; Vauthey, E.; Heilemann, M.; Fürstenberg, A. Universal Quenching of Common Fluorescent Probes by Water and Alcohols. Chem. Sci. 2021, 12, 1352–1362. [Google Scholar] [CrossRef]
- Scolaro, L.M.; Castriciano, M.; Romeo, A.; Patanè, S.; Cefalì, E.; Allegrini, M. Aggregation Behavior of Protoporphyrin IX in Aqueous Solutions: Clear Evidence of Vesicle Formation. J. Phys. Chem. B 2002, 106, 2453–2459. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Prausnitz, M. Individually Coated Microneedles for Co-Delivery of Multiple Compounds with Different Properties. Drug Deliv. Transl. Res. 2018, 8, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.T. Microtox® Toxicity Test System—New Developments and Applications. In Microscale Testing in Aquatic Toxicology; CRC Press: Boca Raton, FL, USA, 2018; pp. 201–218. ISBN 978-0-203-74719-3. [Google Scholar]
- Ismagilova, A.; Matt, L.; Jannasch, P.; Kisand, V.; Vares, L. Ecotoxicity of Isosorbide Acrylate and Methacrylate Monomers and Corresponding Polymers. Green Chem. 2023, 25, 1626–1634. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Bozorg, B.D.; Kim, Y.; Wieber, A.; Birk, G.; Lubda, D.; Banga, A.K. Poly (Vinyl Alcohol) Microneedles: Fabrication, Characterization, and Application for Transdermal Drug Delivery of Doxorubicin. Eur. J. Pharm. Biopharm. 2018, 129, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, A.; Banga, A.K. Novel in Situ Forming Hydrogel Microneedles for Transdermal Drug Delivery. Drug Deliv. Transl. Res. 2017, 7, 16–26. [Google Scholar] [CrossRef]
- Lan, X.; She, J.; Lin, D.; Xu, Y.; Li, X.; Yang, W.; Lui, V.W.Y.; Jin, L.; Xie, X.; Su, Y. Microneedle-Mediated Delivery of Lipid-Coated Cisplatin Nanoparticles for Efficient and Safe Cancer Therapy. ACS Appl. Mater. Interfaces 2018, 10, 33060–33069. [Google Scholar] [CrossRef]
- Luo, X.; Yang, L.; Cui, Y. Microneedles: Materials, Fabrication, and Biomedical Applications. Biomed. Microdevices 2023, 25, 20. [Google Scholar] [CrossRef]
- Kowalski, R.; Kozak, M.; Sobolewska, E. Contemporary Hybrid Acrylic Materials and Modern Thermoplastics in the Manufacture of Dental Prostheses. Pomeranian J. Life Sci. 2023, 69, 39–45. [Google Scholar]
- Phrozen Technology Phrozen Aqua 3D Printing Resin. Available online: https://phrozen3d.com/products/aqua-resin (accessed on 8 September 2024).
Sample | Area of the Hysteresis Loop [Pa/s] | τ0 [Pa] | K [Pa·sn] | n [-] | r [-] | |
---|---|---|---|---|---|---|
Placebo | Sodium alginate | 5.18 ± 0.07 | 0.0405 ± 0.0048 | 0.0092 ± 0.0014 | 0.9065 ± 0.0112 | 0.9980 ± 0.0004 |
Xanthan gum | 23.11 ± 4.34 | 5.8827 ± 2.5215 | 2.3690 ± 1.9035 | 0.3263 ± 0.1222 | 0.9085 ± 0.0239 | |
Poloxamer | 5.02 ± 0.21 | 0.0297 ± 0,0032 | 0.0123 ± 0.0018 | 0.9124 ± 0.0295 | 0.9990 0.0004 | |
PPIX-loaded | Sodium alginate | 5.14 ± 0.07 | 0.0304 ± 0.0033 | 0.0128 ± 0.0013 | 0.8590 ± 0.0262 | 0.9988 ± 0.0002 |
Xanthan gum | 24.58 ± 9.98 | 11.6800 ± 0.2263 | 0.8672 ± 0.0837 | 0.4831 ± 0.0204 | 0.9842 ± 0.0012 | |
Poloxamer | 5.65 ± 0.54 | 0.0342 ± 0.0089 | 0.0170 ± 0.0032 | 0.8607 ± 0.0578 | 0.9987 ± 0.0004 |
Cell I | Cell II | Cell III | ||||
---|---|---|---|---|---|---|
t [min] | F | C (mg/cm3) | F | C (mg/cm3) | F | C (mg/cm3) |
15 | 18.4489 | 0.01285 | 13.3928 | 0.00935 | 13.5683 | 0.00945 |
35 | 24.8898 | 0.01735 | 16.7500 | 0.01170 | 18.1072 | 0.01265 |
55 | 20.8312 | 0.01455 | 13.9585 | 0.00975 | 15.4101 | 0.01075 |
75 | 21.1131 | 0.01470 | 14.0391 | 0.00980 | 13.2224 | 0.00920 |
95 | 16.8990 | 0.01180 | 9.43245 | 0.00660 | 12.7960 | 0.00890 |
120 | 15.9796 | 0.01115 | 9.50608 | 0.00665 | 11.4026 | 0.00795 |
240 | 17.9541 | 0.01250 | 12.5054 | 0.00870 | 8.31079 | 0.00580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarczynska-Goslinska, B.; Goslinski, T.; Roszak, A.; Froelich, A.; Szyk, P.; Mlynarczyk, D.T.; Sobotta, L.; Budnik, I.; Kordyl, O.; Osmałek, T. Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology. Methods Protoc. 2024, 7, 73. https://doi.org/10.3390/mps7050073
Czarczynska-Goslinska B, Goslinski T, Roszak A, Froelich A, Szyk P, Mlynarczyk DT, Sobotta L, Budnik I, Kordyl O, Osmałek T. Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology. Methods and Protocols. 2024; 7(5):73. https://doi.org/10.3390/mps7050073
Chicago/Turabian StyleCzarczynska-Goslinska, Beata, Tomasz Goslinski, Agata Roszak, Anna Froelich, Piotr Szyk, Dariusz T. Mlynarczyk, Lukasz Sobotta, Irena Budnik, Oliwia Kordyl, and Tomasz Osmałek. 2024. "Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology" Methods and Protocols 7, no. 5: 73. https://doi.org/10.3390/mps7050073
APA StyleCzarczynska-Goslinska, B., Goslinski, T., Roszak, A., Froelich, A., Szyk, P., Mlynarczyk, D. T., Sobotta, L., Budnik, I., Kordyl, O., & Osmałek, T. (2024). Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology. Methods and Protocols, 7(5), 73. https://doi.org/10.3390/mps7050073