Hybrid Equalization Topology for Battery Management Systems Applied to an Electric Vehicle Model
"> Figure 1
<p>Schematic drawing of passive equalization.</p> "> Figure 2
<p>(<b>a</b>) Schematic diagram of the multiple inductor circuit. (<b>b</b>) The first stage of circuit operation closes switches S1 to S7. (<b>c</b>) The second stage of circuit operation closes switches S8 to S14.</p> "> Figure 3
<p>Schematic diagram of hybrid equalization topology.</p> "> Figure 4
<p>FTP75 driving cycle used in the simulations.</p> "> Figure 5
<p>Passive cell-level equalization.</p> "> Figure 6
<p>Active cell-level equalization.</p> "> Figure 7
<p>Active equalization at stack and cell levels.</p> "> Figure 8
<p>Passive equalization at stack and cell levels.</p> "> Figure 9
<p>Passive stack-level and active cell-level hybrid equalization.</p> "> Figure 10
<p>Hybrid equalization: active stack level and passive cell level.</p> "> Figure 11
<p>Simulation results of the EV model. The driving cycle is repeated until the battery pack is fully discharged. The equalization of stacks and cells is done by the passive method.</p> "> Figure 12
<p>Simulation results of the EV model. Details of voltage and SOC behavior of passive equalization at stack and cell levels.</p> "> Figure 13
<p>EV model simulation results. The driving cycle is repeated until the battery is fully discharged. EQ is active across stacks and passive at the cell level.</p> "> Figure 14
<p>Simulation results of the EV model. Details of voltage and SOC behavior of passive equalization at stack and cell levels.</p> ">
Abstract
:1. Introduction
2. Battery Equalization
2.1. Passive Equalization Method
2.2. Active Equalization Topology
2.3. Hybrid Equalization Topology
3. Results and Discussions
3.1. Passive and Active Cell-Level Equalization
3.2. Hybrid Equalization
3.3. Hybrid EQ Applied to an EV
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramkumar, M.S.; Reddy, C.; Ramakrishnan, A.; Raja, K.; Pushpa, S.; Jose, S.; Jayakumar, M. Review on Li-Ion Battery with Battery Management System in Electrical Vehicle. Adv. Mater. Sci. Eng. 2022, 2022, 3379574. [Google Scholar] [CrossRef]
- Daowd, M.; Antoine, M.; Omar, N.; Lataire, P.; Van Den Bossche, P.; Van Mierlo, J. Battery management system—Balancing modularization based on a single switched capacitor and bi-directional DC/DC converter with the auxiliary battery. Energies 2014, 7, 2897–2937. [Google Scholar] [CrossRef] [Green Version]
- Daowd, M.; Omar, N.; Van Den Bossche, P.; Van Mierlo, J. Passive and active battery balancing comparison based on MATLAB simulation. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–7. [Google Scholar]
- Ouyang, D.; Chen, M.; Liu, J.; Wei, R.; Weng, J.; Wang, J. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv. 2018, 8, 33414–33424. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, K.; Liu, K.; Lin, X.; Dey, S.; Onori, S. Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures. IEEE Ind. Electron. Mag. 2020, 14, 65–91. [Google Scholar] [CrossRef]
- Barreras, J.V.; Pinto, C.; de Castro, R.; Schaltz, E.; Andreasen, S.J.; Araújo, R.E. Multi-objective control of balancing systems for li-ion battery packs: A paradigm shift? In Proceedings of the 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, Portugal, 27–30 October 2014; pp. 1–7. [Google Scholar]
- Gallardo-Lozano, J.; Romero-Cadaval, E.; Milanes-Montero, M.I.; Guerrero-Martinez, M.A. Battery equalization active methods. J. Power Sources 2014, 246, 934–949. [Google Scholar] [CrossRef]
- Ganesha, N.; Yadav, G.; Gowrishankara, C. Analysis and Implementation of Inductor Based Active Battery Cell Balancing Topology. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar]
- Farzan Moghaddam, A.; Van den Bossche, A. A Ćuk converter cell balancing technique by using coupled inductors for lithium-based batteries. Energies 2019, 12, 2881. [Google Scholar] [CrossRef] [Green Version]
- Battery Electric Vehicle Model in Simscape. Available online: https://www.mathworks.com/matlabcentral/fileexchange/82250-battery-electric-vehicle-model-in-simscape?s_tid=srchtitle (accessed on 10 July 2022).
- De Alcântara Dias, B.M.; da Silva, C.T.; Araújo, R.E.; de Castro, R.; Pellini, E.L.; Pinto, C.; Laganá, A.A.M. An Analytic Hierarchy Process for Selecting Battery Equalization Methods. Energies 2022, 15, 2439. [Google Scholar] [CrossRef]
- Koseoglou, M.; Tsioumas, E.; Jabbour, N.; Mademlis, C. Highly effective cell equalization in a lithium-ion battery management system. IEEE Trans. Power Electron. 2019, 35, 2088–2099. [Google Scholar] [CrossRef]
- Alvarez-Diazcomas, A.; Estévez-Bén, A.A.; Rodríguez-Reséndiz, J.; Martínez-Prado, M.A.; Carrillo-Serrano, R.V.; Thenozhi, S. A review of battery equalizer circuits for electric vehicle applications. Energies 2020, 13, 5688. [Google Scholar] [CrossRef]
- Angkititrakul, S.; Hu, H.; Liang, Z. Active inductor current balancing for interleaving multi-phase buck-boost converter. In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009; pp. 527–532. [Google Scholar]
- Moghaddam, A.F.; Van Den Bossche, A. An active cell equalization technique for lithium ion batteries based on inductor balancing. In Proceedings of the 2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE), Budapest, Hungary, 10–13 July 2018; pp. 274–278. [Google Scholar]
- Xu, P.; Kang, L.; Xie, D.; Luo, X.; Lin, H. A Switch-Reduced Multicell-to-Multicell Battery Equalizer Based on Full-Bridge Bipolar-Resonant LC Converter. Batteries 2022, 8, 53. [Google Scholar] [CrossRef]
- Lu, C.; Kang, L.; Wang, S.; Wang, Z.; Rao, H. A Novel Inductor-Based Non-Dissipative Equalizer. Energies 2018, 11, 2816. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Li, J.q.; Shi, W. Design and implementation of the state monitoring and balancing management of vehicle power battery. Energy Procedia 2017, 105, 2725–2732. [Google Scholar] [CrossRef]
- Zhang, Z.; Gui, H.; Gu, D.J.; Yang, Y.; Ren, X. A hierarchical active balancing architecture for lithium-ion batteries. IEEE Trans. Power Electron. 2016, 32, 2757–2768. [Google Scholar] [CrossRef]
- Hua, Y.; Zhou, S.; Cui, H.; Liu, X.; Zhang, C.; Xu, X.; Ling, H.; Yang, S. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles. Int. J. Energy Res. 2020, 44, 11059–11087. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Z.; Tang, X.; Cao, W. Automotive battery equalizers based on joint switched-capacitor and buck-boost converters. IEEE Trans. Veh. Technol. 2020, 69, 12716–12724. [Google Scholar] [CrossRef]
- Tseng, K.C.; Huang, H.S.; Cheng, C.A. A Power Conversion Technique with Hierarchical Equalization Charging Topology for LiFePO4 Batteries. Micromachines 2021, 12, 1014. [Google Scholar] [CrossRef]
- Drive Cycle Source FTP75. Available online: https://www.mathworks.com/help/autoblks/ref/drivecyclesource.html (accessed on 1 July 2022).
- Zhong, H.; Lei, F.; Zhu, W.; Zhang, Z. An operation efficacy-oriented predictive control management for power-redistributable lithium-ion battery pack. Energy 2022, 251, 123851. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, K.M.; Choi, Y.G.; Kang, B. Modularized design of active charge equalizer for Li-ion battery pack. IEEE Trans. Ind. Electron. 2018, 65, 8697–8706. [Google Scholar] [CrossRef]
Cell | Voltage (V) | Initial Charge State (%) |
---|---|---|
1 | 3.7 | 100 |
2 | 3.69 | 99.73 |
3 | 3.38 | 91.35 |
4 | 3.45 | 93.24 |
5 | 3.41 | 92.16 |
6 | 3.52 | 95.13 |
7 | 3.58 | 96.75 |
8 | 3.37 | 91.08 |
Stack | Stack Voltage (V) | Initial Charge State (%) |
---|---|---|
1 | 28.2 | Cell 1 = 100; Cell 2 = 99.73; Cell 3 = 91.35; Cell 4 = 93.24; Cell 5 = 92.16; Cell 6 = 95.13; Cell 7 = 96.75, and Cell 8 = 91.8; |
2, 3, 4, 5, 6, 7, and 8 | 29.6 | 100 |
Topology | Equalization Time | SOC—Stack (%) | SOC—Cell (%) |
---|---|---|---|
Active cell-level balancing | 3 h 33 min | - | 85 |
Cell-level passive balancing | 8 h 10 min | - | 74 |
Active stack-level and cell-level active balancing | 2 h (stack) 4 h 40 min (cell) | 98 | 98 |
Passive stack-level and cell-level passive balancing | 3 h (stack) 8 h 10 min (cell) | 74 | 74 |
Active stack-level and cell-level passive hybrid balancing | 3 h (stack) 7 h 10 min (cell) | 96 | 96 |
Passive stack-level and active cell-level hybrid balancing | 1 h 30 min (stack) 4 h (cell) | 85 | 85 |
Topology | Components | Value (USD) |
---|---|---|
One module-level active topology | 14 Mosfets, 7 inductors, and a control circuit | 300.00 |
Eight passive topology slave modules | Front-end integrated circuit, power resistors, voltage, current, and temperature instrumentation | 2000.00 |
Total cost = 2300.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvão, J.R.; Calligaris, L.B.; de Souza, K.M.; Gotz, J.D.; Junior, P.B.; Corrêa, F.C. Hybrid Equalization Topology for Battery Management Systems Applied to an Electric Vehicle Model. Batteries 2022, 8, 178. https://doi.org/10.3390/batteries8100178
Galvão JR, Calligaris LB, de Souza KM, Gotz JD, Junior PB, Corrêa FC. Hybrid Equalization Topology for Battery Management Systems Applied to an Electric Vehicle Model. Batteries. 2022; 8(10):178. https://doi.org/10.3390/batteries8100178
Chicago/Turabian StyleGalvão, José Rodolfo, Lucas Braggião Calligaris, Kawe Monteiro de Souza, Joelton Deonei Gotz, Paulo Broniera Junior, and Fernanda Cristina Corrêa. 2022. "Hybrid Equalization Topology for Battery Management Systems Applied to an Electric Vehicle Model" Batteries 8, no. 10: 178. https://doi.org/10.3390/batteries8100178
APA StyleGalvão, J. R., Calligaris, L. B., de Souza, K. M., Gotz, J. D., Junior, P. B., & Corrêa, F. C. (2022). Hybrid Equalization Topology for Battery Management Systems Applied to an Electric Vehicle Model. Batteries, 8(10), 178. https://doi.org/10.3390/batteries8100178