The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback
<p>Human studies on biomimetic tactile feedback in upper-limb (<b>A</b>–<b>D</b>) and lower-limb (<b>E</b>) neuroprosthetics. (<b>A</b>) Biologically inspired prosthesis system. Neuromorphic (i.e., mimicking biological structure and function) tactile sensors combined with biomimetic (i.e., mimicking biological processes and signals) neuron models provided specific responses that corresponded to different objects. Adapted from [<a href="#B63-biomimetics-10-00130" class="html-bibr">63</a>]. (<b>B</b>) Biomimetic encoding strategies outperformed non-biomimetic sensory stimulation during object size and compliance discrimination tasks. * <span class="html-italic">p</span> < 0.05. Adapted from [<a href="#B64-biomimetics-10-00130" class="html-bibr">64</a>]. (<b>C</b>) Implemented and compared sensory encoding strategies, including amplitude neuromodulation (ANM), frequency neuromodulation (FNM), and hybrid neuromodulation (HNM). Adapted from [<a href="#B65-biomimetics-10-00130" class="html-bibr">65</a>]. (<b>D</b>) Biomimetic ICMS resulted in improved sensitivity of the electrode with reduced just-noticeable differences (JNDs) and higher resolution force feedback compared with non-biomimetic stimulation. Adapted from [<a href="#B47-biomimetics-10-00130" class="html-bibr">47</a>]. (<b>E</b>) Biomimetic stimulation provided more natural tactile perception (rated from 0: totally unnatural to 5: totally natural) in both participants with lower-limb amputations. Adapted from [<a href="#B68-biomimetics-10-00130" class="html-bibr">68</a>]. All figures were reprinted with permissions.</p> "> Figure 2
<p>Next-generation neuroprosthetics that integrate biomimetic tactile feedback shown in steps. Flexible, electronic skin (e-skin) converts captured tactile data into biologically relevant outputs through biomimetic circuit designs. The tactile information is then processed using encoding strategies and neural networks to create multichannel biomimetic stimulation patterns. Subcellular-scale stimulation electrodes provide the precision needed to target individual neurons, selectively activating the sensory fiber populations responsible for conveying specific tactile information in response to the tactile stimuli. Meanwhile, high-density recording electrodes allow for improved decoding of motion intent. A surgical construct that biologically separates motor and sensory axons within the peripheral nerve provides optimal access to mechanoreceptors, facilitating accurate and naturalistic biomimetic tactile feedback.</p> "> Figure 3
<p>Current technologies that can potentially facilitate biomimetic tactile feedback. (<b>A</b>) E-skin. Adapted from [<a href="#B90-biomimetics-10-00130" class="html-bibr">90</a>]. (<b>B</b>) Sharpened subcellular electrode. Adapted from [<a href="#B99-biomimetics-10-00130" class="html-bibr">99</a>]. Scale bars, 500 μm. (<b>C</b>) High-density neural electrode. Adapted from [<a href="#B100-biomimetics-10-00130" class="html-bibr">100</a>]. (<b>D</b>) Composite Regenerative Peripheral Nerve Interface (C-RPNI) approach to access mechanoreceptors. Adapted from [<a href="#B101-biomimetics-10-00130" class="html-bibr">101</a>]. All figures were reprinted with permissions.</p> ">
Abstract
:1. Introduction
2. Biomimetic Somatosensory Feedback for Upper Limbs
3. Biomimetic Somatosensory Feedback for Lower Limbs
4. Next-Generation Neuroprosthetics with Biomimetic Somatosensory Feedback
4.1. Electronic Skins
4.2. Subcellular-Scale Neuroelectronic Interface
4.3. Regenerative Surgical Interfaces
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zawadka, M.; Gaweł, M.; Tomczyk-Warunek, A.; Turżańska, K.; Blicharski, T. Relationship between Upper Limb Functional Assessment and Clinical Tests of Shoulder Mobility and Posture in Individuals Participating in Recreational Strength Training. J. Clin. Med. 2024, 13, 1028. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, Ł.; Karpiński, R.; Dobrowolska, A. Biomechanics of the upper limb. J. Technol. Exploit. Mech. Eng. 2016, 2, 53–59. [Google Scholar] [CrossRef]
- Murray, C.D.; Havlin, H.; Molyneaux, V. Considering the psychological experience of amputation and rehabilitation for military veterans: A systematic review and metasynthesis of qualitative research. Disabil. Rehabil. 2024, 46, 1053–1072. [Google Scholar] [CrossRef]
- McDonald, C.L.; Westcott-McCoy, S.; Weaver, M.R.; Haagsma, J.; Kartin, D. Global prevalence of traumatic non-fatal limb amputation. Prosthet. Orthot. Int. 2021, 45, 105–114. [Google Scholar] [CrossRef]
- Winslow, B.D.; Ruble, M.; Huber, Z. Mobile, Game-Based Training for Myoelectric Prosthesis Control. Front. Bioeng. Biotechnol. 2018, 6, 94. [Google Scholar] [CrossRef]
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef]
- DeVivo, M.J. Epidemiology of traumatic spinal cord injury: Trends and future implications. Spinal Cord 2012, 50, 365–372. [Google Scholar] [CrossRef]
- Barbiellini Amidei, C.; Salmaso, L.; Bellio, S.; Saia, M. Epidemiology of traumatic spinal cord injury: A large population-based study. Spinal Cord 2022, 60, 812–819. [Google Scholar] [CrossRef]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature Review on Needs of Upper Limb Prosthesis Users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef]
- Flor, H.; Nikolajsen, L.; Staehelin Jensen, T. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006, 7, 873–881. [Google Scholar] [CrossRef]
- Bensmaia, S.J.; Tyler, D.J.; Micera, S. Restoration of sensory information via bionic hands. Nat. Biomed. Eng. 2023, 7, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Vaskov, A.K.; Adidharma, W.; Cederna, P.S.; Kemp, S.W.P. Merging Humans and Neuroprosthetics through Regenerative Peripheral Nerve Interfaces. Semin. Plast. Surg. 2024, 38, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.N.; Tian, Y.; Budde, R.; Irazoqui, P.P.; Tuffaha, S.; Thakor, N.V. Neuromuscular implants: Interfacing with skeletal muscle for improved clinical translation of prosthetic limbs. Muscle Nerve 2024, 69, 134–147. [Google Scholar] [CrossRef]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.J.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.-P.; Huang, H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2023, 7, 473–485. [Google Scholar] [CrossRef]
- Yildiz, K.A.; Shin, A.Y.; Kaufman, K.R. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: A review. J. Neuroeng. Rehabil. 2020, 17, 43. [Google Scholar] [CrossRef]
- Pandarinath, C.; Bensmaia, S.J. The science and engineering behind sensitized brain-controlled bionic hands. Physiol. Rev. 2022, 102, 551–604. [Google Scholar] [CrossRef]
- Vu, P.P.; Vaskov, A.K.; Irwin, Z.T.; Henning, P.T.; Lueders, D.R.; Laidlaw, A.T.; Davis, A.J.; Nu, C.S.; Gates, D.H.; Gillespie, R.B.; et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci. Transl. Med. 2020, 12, eaay2857. [Google Scholar] [CrossRef]
- Vu, P.P.; Vaskov, A.K.; Lee, C.; Jillala, R.R.; Wallace, D.M.; Davis, A.J.; Kung, T.A.; Kemp, S.W.P.; Gates, D.H.; Chestek, C.A.; et al. Long-term upper-extremity prosthetic control using regenerative peripheral nerve interfaces and implanted EMG electrodes. J. Neural. Eng. 2023, 20, 026039. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.; Brånemark, R. Self-Contained Neuromusculoskeletal Arm Prostheses. N. Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Salminger, S.; Sturma, A.; Hofer, C.; Evangelista, M.; Perrin, M.; Bergmeister, K.D.; Roche, A.D.; Hasenoehrl, T.; Dietl, H.; Farina, D.; et al. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Sci. Robot. 2019, 4, eaaw6306. [Google Scholar] [CrossRef]
- Song, H.; Hsieh, T.-H.; Yeon, S.H.; Shu, T.; Nawrot, M.; Landis, C.F.; Friedman, G.N.; Israel, E.A.; Gutierrez-Arango, S.; Carty, M.J.; et al. Continuous neural control of a bionic limb restores biomimetic gait after amputation. Nature Medicine 2024, 30, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Flesher, S.N.; Downey, J.E.; Weiss, J.M.; Hughes, C.L.; Herrera, A.J.; Tyler-Kabara, E.C.; Boninger, M.L.; Collinger, J.L.; Gaunt, R.A. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021, 372, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wang, W.; Tyler-Kabara, E.C.; Weber, D.J.; McMorland, A.J.; Velliste, M.; Boninger, M.L.; Schwartz, A.B. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013, 381, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Raspopovic, S.; Valle, G.; Petrini, F.M. Sensory feedback for limb prostheses in amputees. Nature Materials 2021, 20, 925–939. [Google Scholar] [CrossRef]
- McFarland, L.V.; Hubbard Winkler, S.L.; Heinemann, A.W.; Jones, M.; Esquenazi, A. Unilateral upper-limb loss: Satisfaction and prosthetic-device use in veterans and servicemembers from Vietnam and OIF/OEF conflicts. J. Rehabil. Res. Dev. 2010, 47, 299–316. [Google Scholar] [CrossRef]
- Smail, L.C.; Neal, C.; Wilkins, C.; Packham, T.L. Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review. Disabil. Rehabil. Assist. Technol. 2021, 16, 821–830. [Google Scholar] [CrossRef]
- Johansson, R.S.; Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345–359. [Google Scholar] [CrossRef]
- Tabot, G.A.; Kim, S.S.; Winberry, J.E.; Bensmaia, S.J. Restoring tactile and proprioceptive sensation through a brain interface. Neurobiol. Dis. 2015, 83, 191–198. [Google Scholar] [CrossRef]
- Kirsch, L.P.; Krahé, C.; Blom, N.; Crucianelli, L.; Moro, V.; Jenkinson, P.M.; Fotopoulou, A. Reading the mind in the touch: Neurophysiological specificity in the communication of emotions by touch. Neuropsychologia 2018, 116, 136–149. [Google Scholar] [CrossRef]
- von Mohr, M.; Kirsch, L.P.; Fotopoulou, A. The soothing function of touch: Affective touch reduces feelings of social exclusion. Sci. Rep. 2017, 7, 13516. [Google Scholar] [CrossRef]
- Heatley Tejada, A.; Dunbar, R.I.M.; Montero, M. Physical Contact and Loneliness: Being Touched Reduces Perceptions of Loneliness. Adapt. Hum. Behav. Physiol. 2020, 6, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Wijk, U.; Carlsson, I. Forearm amputees’ views of prosthesis use and sensory feedback. J. Hand Ther. 2015, 28, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Flesher, S.N.; Collinger, J.L.; Foldes, S.T.; Weiss, J.M.; Downey, J.E.; Tyler-Kabara, E.C.; Bensmaia, S.J.; Schwartz, A.B.; Boninger, M.L.; Gaunt, R.A. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 2016, 8, 361ra141. [Google Scholar] [CrossRef] [PubMed]
- Zollo, L.; Di Pino, G.; Ciancio, A.L.; Ranieri, F.; Cordella, F.; Gentile, C.; Noce, E.; Romeo, R.A.; Bellingegni, A.D.; Vadalà, G.; et al. Restoring Tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 2019, 4, eaau9924. [Google Scholar] [CrossRef]
- Armenta Salas, M.; Bashford, L.; Kellis, S.; Jafari, M.; Jo, H.; Kramer, D.; Shanfield, K.; Pejsa, K.; Lee, B.; Liu, C.Y.; et al. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. eLife 2018, 7, e32904. [Google Scholar] [CrossRef]
- Schiefer, M.A.; Graczyk, E.L.; Sidik, S.M.; Tan, D.W.; Tyler, D.J. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS ONE 2018, 13, e0207659. [Google Scholar] [CrossRef]
- Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, J.; Tyler, D.J. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 2014, 6, 257ra138. [Google Scholar] [CrossRef]
- Schmitt, M.S.; Wright, J.D.; Triolo, R.J.; Charkhkar, H.; Graczyk, E.L. The experience of sensorimotor integration of a lower limb sensory neuroprosthesis: A qualitative case study. Front. Hum. Neurosci. 2022, 16, 1074033. [Google Scholar] [CrossRef]
- Petrini, F.M.; Valle, G.; Bumbasirevic, M.; Barberi, F.; Bortolotti, D.; Cvancara, P.; Hiairrassary, A.; Mijovic, P.; Sverrisson, A.; Pedrocchi, A.; et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 2019, 11, eaav8939. [Google Scholar] [CrossRef]
- Fifer, M.S.; McMullen, D.P.; Osborn, L.E.; Thomas, T.M.; Christie, B.; Nickl, R.W.; Candrea, D.N.; Pohlmeyer, E.A.; Thompson, M.C.; Anaya, M.A.; et al. Intracortical Somatosensory Stimulation to Elicit Fingertip Sensations in an Individual With Spinal Cord Injury. Neurology 2022, 98, e679–e687. [Google Scholar] [CrossRef]
- Graczyk, E.L.; Resnik, L.; Schiefer, M.A.; Schmitt, M.S.; Tyler, D.J. Home Use of a Neural-connected Sensory Prosthesis Provides the Functional and Psychosocial Experience of Having a Hand Again. Sci. Rep. 2018, 8, 9866. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Romano, D.; Spaccasassi, C.; Mioli, A.; D’Alonzo, M.; Sacchetti, R.; Guglielmelli, E.; Zollo, L.; Di Lazzaro, V.; Denaro, V.; et al. Sensory- and Action-Oriented Embodiment of Neurally-Interfaced Robotic Hand Prostheses. Front. Neurosci. 2020, 14, 389. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Rakhshan, M.; Paredes-Acuña, N.; Cheng, G.; Thakor, N.V. Sensory integration for neuroprostheses: From functional benefits to neural correlates. Med. Biol. Eng. Comput. 2024, 62, 2939–2960. [Google Scholar] [CrossRef]
- Graczyk, E.L.; Christie, B.P.; He, Q.; Tyler, D.J.; Bensmaia, S.J. Frequency Shapes the Quality of Tactile Percepts Evoked through Electrical Stimulation of the Nerves. J. Neurosci. 2022, 42, 2052. [Google Scholar] [CrossRef]
- Schiefer, M.; Tan, D.; Sidek, S.M.; Tyler, D.J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural. Eng. 2016, 13, 016001. [Google Scholar] [CrossRef]
- Raspopovic, S.; Capogrosso, M.; Petrini, F.M.; Bonizzato, M.; Rigosa, J.; Di Pino, G.; Carpaneto, J.; Controzzi, M.; Boretius, T.; Fernandez, E.; et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 2014, 6, ra219–ra222. [Google Scholar] [CrossRef]
- Greenspon, C.M.; Valle, G.; Shelchkova, N.D.; Hobbs, T.G.; Verbaarschot, C.; Callier, T.; Berger-Wolf, E.I.; Okorokova, E.V.; Hutchison, B.C.; Dogruoz, E.; et al. Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex. Nat. Biomed. Eng. 2024. [Google Scholar] [CrossRef]
- Tian, Y.; Slepyan, A.; Iskarous, M.M.; Sankar, S.; Hunt, C.L.; Thakor, N.V. Real-Time, Dynamic Sensory Feedback Using Neuromorphic Tactile Signals and Transcutaneous Electrical Nerve Stimulation. In Proceedings of the 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), Taipei, Taiwan, 13–15 October 2022; pp. 399–403. [Google Scholar]
- D’Anna, E.; Valle, G.; Mazzoni, A.; Strauss, I.; Iberite, F.; Patton, J.; Petrini, F.M.; Raspopovic, S.; Granata, G.; Di Iorio, R.; et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 2019, 4, eaau8892. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Gozzi, N.; Katic, N.; Aiello, G.; Razzoli, M.; Valle, G.; Raspopovic, S. Multiparametric non-linear TENS modulation to integrate intuitive sensory feedback. J. Neural Eng. 2023, 20, 036026. [Google Scholar] [CrossRef]
- Hughes, C.L.; Flesher, S.N.; Weiss, J.M.; Boninger, M.; Collinger, J.L.; Gaunt, R.A. Perception of microstimulation frequency in human somatosensory cortex. eLife 2021, 10, e65128. [Google Scholar] [CrossRef]
- Valle, G.; Alamri, A.H.; Downey, J.E.; Lienkämper, R.; Jordan, P.M.; Sobinov, A.R.; Endsley, L.J.; Prasad, D.; Boninger, M.L.; Collinger, J.L.; et al. Tactile edges and motion via patterned microstimulation of the human somatosensory cortex. Science 2025, 387, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Saal, H.P.; Bensmaia, S.J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 2015, 79, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Valle, G. Peripheral neurostimulation for encoding artificial somatosensations. Eur. J. Neurosci. 2022, 56, 5888–5901. [Google Scholar] [CrossRef]
- Abraira, V.E.; Ginty, D.D. The sensory neurons of touch. Neuron 2013, 79, 618–639. [Google Scholar] [CrossRef]
- Vickery, R.M.; Ng, K.K.W.; Potas, J.R.; Shivdasani, M.N.; McIntyre, S.; Nagi, S.S.; Birznieks, I. Tapping Into the Language of Touch: Using Non-invasive Stimulation to Specify Tactile Afferent Firing Patterns. Front. Neurosci. 2020, 14, 500. [Google Scholar] [CrossRef]
- Saal, H.P.; Delhaye, B.P.; Rayhaun, B.C.; Bensmaia, S.J. Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl. Acad. Sci. 2017, 114, E5693–E5702. [Google Scholar] [CrossRef]
- Graczyk, E.; Hutchison, B.; Valle, G.; Bjanes, D.; Gates, D.; Raspopovic, S.; Gaunt, R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J. Neurosci. 2024, 44, e1237242024. [Google Scholar] [CrossRef]
- Delmas, P.; Hao, J.; Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 2011, 12, 139–153. [Google Scholar] [CrossRef]
- Handler, A.; Ginty, D.D. The mechanosensory neurons of touch and their mechanisms of activation. Nat. Rev. Neurosci. 2021, 22, 521–537. [Google Scholar] [CrossRef]
- Deflorio, D.; Di Luca, M.; Wing, A.M. Skin and Mechanoreceptor Contribution to Tactile Input for Perception: A Review of Simulation Models. Front. Hum. Neurosci. 2022, 16, 862344. [Google Scholar] [CrossRef]
- Donati, E.; Valle, G. Neuromorphic hardware for somatosensory neuroprostheses. Nat. Commun. 2024, 15, 556. [Google Scholar] [CrossRef] [PubMed]
- Osborn, L.E.; Dragomir, A.; Betthauser, J.L.; Hunt, C.L.; Nguyen, H.H.; Kaliki, R.R.; Thakor, N.V. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 2018, 3, eaat3818. [Google Scholar] [CrossRef] [PubMed]
- George, J.A.; Kluger, D.T.; Davis, T.S.; Wendelken, S.M.; Okorokova, E.V.; He, Q.; Duncan, C.C.; Hutchinson, D.T.; Thumser, Z.C.; Beckler, D.T.; et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 2019, 4, eaax2352. [Google Scholar] [CrossRef]
- Valle, G.; Mazzoni, A.; Iberite, F.; D’Anna, E.; Strauss, I.; Granata, G.; Controzzi, M.; Clemente, F.; Rognini, G.; Cipriani, C.; et al. Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis. Neuron 2018, 100, 37–45.e37. [Google Scholar] [CrossRef]
- Shelchkova, N.D.; Downey, J.E.; Greenspon, C.M.; Okorokova, E.V.; Sobinov, A.R.; Verbaarschot, C.; He, Q.; Sponheim, C.; Tortolani, A.F.; Moore, D.D.; et al. Microstimulation of human somatosensory cortex evokes task-dependent, spatially patterned responses in motor cortex. Nat. Commun. 2023, 14, 7270. [Google Scholar] [CrossRef]
- Hobbs, T.G.; Greenspon, C.M.; Verbaarschot, C.; Valle, G.; Boninger, M.; Bensmaia, S.J.; Gaunt, R.A. Biomimetic stimulation patterns drive natural artificial touch percepts using intracortical microstimulation in humans. medRxiv 2024. [Google Scholar] [CrossRef]
- Valle, G.; Katic Secerovic, N.; Eggemann, D.; Gorskii, O.; Pavlova, N.; Petrini, F.M.; Cvancara, P.; Stieglitz, T.; Musienko, P.; Bumbasirevic, M.; et al. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat. Commun. 2024, 15, 1151. [Google Scholar] [CrossRef]
- Dong, Y.; Mihalas, S.; Kim, S.S.; Yoshioka, T.; Bensmaia, S.; Niebur, E. A simple model of mechanotransduction in primate glabrous skin. J. Neurophysiol. 2013, 109, 1350–1359. [Google Scholar] [CrossRef]
- Gerling, G.J.; Rivest, I.I.; Lesniak, D.R.; Scanlon, J.R.; Wan, L. Validating a population model of tactile mechanotransduction of slowly adapting type I afferents at levels of skin mechanics, single-unit response and psychophysics. IEEE Trans. Haptics 2014, 7, 216–228. [Google Scholar] [CrossRef]
- Osborn, L.; Fifer, M.; Moran, C.; Betthauser, J.; Armiger, R.; Kaliki, R.; Thakor, N. Targeted transcutaneous electrical nerve stimulation for phantom limb sensory feedback. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Torino, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar]
- Izhikevich, E.M. Simple model of spiking neurons. IEEE Transactions on Neural Networks 2003, 14, 1569–1572. [Google Scholar] [CrossRef]
- Sankar, S.; Balamurugan, D.; Brown, A.; Ding, K.; Xu, X.; Low, J.H.; Yeow, C.H.; Thakor, N. Texture Discrimination with a Soft Biomimetic Finger Using a Flexible Neuromorphic Tactile Sensor Array That Provides Sensory Feedback. Soft Robotics 2020, 8, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Okorokova, E.V.; He, Q.; Bensmaia, S.J. Biomimetic encoding model for restoring touch in bionic hands through a nerve interface. J Neural Eng 2018, 15, 066033. [Google Scholar] [CrossRef] [PubMed]
- Petrini, F.M.; Bumbasirevic, M.; Valle, G.; Ilic, V.; Mijović, P.; Čvančara, P.; Barberi, F.; Katic, N.; Bortolotti, D.; Andreu, D.; et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 2019, 25, 1356–1363. [Google Scholar] [CrossRef]
- Valle, G.; Saliji, A.; Fogle, E.; Cimolato, A.; Petrini, F.M.; Raspopovic, S. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci. Adv. 2021, 7, eabd8354. [Google Scholar] [CrossRef]
- Basla, C.; Chee, L.; Valle, G.; Raspopovic, S. A non-invasive wearable sensory leg neuroprosthesis: Mechanical, electrical and functional validation. J. Neural Eng. 2022, 19, 016008. [Google Scholar] [CrossRef]
- Chee, L.; Valle, G.; Preatoni, G.; Basla, C.; Marazzi, M.; Raspopovic, S. Cognitive benefits of using non-invasive compared to implantable neural feedback. Sci. Rep. 2022, 12, 16696. [Google Scholar] [CrossRef]
- Charkhkar, H.; Christie, B.P.; Triolo, R.J. Sensory neuroprosthesis improves postural stability during Sensory Organization Test in lower-limb amputees. Sci. Rep. 2020, 10, 6984. [Google Scholar] [CrossRef]
- Christie, B.P.; Charkhkar, H.; Shell, C.E.; Burant, C.J.; Tyler, D.J.; Triolo, R.J. Ambulatory searching task reveals importance of somatosensation for lower-limb amputees. Sci. Rep. 2020, 10, 10216. [Google Scholar] [CrossRef]
- Katic, N.; Siqueira, R.K.; Cleland, L.; Strzalkowski, N.; Bent, L.; Raspopovic, S.; Saal, H. Modeling foot sole cutaneous afferents: FootSim. iScience 2023, 26, 105874. [Google Scholar] [CrossRef]
- Liu, X. The more and less of electronic-skin sensors. Science 2020, 370, 910–911. [Google Scholar] [CrossRef]
- Sekitani, T. The disappearing boundary between organism and machine. Science 2023, 380, 690–691. [Google Scholar] [CrossRef] [PubMed]
- Iskarous, M.M.; Thakor, N.V. E-Skins: Biomimetic Sensing and Encoding for Upper Limb Prostheses. Proc. IEEE 2019, 107, 2052–2064. [Google Scholar] [CrossRef]
- Lee, W.W.; Tan, Y.J.; Yao, H.; Li, S.; See, H.H.; Hon, M.; Ng, K.A.; Xiong, B.; Ho, J.S.; Tee, B.C.K. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 2019, 4, eaax2198. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, E.; Zheng, X.S.; Cui, X.T. Flexible and Soft Materials and Devices for Neural Interface. In Handbook of Neuroengineering; Thakor, N.V., Ed.; Springer Nature: Singapore, 2023; pp. 79–139. [Google Scholar]
- Russell, C.; Roche, A.D.; Chakrabarty, S. Peripheral nerve bionic interface: A review of electrodes. Int. J. Intell. Robot. Appl. 2019, 3, 11–18. [Google Scholar] [CrossRef]
- Adidharma, W.; Khouri, A.N.; Lee, J.C.; Vanderboll, K.; Kung, T.A.; Cederna, P.S.; Kemp, S.W.P. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury. Muscle Nerve 2022, 66, 384–396. [Google Scholar] [CrossRef]
- Shu, T.; Herrera-Arcos, G.; Taylor, C.R.; Herr, H.M. Mechanoneural interfaces for bionic integration. Nat. Rev. Bioeng. 2024, 2, 374–391. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, X.; Bo, R.; Yang, Y.; Cheng, X.; Pang, W.; Liu, Q.; Wang, Y.; Wang, S.; Xu, S.; et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 2024, 384, 987–994. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D.; et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.; Damadoran, A.R.; Xia, J.; Martin, L.W.; et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496. [Google Scholar] [CrossRef]
- Tee, B.C.K.; Chortos, A.; Berndt, A.; Nguyen, A.K.; Tom, A.; McGuire, A.; Lin, Z.C.; Tien, K.; Bae, W.-G.; Wang, H.; et al. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Y.; Zhong, D.; Zhang, Z.; Choudhury, S.; Lai, J.-C.; Gong, H.; Niu, S.; Yan, X.; Zheng, Y.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Ye, S.; Jeong, C.; Jeong, J.; Ye, Y.-s.; Jeong, J.-Y.; Kim, Y.-J.; Lim, S.; Kim, T.H.; Kim, K.Y.; et al. Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function. Nat. Commun. 2024, 15, 10. [Google Scholar] [CrossRef]
- Huan, Y.; Gill, J.P.; Fritzinger, J.B.; Patel, P.R.; Richie, J.M.; Della Valle, E.; Weiland, J.D.; Chestek, C.A.; Chiel, H.J. Carbon fiber electrodes for intracellular recording and stimulation. J. Neural Eng. 2021, 18, 066033. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhu, H.; Li, X.; Sun, L.; He, F.; Chung, J.E.; Liu, D.F.; Frank, L.; Luan, L.; Xie, C. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. 2023, 7, 520–532. [Google Scholar] [CrossRef]
- Svientek, S.R.; Ursu, D.C.; Cederna, P.S.; Kemp, S.W.P. Fabrication of the Composite Regenerative Peripheral Nerve Interface (C-RPNI) in the Adult Rat. J. Vis. Exp. 2020. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Horch, K.W. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 468–472. [Google Scholar] [CrossRef]
- Davis, T.S.; Wark, H.A.C.; Hutchinson, D.T.; Warren, D.J.; O’Neill, K.; Scheinblum, T.; Clark, G.A.; Normann, R.A.; Greger, B. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng. 2016, 13, 036001. [Google Scholar] [CrossRef]
- Wendelken, S.; Page, D.M.; Davis, T.; Wark, H.A.C.; Kluger, D.T.; Duncan, C.; Warren, D.J.; Hutchinson, D.T.; Clark, G.A. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J. NeuroEng. Rehabil. 2017, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Charkhkar, H.; Shell, C.E.; Marasco, P.D.; Pinault, G.J.; Tyler, D.J.; Triolo, R.J. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J. Neural Eng. 2018, 15, 056002. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 2014, 6, re256–re257. [Google Scholar] [CrossRef]
- Fisher, L.E.; Gaunt, R.A.; Huang, H. Sensory restoration for improved motor control of prostheses. Curr. Opin. Biomed. Eng. 2023, 28, 100498. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zeng, P.; Ji, L.; Zhou, Y.; Zhou, L.; Tao, Y. Electrical nerve stimulation for sensory-neural pathway reconstruction in upper-limb amputees. Front. Neurosci. 2023, 17, 1114962. [Google Scholar] [CrossRef]
- Patel, P.R.; Zhang, H.; Robbins, M.T.; Nofar, J.B.; Marshall, S.P.; Kobylarek, M.J.; Kozai, T.D.Y.; Kotov, N.A.; Chestek, C.A. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 2016, 13, 066002. [Google Scholar] [CrossRef]
- Patel, P.R.; Na, K.; Zhang, H.; Kozai, T.D.Y.; Kotov, N.A.; Yoon, E.; Chestek, C.A. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 2015, 12, 046009. [Google Scholar] [CrossRef]
- Patel, P.R.; Popov, P.; Caldwell, C.M.; Welle, E.J.; Egert, D.; Pettibone, J.R.; Roossien, D.H.; Becker, J.B.; Berke, J.D.; Chestek, C.A.; et al. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. J. Neural Eng. 2020, 17, 056029. [Google Scholar] [CrossRef]
- Welle, E.J.; Patel, P.R.; Woods, J.E.; Petrossians, A.; della Valle, E.; Vega-Medina, A.; Richie, J.M.; Cai, D.; Weiland, J.D.; Chestek, C.A. Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield. J. Neural Eng. 2020, 17, 026037. [Google Scholar] [CrossRef]
- Welle, E.J.; Woods, J.E.; Jiman, A.A.; Richie, J.M.; Bottorff, E.C.; Ouyang, Z.; Seymour, J.P.; Patel, P.R.; Bruns, T.M.; Chestek, C.A. Sharpened and Mechanically Durable Carbon Fiber Electrode Arrays for Neural Recording. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 993–1003. [Google Scholar] [CrossRef]
- Richie, J.; Letner, J.G.; Mclane-Svoboda, A.; Huan, Y.; Ghaffari, D.H.; Valle, E.D.; Patel, P.R.; Chiel, H.J.; Pelled, G.; Weiland, J.D.; et al. Fabrication and Validation of Sub-Cellular Carbon Fiber Electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Vargas, L.; Fleming, A.; Hu, X.; Zhu, Y.; Huang, H.H. Evoking haptic sensations in the foot through high-density transcutaneous electrical nerve stimulations. J. Neural. Eng. 2020, 17, 036020. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, E.; Petrini, F.M.; Artoni, F.; Popovic, I.; Simanić, I.; Raspopovic, S.; Micera, S. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 2017, 7, 10930. [Google Scholar] [CrossRef]
- Soghoyan, G.; Biktimirov, A.; Matvienko, Y.; Chekh, I.; Sintsov, M.; Lebedev, M.A. Peripheral nerve stimulation enables somatosensory feedback while suppressing phantom limb pain in transradial amputees. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2023, 16, 756–758. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Zbinden, J.; Millenaar, J.; D’Accolti, D.; Controzzi, M.; Clemente, F.; Cappello, L.; Earley, E.J.; Mastinu, E.; Kolankowska, J.; et al. A highly integrated bionic hand with neural control and feedback for use in daily life. Sci. Robot. 2023, 8, eadf7360. [Google Scholar] [CrossRef]
- Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, D.J. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J. Neural Eng. 2015, 12, 026002. [Google Scholar] [CrossRef]
- Petrini, F.M.; Valle, G.; Strauss, I.; Granata, G.; Di Iorio, R.; D’Anna, E.; Čvančara, P.; Mueller, M.; Carpaneto, J.; Clemente, F.; et al. Six-Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Ann. Neurol. 2019, 85, 137–154. [Google Scholar] [CrossRef]
- Čvančara, P.; Valle, G.; Müller, M.; Bartels, I.; Guiho, T.; Hiairrassary, A.; Petrini, F.; Raspopovic, S.; Strauss, I.; Granata, G.; et al. Bringing sensation to prosthetic hands—Chronic assessment of implanted thin-film electrodes in humans. Npj Flex. Electron. 2023, 7, 51. [Google Scholar] [CrossRef]
- Sando, I.C.; Adidharma, W.; Nedic, A.; Ursu, D.C.; Mays, E.A.; Hu, Y.; Kubiak, C.A.; Sugg, K.B.; Kung, T.A.; Cederna, P.S.; et al. Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in the Rat. Plast. Reconstr. Surg. 2023, 151, 804e–813e. [Google Scholar] [CrossRef]
- Festin, C.; Ortmayr, J.; Maierhofer, U.; Tereshenko, V.; Blumer, R.; Schmoll, M.; Carrero-Rojas, G.; Luft, M.; Laengle, G.; Farina, D.; et al. Creation of a biological sensorimotor interface for bionic reconstruction. Nat. Commun. 2024, 15, 5337. [Google Scholar] [CrossRef]
- Srinivasan, S.; Herr, M.H. A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng. 2022, 6, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, T.A.; Marasco, P.D.; Lock, B.A.; Harden, R.N.; Dewald, J.P.A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl. Acad. Sci. 2007, 104, 20061–20066. [Google Scholar] [CrossRef] [PubMed]
- Sando, I.C.; Gerling, G.J.; Ursu, D.C.; Sugg, K.B.; Hu, Y.; Haase, S.C.; Langhals, N.B.; Cederna, P.S.; Urbanchek, M.G. Dermal-Based Peripheral Nerve Interface for Transduction of Sensory Feedback. Plast. Reconstr. Surg. 2015, 136, 19–20. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M. Thermally sentient bionic limbs. Nat. Biomed. Eng. 2024, 8, 938–940. [Google Scholar] [CrossRef]
- Osborn, L.E.; Venkatasubramanian, R.; Himmtann, M.; Moran, C.W.; Pierce, J.M.; Gajendiran, P.; Wormley, J.M.; Ung, R.J.; Nguyen, H.H.; Crego, A.C.G.; et al. Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed. Nat. Biomed. Eng. 2024, 8, 1004–1017. [Google Scholar] [CrossRef]
- Iberite, F.; Muheim, J.; Akouissi, O.; Gallo, S.; Rognini, G.; Morosato, F.; Clerc, A.; Kalff, M.; Gruppioni, E.; Micera, S.; et al. Restoration of natural thermal sensation in upper-limb amputees. Science 2023, 380, 731–735. [Google Scholar] [CrossRef]
- Clites, T.R.; Carty, M.J.; Ullauri, J.B.; Carney, M.E.; Mooney, L.M.; Duval, J.-F.; Srinivasan, S.S.; Herr, H.M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018, 10, eaap8373. [Google Scholar] [CrossRef]
- Cimolato, A.; Ciotti, F.; Kljajić, J.; Valle, G.; Raspopovic, S. Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience 2023, 26, 106248. [Google Scholar] [CrossRef]
- Papaleo, E.D.; D’Alonzo, M.; Fiori, F.; Piombino, V.; Falato, E.; Pilato, F.; De Liso, A.; Di Lazzaro, V.; Di Pino, G. Integration of proprioception in upper limb prostheses through non-invasive strategies: A review. J. Neuroeng. Rehabil. 2023, 20, 118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Valle, G.; Cederna, P.S.; Kemp, S.W.P. The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics 2025, 10, 130. https://doi.org/10.3390/biomimetics10030130
Tian Y, Valle G, Cederna PS, Kemp SWP. The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics. 2025; 10(3):130. https://doi.org/10.3390/biomimetics10030130
Chicago/Turabian StyleTian, Yucheng, Giacomo Valle, Paul S. Cederna, and Stephen W. P. Kemp. 2025. "The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback" Biomimetics 10, no. 3: 130. https://doi.org/10.3390/biomimetics10030130
APA StyleTian, Y., Valle, G., Cederna, P. S., & Kemp, S. W. P. (2025). The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics, 10(3), 130. https://doi.org/10.3390/biomimetics10030130