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Abstract: The development of neuroprosthetic limbs—robotic devices designed to restore
lost limb functions for individuals with limb loss or impairment—has made significant
strides over the past decade, reaching the stage of successful human clinical trials. A current
research focus involves providing somatosensory feedback to these devices, which was
shown to improve device control performance and embodiment. However, widespread
commercialization and clinical adoption of somatosensory neuroprosthetic limbs remain
limited. Biomimetic neuroprosthetics, which seeks to resemble the natural sensory pro-
cessing of tactile information and to deliver biologically relevant inputs to the nervous
system, offer a promising path forward. This method could bridge the gap between ex-
isting neurotechnology and the future realization of bionic limbs that more closely mimic
biological limbs. In this review, we examine the recent key clinical trials that incorporated
somatosensory feedback on neuroprosthetic limbs through biomimetic neurostimulation
for individuals with missing or paralyzed limbs. Furthermore, we highlight the potential
impact of cutting-edge advances in tactile sensing, encoding strategies, neuroelectronic
interfaces, and innovative surgical techniques to create a clinically viable human–machine
interface that facilitates natural tactile perception and advanced, closed-loop neuropros-
thetic control to improve the quality of life of people with sensorimotor impairments.

Keywords: neuroprosthetics; somatosensory feedback; biomimetic; neurostimulation;
neuroelectronics; surgical technique

1. Introduction
Limb dexterity is vital, as it enables a wide range of physical interactions with the

environment that are essential for daily activities, work, and recreation [1,2]. The loss of
limb function significantly affects individuals’ quality of life, impacting mobility, balance,
coordination, communication, and independence [3–5]. In the United States alone, over
2 million people are living with limb loss due to causes such as trauma, diabetes, and pe-
ripheral vascular diseases [6]. Additionally, there are more than 300,000 individuals in the
United States with a spinal cord injury (SCI), many of whom suffer from loss of limb func-
tion [7,8]. A majority of these individuals face functional and psychosocial limitations due
to their disability [9,10]. In recent decades, the development of neuroprosthetics—robotic
devices that restore missing limb functions—has made substantial progress, offering people
with limb loss and impairment more effective replacements [11–15]. Clinical trials showed
that current neuroprosthetic limbs can reliably be used to precisely manipulate and transfer
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objects and complete complex tasks, such as making coffee and navigating obstacles with
multiple degrees of freedom (DoFs) [16–23]. Despite these advancements, the absence
of somatosensory feedback has been a major limitation in current devices [24–26]. The
sense of touch, for instance, plays an important role in object manipulation in everyday
tasks [27,28] (such as opening a water bottle), emotional connections [29] (such as affective
touch), and social and psychosocial well-being [30,31] (self-esteem and participation in
social activities). Without this somatosensory feedback, neuroprosthetic devices may feel
burdensome and lack a natural sense of integration [32].

To improve naturalness and functionality, researchers have integrated tactile feedback
in limb neuroprosthetics [33–35]. Clinical studies showed that electrically stimulating
either the peripheral nerves [34,36–39] or somatosensory cortex [33,35,40] can evoke tactile
sensations in individuals with limb loss or impairment (e.g., paralysis). By incorporat-
ing somatosensory feedback into the control loop of neuroprosthetics, users experience
improved embodiment of the device while the cognitive effort required for its use de-
creased [11,41–43]. For individuals with limb loss, several key clinical studies found that
stimulating peripheral nerves previously innervating the limbs—such as the median, ulnar,
radial, and tibial nerves—can evoke vivid tactile sensations perceived on the missing limb
and described as touch, pressure, tapping, and vibration [37,44–46]. For individuals with
intact but paralyzed limbs after an SCI or a brachial plexus injury, research has focused on
stimulating the primary somatosensory cortex (S1) directly targeting hand representation.
This would potentially allow for localized tactile sensations on the hand [33,35,40]. Ad-
vances in neurostimulation allowed researchers to modulate the intensity and naturalness
of electrically evoked sensation at both the peripheral nervous system (PNS) and central
nervous system (CNS) levels [37,40,44,46,47]. By varying stimulation parameters, includ-
ing the pulse amplitude, width, frequency, and duration, participants reported different
qualities of tactile sensations [46–52]. The ability to fine-tune somatosensory feedback
implies that the design of neurostimulation strategies could drive progress in bidirectional
(sensorimotor) neuroprosthetic limbs for enhanced, naturalistic control. However, chal-
lenges remain: the induced tactile sensations are not yet consistently stable nor are they
perceived as naturalistic over time and across subjects. The current sensory stimulation
methods to evoke tactile perception are somewhat arbitrary and unnatural. They are quite
simple and imprecise and usually do not correspond to how biological touch encodes
sensory information [53,54]. This limits the intuitiveness and functionality of sensorimotor
neuroprosthetic control, leading to poor device embodiment and increased cognitive load.
Achieving a complete and natural somatosensory experience—one that makes users feel as
if they have their functional hands again—requires mimicking the biological processes of
somatosensory transduction [53]. In biology, these biological sensors detect tactile stimuli
applied on the skin and relay the information to the brain for processing and perception [55].
The best way to modulate the nervous system to improve the naturalness of tactile sen-
sation is to communicate using a “biological neural language” that seamlessly integrates
motor and sensory systems requiring minimal learning [56,57]. This concept, known as
biomimetic somatosensory feedback, has evolved significantly over the past decade and
marks a crucial step toward the development of bionic limbs with more natural, intuitive
functionality [53,54].

In clinical trials, researchers developed and implemented various biomimetic encoding
strategies designed to translate tactile information—captured by tactile sensors embedded
in the neuroprosthetic limbs—into patterns of neurostimulation [58]. These methods use
mathematical equations and computational techniques to model how sensory neurons re-
spond to tactile stimuli, such as skin motion, deformation, or indentation. This information
is then exploited to generate appropriate neurostimulation trains. In biological systems,
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mechanoreceptors like Meissner corpuscles (for detecting object slippage), Pacinian corpus-
cles (for vibratory cues during grasping), Merkel cells (for texture and form perception),
and Ruffini corpuscles (for sensing skin stretch and object movement) respond to the
mechanical deformation of the skin [59]. These mechanosensory neurons are generally
categorized into two main types: slowly adapting (SA) neurons, which fire consistently in
response to sustained indentation, and rapidly adapting (RA) neurons, which fire rapidly in
response to changes in skin pressure [59,60]. Deflorio et al. comprehensively reviewed the
current computation models that mimic mechanoreceptor responses to tactile stimuli [61].
Using these neuron models, researchers generate neuron spike trains that inform strategies
of electrical neurostimulation. This biomimetic approach provides biologically inspired
somatosensory feedback to individuals who have lost or impaired natural somatosensory
processing [62].

This review highlights key human clinical studies that utilize in silico neuron models
to generate biomimetic somatosensory feedback provided to neuroprosthetic users through
neurostimulation. These investigational studies demonstrated encouraging results in
effectively encoding tactile stimuli within the nervous system for more intuitive and
functional tactile perception. We also discuss how innovations in advanced electronic skins,
neural interfaces, and surgically created sensory interfaces could further improve both
clinical and functional outcomes in the field of bidirectional neuroprosthetics.

2. Biomimetic Somatosensory Feedback for Upper Limbs
Over the past few years, multiple key human trial evaluations marked significant

milestones in the development of limb neuroprosthetics by implementing biomimetic en-
coding strategies to provide relevant somatosensory feedback for upper-limb prosthesis
users, both for people with amputations and for people with an SCI [47,63–67]. These
achievements are rooted in the reliability of biomimetic models validated in animal studies
prior to clinical application [57,68–70]. In these animal studies, the successful assessment
of implant safety, effectiveness of neurostimulation strategies, and physiological validation
of the restored sensory signaling provided confidence, guidance, and a foundation for the
recent clinical translation of biomimetic somatosensory feedback. In 2018, Osborn et al.
introduced a prosthetic interface that translates tactile information into biologically relevant
neural signals (Figure 1A) [63]. In a participant with a transhumeral amputation of the left
arm, surface electrodes were placed on the subject’s residual limb to target the median and
ulnar nerves. Transcutaneous electrical stimulation (TENS) of these residual nerves was
used to evoke tactile perceptions in the phantom hand [63,71]. In the prosthetics context,
Osborn et al. modeled the responses of mechanoreceptors, combining the characteristics of
SA and RA receptors using the Izhikevich neuron model [72], which includes regular and
fast-spiking neurons, respectively [63,73]. The Izhikevich model is simplistic but remains
computationally efficient [72]. Biomimetic tactile sensors, designed to emulate the structure
and function of skin (e.g., epidermis and dermis), were integrated into the neuroprosthetic
fingertips to measure pressure. These measurements were converted into input currents
and fed into the neuron model. The model generated receptor-specific spiking patterns in
terms of the neuron voltage and timing, representing a biomimetic approach that replicates
natural biological processes and signals. These patterns, corresponding to the tactile in-
teraction with objects during prosthesis grasping, were used to modulate the stimulation
parameters, such as frequency and pulse width, which tuned the perceived tactile sensation
elicited by TENS [63]. With this biomimetic approach, the participant in the study was
able to differentiate objects with different curvatures, including sharpness, through the
incorporation of nociceptive tactile feedback [63]. To further demonstrate the functional
benefits of biomimetic somatosensory feedback, George et al. conducted a study in which
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an individual with a transradial amputation was implanted with Utah Slanted Electrode Ar-
rays (USEAs) into the residual median and ulnar nerves [64]. The researchers designed and
compared two biomimetic sensory encoding algorithms aimed at replicating natural tactile
signals. The first algorithm, a first-order model, incorporated both the magnitude and rate
of change of the contact force to mimic phasic bursts of neural activity (SA and RA). The
second algorithm, a second-order model [57,74], simulated the sensitivity of sensory nerve
fiber populations (SA, RA, and Pacinian corpuscles) to skin indentation and its derivatives,
including the rate and acceleration [64]. These biomimetic strategies significantly enhanced
the performance in object discrimination tasks compared with the non-biomimetic feedback
(Figure 1B). Specifically, the first-order model improved the response times by 24% for size
discrimination and 44% for compliance discrimination. The second-order model resulted in
56% faster object compliance identification [64]. This study provided compelling evidence
that biologically inspired neurostimulation patterns, which capture and recreate the tempo-
ral dynamics of natural tactile signals, produce more interpretable sensory percepts and
functionally contribute to more intuitive neuroprosthetic control. In a study by Valle et al.,
the researchers also found that a hybrid biomimetic approach that combined frequency and
amplitude modulation of stimulation achieved an optimal balance between naturalness
and sensitivity in restored tactile perception (Figure 1C) [65]. This approach was tested
on a participant with a transradial amputation who received transverse intrafascicular
multichannel electrode (TIME) implants in the median and ulnar nerves. The amplitude
modulation encoder modulated the neurostimulation amplitude linearly based on the force
measured by the prosthetic hand sensors. This provided highly sensitive force feedback to
the user. The frequency modulation encoder, on the other hand, modulated the frequency of
the neurostimulation pulses based on the model output of all three fiber types (SA, RA, and
Pacinian corpuscles). This allowed for more natural tactile feedback compared with con-
ventional strategies. When these two encoding strategies were combined, improvements in
both gross manual dexterity and neuroprosthesis embodiment were observed [65]. These
findings highlight the importance of capturing a comprehensive biomimetic representation
of skin dynamics and neural activity rather than focusing on replicating individual features
of tactile function. Such biomimetic encoding seems to be critical for achieving naturalistic,
bidirectional neuroprosthetic control.

The three important clinical studies detailed above focused on investigating biomimetic
tactile feedback through the electrical stimulation of peripheral nerves in individuals with
limb loss. The spinal cord or primary somatosensory cortex represents another potential
target for neuroelectronic interfaces to deliver biomimetic tactile feedback to neuropros-
thetic users who suffer from high-level or proximal-limb amputation (e.g., shoulder or hip
disarticulation). However, to our best knowledge, no clinical trials have demonstrated
that biomimetic stimulation of the spinal cord or somatosensory cortex can enhance tactile
perception and bidirectional neuroprosthetic control in individuals with limb loss yet.
On the other hand, intracortical microstimulation (ICMS) of the primary somatosensory
cortex by Utah arrays is an emerging technique for providing biomimetic somatosensory
feedback for individuals with paralyzed and deafferented limbs following SCI [67]. In 2023,
Shelchkova et al. implemented a biomimetic sensory encoder that delivered high-amplitude
neurostimulation during both onset and offset, while reducing the stimulation amplitude
during the sustained phase of object contact [66]. This approach mimics the biological re-
sponse, characterized by strong neural signals when an object initially contacts or leaves the
skin, and the adaptation of sensory neurons during prolonged touch. In this study, ICMS
was applied to the hand-representing region of S1 in participants with hand paralysis [66].
The biomimetic stimulation minimized the disruptions in decoder performance due to the
ICMS-evoked motor cortex activation and led to fewer failed trials in object transportation
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compared with non-biomimetic stimulation [66]. In 2024, Greenspon et al. demonstrated
that biomimetic ICMS enhanced the sensitivity to changes in stimulation intensity, in-
creased the number of discriminable stimulation intensity levels, and reduced the total
charge needed to evoke comparable sensations (Figure 1D) in participants with SCI [47].
Moreover, when combined with multi-electrode stimulation, biomimetic ICMS significantly
improved the task performance. In a compliance discrimination task, multi-electrode
biomimetic feedback outperformed single-electrode non-biomimetic feedback, with error
rates of 7.5% versus 25%, respectively [47]. In another clinical study conducted by the same
group, Hobbs et al. further showed that biomimetic ICMS elicited tactile percepts that more
closely resembled natural residual percepts, as induced by mechanical indentation on an
insensate area of the hand, compared with non-biomimetic stimulation [67].
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Figure 1. Human studies on biomimetic tactile feedback in upper-limb (A–D) and lower-limb
(E) neuroprosthetics. (A) Biologically inspired prosthesis system. Neuromorphic (i.e., mimicking
biological structure and function) tactile sensors combined with biomimetic (i.e., mimicking biological
processes and signals) neuron models provided specific responses that corresponded to different
objects. Adapted from [63]. (B) Biomimetic encoding strategies outperformed non-biomimetic sensory
stimulation during object size and compliance discrimination tasks. * p < 0.05. Adapted from [64].
(C) Implemented and compared sensory encoding strategies, including amplitude neuromodulation
(ANM), frequency neuromodulation (FNM), and hybrid neuromodulation (HNM). Adapted from [65].
(D) Biomimetic ICMS resulted in improved sensitivity of the electrode with reduced just-noticeable
differences (JNDs) and higher resolution force feedback compared with non-biomimetic stimulation.
Adapted from [47]. (E) Biomimetic stimulation provided more natural tactile perception (rated from
0: totally unnatural to 5: totally natural) in both participants with lower-limb amputations. Adapted
from [68]. All figures were reprinted with permissions.
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3. Biomimetic Somatosensory Feedback for Lower Limbs
Unlike the restoration of somatosensation in upper-limb neuroprosthetics, which pri-

marily aims to improve fine motor control, such as object manipulation, the restoration
of somatosensation in the lower limb focuses on improving postural stability, gait, and
walking speed. Nevertheless, biomimetic approaches are effective in addressing both
scenarios. In the past decade, several human studies focused on restoring somatosensory
feedback in individuals with lower-limb amputations by utilizing sensors embedded in
the plantar surface of the prosthetic foot via a sensorized insole [75–78]. These pressure
sensors, strategically positioned on the insole, measure gait dynamics and pressure at
contacts points between the foot and the ground that are relevant during walking [77].
This tactile information is crucial for lower-limb neuroprosthesis users, increasing walking
speed, reducing cognitive effort, and helping to maintain balance and navigate challeng-
ing terrains [75,79,80]. The tactile feedback in lower-limb neuroprosthetics is typically
delivered through electrical neurostimulation of the peripheral nerves. However, to date,
few human studies have explored the application of biomimetic tactile stimulation in the
lower limb. In 2024, Valle et al. presented a groundbreaking clinical study that demon-
strated the effectiveness of biomimetic tactile feedback for individuals with lower-limb loss,
marking a significant advancement in the field [68]. The researchers used a computational
model called FootSim [81], which was designed to replicate the neural activity of sensory
afferents in the human foot in response to skin deformations during walking. Electrical
neurostimulation patterns were based on the neural spiking patterns generated by the
model. In the study, three participants with transfemoral amputations received tibial nerve
implants [68]. Compared with non-biomimetic stimulation, participants reported that they
felt more natural sensations when biomimicry was adopted, which was quantified using
naturalness ratings on the visual analog scale (Figure 1E). During the stairs task, real-time
biomimetic sensory feedback enabled two participants to achieve faster walking speeds
and significantly improved self-reported confidence compared with either non-biomimetic
somatosensory feedback or no feedback. In another functional task, the cognitive double
task, two participants were asked to walk while simultaneously performing a mental
task (i.e., spelling a five-letter word backward). Both participants demonstrated higher
mental accuracy at the same walking speed with biomimetic stimulation compared with
non-biomimetic stimulation and no feedback [68]. This study highlights that similar to
findings in upper-limb neuroprosthesis users, biomimetic stimulation in lower-limb neuro-
prosthetics can significantly improve the functional performance and the perceived quality
of tactile sensations.

4. Next-Generation Neuroprosthetics with Biomimetic
Somatosensory Feedback

With these human trials demonstrating the significance of incorporating biomimetic
somatosensory feedback in the development of high-performance bidirectional neuro-
prostheses, the future of neuroprosthetic technology looks increasingly promising. To
further improve clinical outcomes, it is essential to not only develop advanced biomimetic
neurostimulation strategies through modeling and stimulation pulse designs but also to
focus on other critical components of the human–machine interface (Figure 2). These
include the development of skin-like tactile sensors integrated into neuroprosthetic de-
vices (e-skins) [82–85], advanced electronics for interfacing with sensory targets to deliver
biomimetic neurostimulation [86,87], and surgical techniques for optimal access to sensory
axons that transmit tactile information to the brain [88,89].
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Figure 2. Next-generation neuroprosthetics that integrate biomimetic tactile feedback shown in
steps. Flexible, electronic skin (e-skin) converts captured tactile data into biologically relevant
outputs through biomimetic circuit designs. The tactile information is then processed using encoding
strategies and neural networks to create multichannel biomimetic stimulation patterns. Subcellular-
scale stimulation electrodes provide the precision needed to target individual neurons, selectively
activating the sensory fiber populations responsible for conveying specific tactile information in
response to the tactile stimuli. Meanwhile, high-density recording electrodes allow for improved
decoding of motion intent. A surgical construct that biologically separates motor and sensory axons
within the peripheral nerve provides optimal access to mechanoreceptors, facilitating accurate and
naturalistic biomimetic tactile feedback.

4.1. Electronic Skins

In 2024, Liu et al. introduced a groundbreaking electronic skin known as three-
dimensionally architected electronic skin (3DAE-Skin) [90]. This design comprises three lay-
ers that structurally mimic the epidermis, dermis, and hypodermis, with thickness and
elastic properties comparable with those of human skin. Additionally, its sensing compo-
nents are arranged in a 3D configuration, replicating the spatial distribution of Merkel cells
and Ruffini endings found in natural skin (Figure 3A) [90]. Functionally, 3DAE-Skin enables
decoupled sensing of the normal force or shear force and the strain, closely resembling
the specific roles of human mechanoreceptors. Its resistive sensors generate continuous
signals in response to sustained stimuli, similar to the behavior of slowly adapting re-
ceptors in human skin. The researchers demonstrated that 3DAE-Skin achieves a spatial
resolution for force sensing (0.117 mm) comparable with that of the human hand. More-
over, it can simultaneously detect an object’s elastic modulus and local principal curvature
components through touch, similar to human tactile perception [90]. Advancements like
3DAE-Skin and other skin electronics developed by researchers at both Northwestern
University [91–93] and Stanford University [94–97] represent a significant step forward
in e-skin technology. These developments will accelerate the integration of e-skins with
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embedded biomimetic circuits [98] or models in commercial sensorized neuroprosthetic
limbs, ultimately accelerating the clinical translation of neuroprosthetics with naturalistic
somatosensory feedback [12,62].
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Figure 3. Current technologies that can potentially facilitate biomimetic tactile feedback. (A) E-skin.
Adapted from [90]. (B) Sharpened subcellular electrode. Adapted from [99]. (C) High-density neural
electrode. Adapted from [100]. Scale bars, 500 µm. (D) Composite Regenerative Peripheral Nerve
Interface (C-RPNI) approach to access mechanoreceptors. Adapted from [101]. All figures were
reprinted with permissions.

4.2. Subcellular-Scale Neuroelectronic Interface

Numerous implanted electrodes have been developed and used to stimulate neurons
for somatosensory feedback [24,35,37,46,102–106]. However, creating a stable and effective
long-term neurostimulation interface remains a significant challenge [107,108]. The pre-
cise electrical stimulation of individual neurons is particularly crucial for somatosensory
feedback, as mechanosensory neurons are distributed at varying depths and locations
within the skin without a consistent pattern or density [60]. Non-specific stimulation risks
activating multiple receptors near the implantation site, leading to distorted or inaccurate
tactile perceptions. To address this issue, subcellular-scale (i.e., smaller than cellular level),
high-density neuroelectronic interfaces that were tested in various animal models can
potentially be a viable solution, showing promise for future applications in neuropros-
thetics [99,100,109–113]. These interfaces, though they have not been specifically tested
for providing somatosensory feedback yet, have the potential for the precise stimulation
of specific groups of mechanoreceptors in response to particular tactile stimuli. In 2021,
Huan et al. implanted carbon fiber electrodes into neurons of the marine mollusk Aplysia
californica to evaluate intracellular stimulation in neural tissue [99]. These carbon fibers,
with an extremely small diameter of approximately 8 µm, minimized damage to the cell
membranes during insertion (Figure 3B). Their small size also facilitated the creation of
high-density electrode arrays with pitches as small as 80–100 µm, allowing for the stim-
ulation of multiple nearby neurons and therefore comprehensive modulation of neural
activity [99]. Building on this work, Richie et al. (2024) demonstrated that sharpened carbon
fiber electrodes could precisely interface with individual neurons at a subcellular level in
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various animal models [114]. In particular, carbon fibers were inserted into mouse retina
for electrical neurostimulation. In this study, single- and multiple-cell activation of retinal
ganglion cells were achieved, as evidenced by calcium response changes, using low current
amplitudes (5–15 µA) [114]. In addition to the small size of the contact area between the
electrode and neural tissue, it is crucial to achieve high-density stimulation to selectively
interface with a large number of neurons at the implantation site [105,115]. Zhao et al.
recently introduced nanoelectronic thread electrodes (NETs) that could interface with thou-
sands of neurons over several months with a density of around 1000 neural units per
cubic millimeter (Figure 3C) [100]. The high-density neural stimulation of sensory neurons,
however, remains an active area of research. Nevertheless, these above findings suggest
that subcellular-scale neuroelectronic interfaces hold significant potential to deliver precise
somatosensory feedback in neuroprosthetics. By activating mechanoreceptors based on
biomimetic strategies, these interfaces could selectively stimulate specific receptor groups
to match particular tactile activities, paving the way for more accurate and naturalistic
tactile feedback.

4.3. Regenerative Surgical Interfaces

Most previous clinical studies have utilized electrical stimulation of peripheral nerves
through methods such as TENS [63,71,116,117], extraneural [19,45,79,118,119], or intraneural
electrodes [46,64,120,121] to provide tactile feedback. Recently, there has been growing in-
terest in leveraging surgical innovations to achieve more precise access to natural sensory
signaling pathways in the PNS [12,88,89]. Researchers around the world are exploring the
direct activation of mechanoreceptors by creating novel surgical paradigms [101,122–125].
This approach improves the specificity of tactile stimulation, as conventional nerve stim-
ulation often activates a broad range of sensory fibers, as well as motor responses. This
novel concept showed promising results in preclinical rodent models, providing more tar-
geted and effective tactile stimulation [101,122,123]. In 2020, Svientek et al. introduced the
Composite Regenerative Peripheral Nerve Interface (C-RPNI), a sensorimotor interface for
individuals with limb loss [101]. This construct involves implanting a transected residual
peripheral nerve between a free muscle graft and a dermal (skin) graft harvested from the
plantar surface of the paw (Step 3 in Figures 2 and 3D) in a rodent model. The transected
nerve, which is a mixed nerve, contains both motor and sensory axons. Within this construct,
motor axons preferentially reinnervate the muscle graft, while sensory axons reinnervate
sensory end organs, such as mechanoreceptors in the dermal graft, as confirmed through
immunostaining [101]. This surgical approach effectively isolates the sensory axons from
motor axons within the peripheral nerve, creating a platform to preserve natural sensory
pathways and deliver precise sensory stimulation near the reinnervated mechanoreceptors.
Svientek et al. demonstrated that electrical stimulation of the dermal graft generated com-
pound sensory action potentials (CSNAPs) recorded proximally from the nerve [101]. This
shows that a dermal graft is potentially an ideal target for biomimetic neurostimulation to
convey somatosensory information. In a related study, Sando et al. developed the Dermal
Sensory Regenerative Peripheral Nerve Interface (DS-RPNI), which consists of a dermal graft
secured around and reinnervated by a transected sensory nerve [122,126]. Both electrical and
mechanical stimulation of the dermal graft produced proximal afferent neural responses,
providing further evidence that both the C-RPNI and DS-RPNI constructs are viable surgical
solutions for physiologically restoring sensory feedback. In 2024, Festin et al. demonstrated a
modified version of the muscle–skin complex known as the biological sensorimotor inter-
face [123]. In this construct, a mixed nerve containing both motor and sensory axons was
transferred into a denervated muscle, with a glabrous skin graft placed on top of the muscle.
Graded afferent responses were recorded corresponding to increasing levels of mechanical
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stimulation applied to the dermal graft using microfilaments. Additionally, vibration stimuli
applied to the dermal graft also elicited afferent responses [123]. These animal studies above
provided compelling evidence that surgically isolating motor and sensory functions within
a peripheral nerve may effectively restore tactile sensation. Furthermore, incorporating
mechanical stimulation through implanted motorized devices and mimicking the way natu-
ral skin processes tactile information presents a promising approach for delivering tactile
feedback in future neuroprosthetic development.

In summary, e-skins, subcellular-scale neuroelectronics, and novel surgical interfaces
have seen significant advancements in recent years. However, much of this progress has not
advanced to the clinical trial phase yet. These ongoing efforts, combined with biomimetic
encoding strategies, could significantly enhance clinical outcomes (Figure 2). The over-
arching goal is to improve each component of the tactile sensation loop for naturalistic
tactile perception in neuroprosthetics. E-skin can detect tactile stimuli similarly to natural
skin with great sensory resolution. Biomimetic encoding algorithms translate the recorded
tactile information into neural spiking patterns, replicating the biological process of sensory
signaling. The development of subcellular-scale neuroelectronics allows for more targeted,
localized stimulation to sensory neurons, and surgical innovation further optimizes the
precision to target sensory neurons. This recreated biologically relevant sensory informa-
tion is then transmitted to the CNS for sensory perception, which will also guide motor
control. By closing this sensorimotor loop, neuroprosthetics can achieve improved device
embodiment and facilitate more intuitive use (Figure 2). The integration of biomimetic
tactile sensations with other sensory inputs that are not reviewed in this paper, such as tem-
perature [127–129] and proprioception [130–132], could bring the realization of advanced
bionic limbs closer than ever. In general, these innovations are applicable to both upper-
and lower-limb neuroprosthesis users with missing limbs and those with paralyzed limbs.
However, regenerative surgical interfaces (Step 3 in Figure 2) in the PNS may not be a
practical or effective solution for individuals with paralyzed limbs, as their impairments
occur in the CNS. For such cases, interfacing with S1 directly to evoke tactile perception
remains a promising avenue.

While the current development of bionic neuroprosthetics integrating biomimetic
somatosensory feedback is promising, the adoption and evaluation of the long-term utility
of the devices should be emphasized in future studies. Without feedback and continuous
satisfaction from the users, even the most advanced bionic technology could fail. Indeed,
well-coordinated team efforts are essential, from surgeons, neural engineers, and pros-
thetists to physical/occupational therapists, to maximize clinical outcomes with continuous
support and personalized care.

5. Conclusions
The field of neuroprosthetics has made significant strides in recent years, particu-

larly in the development of biomimetic somatosensory feedback systems. Clinical trials
in humans showed the potential of these systems to improve the functionality and user
experience of neuroprosthetic limbs. By replicating natural tactile processing, biomimetic
neurostimulation approaches have demonstrated improvements in device embodiment,
task performance, and intuitiveness of control. The integration of emerging advanced
technologies, such as electronic skins, subcellular-scale neuroelectronic interfaces, and inno-
vative surgical techniques, shows promise for further advancements. These developments
could potentially lead to truly naturalistic tactile sensations and more effective closed-loop
neuroprosthetic control. However, the successful clinical translation and broader adoption
of these technologies rely on the long-term stability and effectiveness of human–machine
interfaces, which have not yet been fully validated in larger populations. In particular, the
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users’ adoption and adherence to the neuroprosthetic devices, degree of device customiza-
tion, long-term device performance, and rehabilitation need to be thoroughly evaluated
in future studies. Despite these challenges, the continued development of sensorimotor
neuroprosthetic limbs through biomimicry offers a promising future, with the potential to
significantly improve the quality of life for individuals with limb loss or impairment.
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121. Čvančara, P.; Valle, G.; Müller, M.; Bartels, I.; Guiho, T.; Hiairrassary, A.; Petrini, F.; Raspopovic, S.; Strauss, I.; Granata, G.; et al.
Bringing sensation to prosthetic hands—Chronic assessment of implanted thin-film electrodes in humans. Npj Flex. Electron. 2023,
7, 51. [CrossRef]

122. Sando, I.C.; Adidharma, W.; Nedic, A.; Ursu, D.C.; Mays, E.A.; Hu, Y.; Kubiak, C.A.; Sugg, K.B.; Kung, T.A.; Cederna, P.S.; et al.
Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in
the Rat. Plast. Reconstr. Surg. 2023, 151, 804e–813e. [CrossRef]

123. Festin, C.; Ortmayr, J.; Maierhofer, U.; Tereshenko, V.; Blumer, R.; Schmoll, M.; Carrero-Rojas, G.; Luft, M.; Laengle, G.; Farina, D.;
et al. Creation of a biological sensorimotor interface for bionic reconstruction. Nat. Commun. 2024, 15, 5337. [CrossRef]

124. Srinivasan, S.; Herr, M.H. A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng. 2022, 6, 731–740.
[CrossRef] [PubMed]

125. Kuiken, T.A.; Marasco, P.D.; Lock, B.A.; Harden, R.N.; Dewald, J.P.A. Redirection of cutaneous sensation from the hand to the
chest skin of human amputees with targeted reinnervation. Proc. Natl. Acad. Sci. 2007, 104, 20061–20066. [CrossRef] [PubMed]

126. Sando, I.C.; Gerling, G.J.; Ursu, D.C.; Sugg, K.B.; Hu, Y.; Haase, S.C.; Langhals, N.B.; Cederna, P.S.; Urbanchek, M.G. Dermal-Based
Peripheral Nerve Interface for Transduction of Sensory Feedback. Plast. Reconstr. Surg. 2015, 136, 19–20. [CrossRef]

127. Ortiz-Catalan, M. Thermally sentient bionic limbs. Nat. Biomed. Eng. 2024, 8, 938–940. [CrossRef]
128. Osborn, L.E.; Venkatasubramanian, R.; Himmtann, M.; Moran, C.W.; Pierce, J.M.; Gajendiran, P.; Wormley, J.M.; Ung, R.J.;

Nguyen, H.H.; Crego, A.C.G.; et al. Evoking natural thermal perceptions using a thin-film thermoelectric device with high
cooling power density and speed. Nat. Biomed. Eng. 2024, 8, 1004–1017. [CrossRef]

129. Iberite, F.; Muheim, J.; Akouissi, O.; Gallo, S.; Rognini, G.; Morosato, F.; Clerc, A.; Kalff, M.; Gruppioni, E.; Micera, S.; et al.
Restoration of natural thermal sensation in upper-limb amputees. Science 2023, 380, 731–735. [CrossRef]

130. Clites, T.R.; Carty, M.J.; Ullauri, J.B.; Carney, M.E.; Mooney, L.M.; Duval, J.-F.; Srinivasan, S.S.; Herr, H.M. Proprioception from a
neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018, 10, eaap8373. [CrossRef]
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