Retinal Microvasculature Image Analysis Using Optical Coherence Tomography Angiography in Patients with Post-COVID-19 Syndrome
<p>Spectral domain-optical coherence tomography (SD-OCT) of the macula obtained from Canon Xephilio OCT-A1 Machine (Canon Medical Systems Europe B.V©, Amstelveen, Netherlands) displaying a 10 × 10 mm macular image from a participant with post-COVID-19 syndrome segmented into nine EDTRS zones. The segments consist of superior outer, superior inner, nasal outer, nasal inner, inferior outer, inferior inner, temporal outer, temporal inner, and foveal (central) zones. (<b>a</b>) Displays the average thickness of the macular retinal nerve fibre layer (mRNFL) in nine EDTRS zones. (<b>b</b>) Displays the average thickness of the macular ganglion cell layer (mGCL) in nine EDTRS zones.</p> "> Figure 2
<p>Analysis of the macular 10 × 10 mm and 4 × 4 mm optical coherence tomography-angiography (OCT-A) images performed by our inhouse software. (<b>a</b>) 10 × 10 mm macular OCT-Angiography image of the right eye. (<b>b</b>) Binarisation of the 10 × 10 mm macular OCT-A image as a processing step. (<b>c</b>) Final segmentation of the image following removal of optic disc and the central 4 × 4 mm area which was analysed in separate dedicated 4 × 4 mm images (<b>d</b>) 4 × 4 mm macular OCT-Angiography image of the right eye. (<b>e</b>) Binarisation of the 4 × 4 mm macular OCT-A image. (<b>f</b>) Final segmentation of the 4 × 4 mm image with parafoveal and perifoveal zones highlighted.</p> "> Figure A1
<p>A Bland-Altmann plot demonstrating the difference between the results measuring large vessel intensities using the OCTAVIA software on two occasions by the same assessor.</p> "> Figure A2
<p>A scatterplot demonstrating the measurements of the area of the foveal avascular zone (FAZ) using Image J and the OCTAVIA software, outlining the relationship between a line of best fit compared to the 1:1 line.</p> "> Figure A3
<p>A scatterplot demonstrating manual measurements of large vessel intensities in 10 × 10 OCT-A images compared with OCTAVIA software, outlining the relationship between the line of best fit and 1:1 line.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment
2.2. OCT Imaging
2.3. OCT-Angiography Image Processing Algorithm
2.4. Statistical Methodology
3. Results
3.1. Demographic Distribution
3.2. Clinical History
3.3. OCT-Angiography Image Analysis
3.4. OCT Analysis
3.4.1. Macular RNFL and GCL Thickness
3.4.2. Neurocognitive Symptoms and Macular RNFL and GCL Thickness
3.5. Linear Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Reliability and Validity of the Software
OCTAVIA1 | OCTAVIA2 | Mean | Difference | |
---|---|---|---|---|
1 | 200.2152 | 200.8782 | 200.546715 | −0.66295 |
2 | 214.7086 | 214.2896 | 214.4990603 | 0.418981 |
3 | 214.8738 | 215.4842 | 215.1789925 | −0.61038 |
4 | 226.5071 | 226.0975 | 226.3023362 | 0.409616 |
5 | 224.3287 | 225.3507 | 224.8396983 | −1.02203 |
6 | 213.7813 | 213.7845 | 213.7829488 | −0.0032 |
7 | 223.4939 | 223.8539 | 223.6739096 | −0.36005 |
8 | 216.0177 | 216.0692 | 216.0434456 | −0.05153 |
9 | 215.3221 | 215.9063 | 215.6141776 | −0.58424 |
10 | 217.7659 | 218.0761 | 217.9210217 | −0.31021 |
11 | 212.5384 | 213.0391 | 212.7887705 | −0.50068 |
12 | 216.6652 | 216.777 | 216.7211303 | −0.11176 |
13 | 216.6811 | 216.6882 | 216.6846339 | −0.00713 |
14 | 213.7026 | 213.9167 | 213.8096195 | −0.2141 |
15 | 218.6594 | 217.7792 | 218.2192833 | 0.880265 |
16 | 220.9376 | 221.0125 | 220.9750348 | −0.07491 |
17 | 217.0157 | 216.9396 | 216.9776428 | 0.076176 |
18 | 217.3771 | 217.8395 | 217.608298 | −0.46247 |
19 | 213.694 | 213.1311 | 213.4125719 | 0.562955 |
20 | 218.2591 | 218.2816 | 218.2703393 | −0.02244 |
OCTAVIA | Image J | |
---|---|---|
1 | 0.005788 | 0.005673325 |
2 | 0.0212 | 0.0227944 |
3 | 0.014488 | 0.01531618 |
4 | 0.026428 | 0.027984508 |
5 | 0.017475 | 0.01882717 |
6 | 0.006208 | 0.00685339 |
7 | 0.019427 | 0.02044105 |
8 | 0.007463 | 0.00819081 |
9 | 0.008405 | 0.00898651 |
10 | 0.017428 | 0.0184428 |
11 | 0.007847 | 0.0070062 |
12 | 0.007238 | 0.007172576 |
13 | 0.022608 | 0.02153121 |
14 | 0.004226 | 0.004765234 |
15 | 0.00386 | 0.00383916 |
16 | 0.009413 | 0.009449548 |
17 | 0.004861 | 0.004664085 |
18 | 0.011756 | 0.010274797 |
19 | 0.005088 | 0.005610388 |
20 | 0.011491 | 0.011762485 |
Large Vessel 1 | Large Vessel 2 | Large Vessel 3 | Manual Average | OCTAVIA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Centre | Centre | Margin | Margin | Centre | Centre | Margin | Margin | Centre | Centre | Margin | Margin | |||
1 | 1 | 0.929412 | 0.709804 | 0.788235 | 0.92549 | 1 | 0.815686 | 0.792157 | 0.941176 | 1 | 0.85098 | 0.839216 | 0.882679667 | 0.885820538 |
2 | 0.913725 | 1 | 0.878431 | 0.768627 | 0.933333 | 0.835294 | 0.898039 | 0.890196 | 0.92549 | 1 | 0.85098 | 0.843137 | 0.894771 | 0.893043548 |
3 | 0.894118 | 0.945098 | 0.745098 | 0.996078 | 0.933333 | 0.733333 | 0.803922 | 0.913725 | 0.901961 | 1 | 0.784314 | 0.964706 | 0.8846405 | 0.90166909 |
4 | 1 | 0.929412 | 0.72549 | 0.819608 | 0.866667 | 0.945098 | 0.8 | 0.941176 | 0.901961 | 1 | 0.854902 | 0.85098 | 0.8862745 | 0.889066606 |
5 | 1 | 0.933333 | 0.882353 | 0.831373 | 1 | 0.988235 | 0.823529 | 0.843137 | 0.878431 | 0.976471 | 0.803922 | 0.831372 | 0.899346333 | 0.893814466 |
6 | 1 | 0.964706 | 0.87451 | 0.752941 | 0.909804 | 0.917647 | 0.870588 | 0.843137 | 0.968627 | 0.929412 | 0.811765 | 0.764706 | 0.883986917 | 0.883226069 |
7 | 0.984314 | 0.835294 | 0.819608 | 0.882353 | 1 | 0.988235 | 0.847059 | 0.784314 | 1 | 0.972549 | 0.768627 | 0.784314 | 0.888888917 | 0.887244315 |
8 | 0.980392 | 1 | 0.796078 | 0.839216 | 1 | 0.905882 | 0.870588 | 0.709804 | 0.976471 | 0.811765 | 0.85098 | 0.741176 | 0.873529333 | 0.875732357 |
9 | 0.92549 | 1 | 0.764706 | 0.839216 | 1 | 0.886275 | 0.7333333 | 0.827451 | 0.972549 | 1 | 0.827451 | 0.752941 | 0.877451025 | 0.864223212 |
10 | 0.933333 | 0.898039 | 0.831373 | 0.879588 | 0.992157 | 0.964706 | 0.858824 | 0.803922 | 0.976471 | 0.972549 | 0.815686 | 0.752941 | 0.88996575 | 0.885640208 |
11 | 0.984314 | 0.960784 | 0.815686 | 0.776471 | 0.85098 | 1 | 0.831373 | 0.85098 | 0.905882 | 0.988235 | 0.713725 | 0.768627 | 0.870588083 | 0.868688789 |
12 | 1 | 0.945098 | 0.823529 | 0.827451 | 0.996078 | 0.992157 | 0.745098 | 0.784314 | 0.921569 | 0.992157 | 0.784314 | 0.847059 | 0.888235333 | 0.871880492 |
13 | 0.917647 | 0.968627 | 0.894118 | 0.780392 | 1 | 0.905882 | 0.898039 | 0.760784 | 0.811765 | 1 | 0.866667 | 0.72549 | 0.877450917 | 0.874451774 |
14 | 0.905882 | 0.886275 | 0.878431 | 0.870588 | 1 | 1 | 0.8 | 0.780392 | 0.905882 | 1 | 0.807843 | 0.717647 | 0.879411667 | 0.874872568 |
15 | 1 | 0.976471 | 0.878431 | 0.835294 | 0.976471 | 0.882353 | 0.760784 | 0.87451 | 0.968627 | 0.968627 | 0.796078 | 0.807843 | 0.89379075 | 0.893920821 |
16 | 0.87451 | 0.937255 | 0.835294 | 0.709804 | 0.937255 | 0.929412 | 0.847059 | 0.862745 | 1 | 0.972549 | 0.886275 | 0.784314 | 0.881372667 | 0.882249605 |
17 | 0.980392 | 1 | 0.878431 | 0.839216 | 1 | 0.94902 | 0.827451 | 0.752941 | 0.815686 | 0.894118 | 0.894118 | 0.823529 | 0.8879085 | 0.8875187 |
18 | 1 | 0.913725 | 0.85098 | 0.843137 | 0.968627 | 0.776471 | 0.87451 | 0.862745 | 0.956863 | 0.917647 | 0.737255 | 0.72549 | 0.868954167 | 0.862268732 |
19 | 1 | 1 | 0.815686 | 0.94902 | 0.996078 | 0.92549 | 0.764706 | 0.764706 | 1 | 0.866667 | 0.796078 | 0.917647 | 0.899673167 | 0.90460477 |
20 | 0.996078 | 1 | 0.890196 | 0.792157 | 0.882353 | 1 | 0.835294 | 0.745098 | 0.992157 | 1 | 0.768627 | 0.831373 | 0.894444417 | 0.897619232 |
Appendix A.2. Sample Size Calculation
Variable | Statistic | Normal, N (n = 49) | Diabetic No Retinopathy, DnR (n = 50) | Diabetic with Retinopathy, DR (n = 53) |
---|---|---|---|---|
Sex | Male 32, Female 17 | Male 36, Female 14 | Male 43, Female 10 | |
Age | Mean (SD) | 57.14 (13.56) | 61.06 (12.77) | 58.38 (13.06) |
Median | 57.0 | 61.5 | 60 | |
Best Corrected Visual Acuity (BCVA) | Mean (SD) | 85 (19.66) | 96.36 (7.39) | 86.17 (13.3 |
Median | 95 | 95 | 90 | |
Mean Vessel Intensity | Mean (SD) | 180.65 (6.43) | 181.38 (6.04) | 179.28 (7.45) |
Median | 182.0 | 183.5 | 181.0 | |
Mean Capillary Intensity | Mean (SD) | 98.69 (6.23) | 94.22 (5.41) | 93.47 (6.03) |
Median | 99 | 95 | 94 |
Appendix B
Study | Time Following Initial SARS-CoV-2 Infection | Severity of Infection | Size (Case, Control) | Key Findings (Statistically Significant) |
---|---|---|---|---|
OCT-Angiography: Studies Demonstrating Reduction in Vessel Densities in Patients with a History of COVID-19 Infection | ||||
Zapata et al., 2022 [62] | ≤90 days (3 months) | Mild, Moderate, Severe | 24, 24, 21, 27 | Reduced VDs in the SCP of patients with moderate and severe disease, compared to mild disease and control subjects. |
Turker et al., 2021 [63] | 7 days following hospital discharge | Moderate | 27, 27 | Reduced VD in SCP and DCP regions. No difference in area of the FAZ. |
Abrishami et al., 2021 [64] | ≥14 days following recovery | Moderate, Severe | 31, 23 | Reduced VD in the SCP and DCP. No difference in area of the FAZ. |
Gonzalez-Zamora et al., 2021 [65] | 14 days following hospital discharge | Severe | 25, 25 | Reduced VD in SCP and DCP regions. Enlargement of FAZ area. |
Hazar et al., 2021 [66] | ≈30 days (1 month) following hospital discharge | Mild, Moderate | 50, 55 | Reduced VD in SCP and DCP regions. No difference in area of the FAZ. |
Guemes Villahoz et al., 2021 [67] | 88 days following initial diagnosis | Moderate, Severe | 66 (19, 47), 29 | Reduction in VDs in the SCP and reduced perfusion density in the fovea. No difference in the area of the FAZ. |
Rodman et al., 2021 [68] | - | Mild | 18, 18 | Reduced VDs in regions of the SCP. |
Yilmaz Cebi et al., 2022 [69] | 67–86 days | Mild, Moderate | 52, 42 | Reduced VDs in SCP and DCP. |
Cetinkaya et al., 2022 [70] | ≈30 days following hospital discharge | Moderate | 45, 45 | Reduced VDs in SCP, DCP, and CC. |
Abrishami et al., 2022 [71] | 7 days, 1 month, 3 months | Moderate, Severe | 18 (follow-up study) | Reduced VDs in the SCP and DCP, no difference in the area of the FAZ. |
Nageeb Louz et al., 2022 [72] | 30–120 days (1–4 months) | Mild, Moderate, Severe | 45, 45 | Reduced VDs in the SCP, DCP, and enlargement of FAZ. |
Cennamo et al., 2021 [73] | 180 days (6 months) | Moderate | 40, 40 | Reduced VDs in SCP, RPC, DCP. RNFL thickness reduced. |
Bilbao-Malave V et al., 2021 [74] | 6 months from hospital discharge | Severe | 17 (follow-up study) | Reduced VDs in SCP and DCP, enlargement of FAZ, Thinner GCL and RNFL. |
Banderas Garcia S et al., 2022 [75] | 8 months after initial infection | Mild, Moderate, Severe | 75, 19 | Reduced VDs in the SCP and DCP of patients with moderate and severe disease, compared to mild disease and control subjects. Enlargement of FAZ in patients with more severe disease. |
OCT-Angiography: Studies demonstrating no difference in vessel densities in patients with a history of COVID-19 infection | ||||
Savastano et al., 2021 [93] | 1 month following hospital discharge | Moderate | 70, 22 | No differences in VD and VP in the SCP and DCP. |
Szkodny et al., 2021 [94] | 1–4 months following infection | Mild, Moderate | 156, 98 | No differences in the VDs of the SVP, area of the FAZ, macular RNFL thickness, and central macular thickness. |
Kal M et al., 2022 [95] | 8 weeks following hospital discharge | Severe | 63, 45 | No difference in the VDs in SCP or DCP between the two groups. Reduced VD in the foveal CC. Enlargement of area of FAZ. |
Chiosi F et al., 2022 [96] | 1 month following recovery from infection | Mild, Moderate, Severe | 142, 60 | No difference in the VDs in SCP. Reduced VD in the DCP and CC. |
OCT-Angiography: Studies demonstrating increase in vessel densities in patients with a history of COVID-19 infection | ||||
Naderi Beni A et al., 2022 [58] | 40–95 days following initial infection | Moderate | 51, 37 | Increased VDs in the SCP and DCP. Increased peripapillary RNFL thickness. |
OCT macula structural retinal findings in patients with a history of COVID-19 infection | ||||
Sim et al., 2021 [52] | 16.1 ± 3.6 days | Mild | 108, 0 | Microhaemorrhages, retinal vascular tortuosity, cotton wool spots, hyper-reflective plaques in the GCL-IPL. |
Marinho et al., 2020 [54] | 11–33 days | Mild to Moderate | 12 | Hyper-reflective plaques in the GCL-IPL, cotton wool spots, microhaemorrhages. |
Burgos-Blasco et al., 2022 [57] | 4 weeks following recovery | Mild, Moderate, Severe | 90, 70 | Increased peri papillary RNFL and macular GCL thickness (more significant in patients with anosmia and ageusia) and decreased macular RNFL thickness. |
Oren et al., 2021 [59] | 14–30 days | Mild | 35, 25 | Increased central macular thickness, decreased GCL and INL thickness. |
Mavi et al., 2022 [85] | 2–8 weeks | Moderate | 63 (30 hospitalised), 59 | Increased central foveal, mean outer nuclear layer, mean peri papillary RNFL thickness. |
Ugurlu A et al., 2022 [86] | 29–45 days | Moderate, Severe | 129, 130 | No difference between COVID-19 and controls. Thinner macular RNFL and GCL in patients with neurological symptoms within the COVID-19 cohort. Reduced VD in SCP, DCP, RPCP, enlargement of FAZ area, reduction of FAZ circularity in symptomatic COVID-10 patients. |
Taskiran-Sag et al., 2022 [87] | 113 ± 62 days following recovery from infection | Mild, Moderate | 40, 40 | No difference between GCL thickness between COVID-19 and controls. Thinner macular GCL in patients with neuro-cognitive symptoms. |
Study | Time Following Initial SARS-CoV-2 Infection | Severity of Infection | Size (Case, Control) | Key Findings (Statistically Significant) |
---|---|---|---|---|
Kanra AY et al., 2022 [88] | 4.3 ± 2.7 months (1–12) | Mild to Moderate | 20, 23 | Thinning in segments of the macular RNFL, GCL, and IPL. |
Schlick et al., 2022 [89] | 231 ± 111 days (7.59 ± 3.65 months) | - | 173, 28 | Reduced VDs in ICP, no difference in SVP, DCP. Females with PCS had lower VDs in SVP than males. PCS participants with CF had lower VDs in SVP than those without. |
References
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health and Care Excellence (NICE). COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; NICE: Sutton-in-Ashfield, UK, 2021; Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 3 March 2023).
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Sherif, Z.A.; Gomez, C.R.; Connors, T.J.; Henrich, T.J.; Reeves, W.B. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023, 12, e86002. [Google Scholar] [CrossRef]
- Ahamed, J.; Laurence, J. Long COVID endotheliopathy: Hypothesized mechanisms and potential therapeutic approaches. J. Clin. Investig. 2022, 132, e161167. [Google Scholar] [CrossRef] [PubMed]
- Al-Ramadan, A.; Rabab’h, O.; Shah, J.; Gharaibeh, A. Acute and Post-Acute Neurological Complications of COVID-19. Neurol. Int. 2021, 13, 102–119. [Google Scholar] [CrossRef]
- Amenta, E.M.; Spallone, A.; Rodriguez-Barradas, M.C.; El Sahly, H.M.; Atmar, R.L.; A Kulkarni, P. Postacute COVID-19: An Overview and Approach to Classification. Open Forum Infect. Dis. 2020, 7, ofaa509. [Google Scholar] [CrossRef]
- Camargo-Martínez, W.; Lozada-Martínez, I.; Escobar-Collazos, A.; Navarro-Coronado, A.; Moscote-Salazar, L.; Pacheco-Hernández, A.; Janjua, T.; Bosque-Varela, P. Post-COVID 19 neurological syndrome: Implications for sequelae’s treatment. J. Clin. Neurosci. 2021, 88, 219–225. [Google Scholar] [CrossRef]
- Choutka, J.; Jansari, V.; Hornig, M.; Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 2022, 28, 911–923. [Google Scholar] [CrossRef]
- Carod-Artal, F.J. Post-COVID-19 syndrome: Epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev. Nuerol. 2021, 72, 384–396. [Google Scholar]
- Cortés-Telles, A.; López-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar] [CrossRef] [PubMed]
- Doykov, I.; Hällqvist, J.; Gilmour, K.C.; Grandjean, L.; Mills, K.; Heywood, W.E. ‘The long tail of COVID-19’—The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000 Res. 2021, 9, 1349. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, C.G.; Peterson, D.; Armstrong, J.; Knox, K.; Roy, A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect. Agent Cancer 2023, 18, 7. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Florencio, L.L. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An Integrative Classification. Int. J. Environ. Res. Public Health 2021, 18, 2621. [Google Scholar] [CrossRef] [PubMed]
- Andrade, B.S.; Siqueira, S.; Soares, W.R.d.A.; Rangel, F.d.S.; Santos, N.O.; Freitas, A.d.S.; da Silveira, P.R.; Tiwari, S.; Alzahrani, K.J.; Góes-Neto, A.; et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021, 13, 700. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Nallani, R.; Cass, L.; Bhalla, V.; Chiu, A.G.; Villwock, J.A. A Systematic Review of the Neuropathologic Findings of Post-Viral Olfactory Dysfunction: Implications and Novel Insight for the COVID-19 Pandemic. Am. J. Rhinol. Allergy 2020, 35, 323–333. [Google Scholar] [CrossRef]
- Mantovani, A.; Morrone, M.C.; Patrono, C.; Santoro, M.G.; Schiaffino, S.; Remuzzi, G.; Bussolati, G.; Cappuccinelli, P. Long Covid: Where we stand and challenges ahead. Cell Death Differ. 2022, 29, 1891–1900. [Google Scholar] [CrossRef]
- McFarland, A.J.; Yousuf, M.S.; Shiers, S.; Price, T.J. Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: Implications for COVID-19 and pain. Pain Rep. 2021, 6, e885. Available online: https://journals.lww.com/painrpts/Fulltext/2021/01000/Neurobiology_of_SARS_CoV_2_interactions_with_the.1.aspx (accessed on 15 March 2023). [CrossRef]
- Oronsky, B.; Larson, C.; Hammond, T.C.; Oronsky, A.; Kesari, S.; Lybeck, M.; Reid, T.R. A Review of Persistent Post-COVID Syndrome (PPCS). Clin. Rev. Allergy Immunol. 2023, 64, 66–74. [Google Scholar] [CrossRef]
- Song, W.-J.; Hui, C.K.M.; Hull, J.H.; Birring, S.S.; McGarvey, L.; Mazzone, S.B.; Chung, K.F. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir. Med. 2021, 9, 533–544. [Google Scholar] [CrossRef]
- Toniolo, S.; Scarioni, M.; Di Lorenzo, F.; Hort, J.; Georges, J.; Tomic, S.; Nobili, F.; Frederiksen, K.S.; the Management Group of the EAN Dementia and Cognitive Disorders Scientific Panel. Dementia and COVID-19, a Bidirectional Liaison: Risk Factors, Biomarkers, and Optimal Health Care. J. Alzheimer’s Dis. 2021, 82, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Boyd, M.O.; Guzik, T.; Padmanabhan, S.; McCallum, L.; Delles, C.; Mark, P.B.; Petrie, J.R.; Rios, F.; Montezano, A.C.; et al. Cardiovascular and Renal Risk Factors and Complications Associated with COVID-19. CJC Open 2021, 3, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Fogarty, H.; Dyer, A.; Martin-Loeches, I.; Bannan, C.; Nadarajan, P.; Bergin, C.; O’Farrelly, C.; Conlon, N.; Bourke, N.M.; et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J. Thromb. Haemost. 2021, 19, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.W.; Fan, B.E.; Huang, W.; Chia, Y.W. ST-segment elevation myocardial infarction in post-COVID-19 patients: A case series. Ann. Acad. Med. Singap. 2021, 50, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.J.; Scheibenbogen, C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J. Transl. Med. 2021, 19, 162. [Google Scholar] [CrossRef]
- Kell, D.B.; Laubscher, G.J.; Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef]
- Szewczykowski, C.; Mardin, C.; Lucio, M.; Wallukat, G.; Hoffmanns, J.; Schröder, T.; Raith, F.; Rogge, L.; Heltmann, F.; Moritz, M.; et al. Long COVID: Association of Functional Autoantibodies against G-Protein-Coupled Receptors with an Impaired Retinal Microcirculation. Int. J. Mol. Sci. 2022, 23, 7209. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Pellicer-Valero, O.J.; Navarro-Pardo, E.; Palacios-Ceña, D.; Florencio, L.L.; Guijarro, C.; Martín-Guerrero, J.D. Symptoms Experienced at the Acute Phase of SARS-CoV-2 Infection as Risk Factor of Long-term Post-COVID Symptoms: The LONG-COVID-EXP-CM Multicenter Study. Int. J. Infect. Dis. 2022, 116, 241–244. [Google Scholar] [CrossRef]
- Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [CrossRef]
- Hopkinson, N.S.; Jenkins, G.; Hart, N. COVID-19 and what comes after? Thorax 2021, 76, 324. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.; Townsend, L.; Morrin, H.; Ahmad, A.; Comerford, C.; Karampini, E.; Englert, H.; Byrne, M.; Bergin, C.; O’sullivan, J.M.; et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021, 19, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Hohberger, B.; Harrer, T.; Mardin, C.; Kruse, F.; Hoffmanns, J.; Rogge, L.; Heltmann, F.; Moritz, M.; Szewczykowski, C.; Schottenhamml, J.; et al. Case Report: Neutralization of Autoantibodies Targeting G-Protein-Coupled Receptors Improves Capillary Impairment and Fatigue Symptoms After COVID-19 Infection. Front. Med. 2021, 8, 754667. Available online: https://www.frontiersin.org/articles/10.3389/fmed.2021.754667 (accessed on 15 March 2023). [CrossRef] [PubMed]
- Robertson, M.M.; Qasmieh, S.A.; Kulkarni, S.G.; Teasdale, C.A.; Jones, H.E.; McNairy, M.; Borrell, L.N.; Nash, D. The Epidemiology of Long COVID in US Adults. Clin. Infect. Dis. 2022, 76, 1636–1645. [Google Scholar] [CrossRef]
- Thompson, E.J.; Williams, D.M.; Walker, A.J.; Mitchell, R.E.; Niedzwiedz, C.L.; Yang, T.C.; Huggins, C.F.; Kwong, A.S.F.; Silverwood, R.J.; Di Gessa, G.; et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat. Commun. 2022, 13, 3528. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef]
- Desgranges, F.; Tadini, E.; Munting, A.; Regina, J.; Filippidis, P.; Viala, B.; Karachalias, E.; Suttels, V.; Haefliger, D.; Kampouri, E.; et al. Post-COVID-19 Syndrome in Outpatients: A Cohort Study. J. Gen. Intern. Med. 2022, 37, 1943–1952. [Google Scholar] [CrossRef]
- Hanson, S.W.; Abbafati, C.; Aerts, J. A global systematic analysis of the occurrence, severity, and recovery pattern of long COVID in 2020 and 2021. medRxiv 2022. [Google Scholar] [CrossRef]
- Office for National Statistics (ONS). Prevalence of Ongoing Symptoms Following Coronavirus (COVID-19) Infection in the UK: 2 February 2023; Office for National Statistics (ONS) Website, Statistical Bulletin: London, UK, 2023. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/2february2023 (accessed on 15 March 2023).
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’Em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef] [PubMed]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef] [PubMed]
- Lomi, N.; Sindhuja, K.; Asif, M.; Tandon, R. Clinical profile and prevalence of conjunctivitis in mild COVID-19 patients in a tertiary care COVID-19 hospital: A retrospective cross-sectional study. Indian J. Ophthalmol. 2020, 68, 1546–1550. [Google Scholar] [CrossRef]
- Costa, F.; Bonifácio, L.P.; Bellissimo-Rodrigues, F.; Rocha, E.M.; Jorge, R.; Bollela, V.R.; Antunes-Foschini, R. Ocular findings among patients surviving COVID-19. Sci. Rep. 2021, 11, 11085. [Google Scholar] [CrossRef]
- Honavar, S.; Sen, M.; Sharma, N.; Sachdev, M. COVID-19 and Eye: A Review of Ophthalmic Manifestations of COVID-19. Indian J. Ophthalmol. 2021, 69, 488–509. [Google Scholar] [CrossRef]
- Feizi, S.M.; Meshksar, A.; Naderi, A.; Esfandiari, H. Anterior Scleritis Manifesting After Coronavirus Disease 2019: A Report of Two Cases. Cornea 2021, 40, 1204–1206. [Google Scholar] [CrossRef]
- Bertoli, F.; Veritti, D.; Danese, C.; Samassa, F.; Sarao, V.; Rassu, N.; Gambato, T.; Lanzetta, P. Ocular Findings in COVID-19 Patients: A Review of Direct Manifestations and Indirect Effects on the Eye. J. Ophthalmol. 2020, 2020, 4827304. [Google Scholar] [CrossRef]
- Teo, K.Y.; Invernizzi, A.; Staurenghi, G.; Cheung, C.M.G. COVID-19-Related Retinal Micro-vasculopathy—A Review of Current Evidence. Arch. Ophthalmol. 2021, 235, 98–110. [Google Scholar] [CrossRef]
- Sen, S.; Kannan, N.B.; Kumar, J.; Rajan, R.P.; Kumar, K.; Baliga, G.; Reddy, H.; Upadhyay, A.; Ramasamy, K. Retinal manifestations in patients with SARS-CoV-2 infection and pathogenetic implications: A systematic review. Int. Ophthalmol. 2022, 42, 323–336. [Google Scholar] [CrossRef]
- Sim, R.; Cheung, G.; Ting, D.; Wong, E.; Wong, T.Y.; Yeo, I.; Wong, C.W. Retinal microvascular signs in COVID-19. Br. J. Ophthalmol. 2022, 106, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Marinho, P.M.; Marcos, A.A.A.; Romano, A.C.; Nascimento, H.; Belfort, R. Retinal findings in patients with COVID-19. Lancet 2020, 395, 1610. [Google Scholar] [CrossRef] [PubMed]
- Vavvas, D.G.; Sarraf, D.; Sadda, S.R.; Eliott, D.; Ehlers, J.P.; Waheed, N.K.; Morizane, Y.; Sakamoto, T.; Tsilimbaris, M.; Miller, J.B. Concerns about the interpretation of OCT and fundus findings in COVID-19 patients in recent Lancet publication. Eye 2020, 34, 2153–2154. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, P.; Zhang, X.; Peng, Y.; Jiang, B. Seeking clarity on retinal findings in patients with COVID-19. Lancet 2020, 396, e35. [Google Scholar] [CrossRef]
- Burgos-Blasco, B.; Güemes-Villahoz, N.; Vidal-Villegas, B.; Martinez-De-La-Casa, J.M.; Donate-Lopez, J.; Martín-Sánchez, F.J.; González-Armengol, J.J.; Porta-Etessam, J.; Martin, J.L.R.; Garcia-Feijoo, J. Optic nerve and macular optical coherence tomography in recovered COVID-19 patients. Eur. J. Ophthalmol. 2022, 32, 628–636. [Google Scholar] [CrossRef]
- Naderi Beni, A.; Dehghani, A.; Kianersi, F.; Ghanbari, H.; Habibidastenae, Z.; Memarzadeh, S.E.; Beni, Z.N. Retinal findings of COVID-19 patients using ocular coherence tomography angiography two to three months after infection: Ocular appearance recovered COVID-19 patient. Photodiagnos. Photodyn. Ther. 2022, 38, 102726. [Google Scholar] [CrossRef]
- Oren, B.; Aydemır, G.A.; Aydemır, E.; Atesoglu, H.I.; Goker, Y.S.; Kızıltoprak, H.; Ozcelık, K.C. Quantitative assessment of retinal changes in COVID-19 patients. Clin. Exp. Optom. 2021, 104, 717–722. [Google Scholar] [CrossRef]
- Salvi, L.; Plateroti, P.; Balducci, S.; Bollanti, L.; Conti, F.G.; Vitale, M.; Recupero, S.M.; Enrici, M.M.; Fenicia, V.; Pugliese, G. Abnormalities of retinal ganglion cell complex at optical coherence tomography in patients with type 2 diabetes: A sign of diabetic polyneuropathy, not retinopathy. J. Diabetes Complicat. 2016, 30, 469–476. [Google Scholar] [CrossRef]
- Patton, N.; Aslam, T.; MacGillivray, T.; Pattie, A.; Deary, I.J.; Dhillon, B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: A rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 2005, 206, 319–348. [Google Scholar] [CrossRef]
- Zapata, M.Á.; Banderas García, S.; Sánchez-Moltalvá, A.; Falcó, A.; Otero-Romero, S.; Arcos, G.; Velazquez-Villoria, D.; García-Arumí, J. Retinal microvascular abnor-malities in patients after COVID-19 depending on disease severity. Br. J. Ophthalmol. 2022, 106, 559. [Google Scholar] [CrossRef]
- Turker, I.C.; Dogan, C.U.; Guven, D.; Kutucu, O.K.; Gul, C. Optical coherence tomography angiography findings in patients with COVID-19. Can. J. Ophthalmol. 2021, 56, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, M.; Emamverdian, Z.; Shoeibi, N.; Omidtabrizi, A.; Daneshvar, R.; Rezvani, T.S.; Saeedian, N.; Eslami, S.; Mazloumi, M.; Sadda, S.; et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: A case-control study. Can. J. Ophthalmol. 2021, 56, 24–30. [Google Scholar] [CrossRef] [PubMed]
- González-Zamora, J.; Bilbao-Malavé, V.; Gándara, E.; Casablanca-Piñera, A.; Boquera-Ventosa, C.; Landecho, M.F.; Zarranz-Ventura, J.; García-Layana, A. Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia Assessed by Optical Coherence Tomography Angiography. Biomedicines 2021, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Hazar, L.; Karahan, M.; Vural, E.; Ava, S.; Erdem, S.; Dursun, M.E.; Keklikçi, U. Macular vessel density in patients recovered from COVID 19. Photodiagnos. Photodyn. Ther. 2021, 34, 102267. [Google Scholar] [CrossRef]
- Guemes-Villahoz, N.; Burgos-Blasco, B.; Vidal-Villegas, B.; Donate-López, J.; de la Muela, M.H.; López-Guajardo, L.; Martín-Sánchez, F.J.; García-Feijoó, J. Reduced macular vessel density in COVID-19 patients with and without associated thrombotic events using optical coherence tomography angiography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2243–2249. [Google Scholar] [CrossRef]
- Rodman, J.; Ferraz, M.; Baran, A.; Zhang, B. Optical coherence tomography angiography of retinal vasculature in recovered COVID-19 patients compared to age and ethnic matched controls. Clin. Exp. Optom. 2022, 105, 842–847. [Google Scholar] [CrossRef]
- Yılmaz Çebi, A.; Kılıçarslan, O.; Uçar, D. Evaluation of Retinal Microvascular Impairment after COVID-19 and Its Clinical Correlates Using Optical Coherence Tomography Angiography. Turk. J. Ophthalmol. 2022, 52, 324–330. [Google Scholar] [CrossRef]
- Cetinkaya, T.; Kurt, M.M.; Akpolat, C. Analysis of swept-source optical coherence tomography angiography measurement al-terations in adult patients recovered from COVID-19. Clin. Exp. Optom. 2022, 105, 848–852. [Google Scholar] [CrossRef]
- Abrishami, M.; Hassanpour, K.; Hosseini, S.; Emamverdian, Z.; Ansari-Astaneh, M.R.; Zamani, G.; Gharib, B.; Abrishami, M. Macular vessel density re-duction in patients recovered from COVID-19: A longitudinal optical coherence tomography angiography study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 771–779. [Google Scholar] [CrossRef]
- Nageeb Louz, R.E.; Salah Eddin, M.A.; Macky, T.A.; Tolba, D.A.A. Post COVID-19 Retinal Evaluation Using Optical Coherence Tomography Angiography: A Case Control Study. Ocul. Immunol. Inflamm. 2022, 31, 1175–1183. [Google Scholar] [CrossRef]
- Cennamo, G.; Reibaldi, M.; Montorio, D.; D’Andrea, L.; Fallico, M.; Triassi, M. Optical Coherence Tomography Angiography Features in Post-COVID-19 Pneumonia Patients: A Pilot Study. Am. J. Ophthalmol. 2021, 227, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Bilbao-Malavé, V.; González-Zamora, J.; de Viteri, M.S.; de la Puente, M.; Gándara, E.; Casablanca-Piñera, A.; Boquera-Ventosa, C.; Zarranz-Ventura, J.; Landecho, M.F.; García-Layana, A. Persistent Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia at 6-Months Follow-Up Assessed by Optical Coherence Tomography Angiography. Biomedicines 2021, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- García, S.B.; Aragón, D.; Azarfane, B.; Trejo, F.; Garrell-Salat, X.; Sánchez-Montalvá, A.; Otero-Romero, S.; Garcia-Arumi, J.; Zapata, M.A. Persistent reduction of retinal microvascular vessel density in patients with moderate and severe COVID-19 disease. BMJ Open Ophthalmol. 2022, 7, e000867. [Google Scholar] [CrossRef] [PubMed]
- E Murdoch, I.; Morris, S.S.; Cousens, S.N. People and eyes: Statistical approaches in ophthalmology. Br. J. Ophthalmol. 1998, 82, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Czakó, C.; István, L.; Benyó, F.; Élő, Á.; Erdei, G.; Horváth, H.; Nagy, Z.Z.; Kovács, I. The Impact of Deterministic Signal Loss on OCT Angiography Measurements. Transl. Vis. Vision Sci. Technol. 2020, 9, 10. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Research Group. Early Photocoagulation for Diabetic Retinopathy: ETDRS Report Number 9. Ophthalmology 1991, 98, 766–785. [Google Scholar] [CrossRef]
- Aslam, T.M.; Hoyle, D.C.; Puri, V.; Bento, G. Differentiation of Diabetic Status Using Statistical and Machine Learning Techniques on Optical Coherence Tomography Angiography Images. Transl. Vis. Sci. Technol. 2020, 9, 2. [Google Scholar] [CrossRef]
- Thompson, I.A.; Durrani, A.K.; Patel, S. Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy. Eye 2019, 33, 648–652. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Toto, L.; Mastropasqua, A.; Aloia, R.; De Nicola, C.; A Mattei, P.; Di Marzio, G.; Di Nicola, M.; Di Antonio, L. Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography. Int. J. Ophthalmol. 2017, 10, 1545–1551. [Google Scholar] [CrossRef]
- Krawitz, B.D.; Mo, S.; Geyman, L.S.; Agemy, S.A.; Scripsema, N.K.; Garcia, P.M.; Chui, T.Y.; Rosen, R.B. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vis. Res. 2017, 139, 177–186. [Google Scholar] [CrossRef]
- The Jamovi Project [Computer Software]. 2021. Available online: http://www.jamovi.org (accessed on 1 January 2020).
- National Institute of Health and Care Excellence (NICE). COVID-19 Rapid Evidence Review: Risk Factors for Long-Term Effects of COVID-19; NICE: Sutton-in-Ashfield, UK, 2021; Available online: https://files.magicapp.org/guideline/08d10c67-1331-4146-9471-b15d1d93e707/files/Evidence_review_for_risk_factors_FINAL_r400881.pdf (accessed on 15 March 2023).
- Mavi Yildiz, A.; Ucan Gunduz, G.; Yalcinbayir, O.; Acet Ozturk, N.A.; Avci, R.; Coskun, F. SD-OCT assessment of macular and optic nerve alterations in patients recovered from COVID-19. Can. J. Ophthalmol. 2022, 57, 75–81. [Google Scholar] [CrossRef]
- Ugurlu, A.; Agcayazi, S.B.; Icel, E.; Budakoglu, O.; Unver, E.; Barkay, O.; Karakeçili, F.; Bayrakceken, K. Assessment of the optic nerve, macular, and retinal vascular effects of COVID-19. Can. J. Ophthalmol. 2022. Available online: https://www.sciencedirect.com/science/article/pii/S0008418222001892 (accessed on 24 April 2023).
- Taskiran-Sag, A.; Eroglu, E.; Ozulken, K.; Canlar, S.; Poyraz, B.M.; Sekerlisoy, M.B.; Mumcuoglu, T. Headache and cognitive disturbance correlate with ganglion cell layer thickness in patients who recovered from COVID-19. Clin. Neurol. Neurosurg. 2022, 217, 107263. [Google Scholar] [CrossRef] [PubMed]
- Kanra, A.Y.; Altınel, M.G.; Alparslan, F. Evaluation of retinal and choroidal parameters as neurodegeneration biomarkers in patients with post-COVID-19 syndrome. Photodiagnos. Photodyn. Ther. 2022, 40, 103108. [Google Scholar] [CrossRef]
- Schlick, S.; Lucio, M.; Wallukat, G.; Bartsch, A.; Skornia, A.; Hoffmanns, J.; Szewczykowski, C.; Schröder, T.; Raith, F.; Rogge, L.; et al. Post-COVID-19 Syndrome: Retinal Microcirculation as a Potential Marker for Chronic Fatigue. Int. J. Mol. Sci. 2022, 23, 13683. [Google Scholar] [CrossRef] [PubMed]
- Jevnikar, K.; Meglič, A.; Lapajne, L.; Logar, M.; Valentinčič, N.V.; Petrovič, M.G.; Mekjavić, P.J. The Comparison of Retinal Microvascular Findings in Acute COVID-19 and 1-Year after Hospital Discharge Assessed with Multimodal Imaging—A Prospective Longitudinal Cohort Study. Int. J. Mol. Sci. 2023, 24, 4032. [Google Scholar] [CrossRef] [PubMed]
- Jevnikar, K.; Mekjavic, P.J.; Valentincic, N.V.; Petrovski, G.; Petrovic, M.G. An Update on COVID-19 Related Ophthalmic Manifestations. Ocul. Immunol. Inflamm. 2021, 29, 684–689. [Google Scholar] [CrossRef] [PubMed]
- de Almeida-Pititto, B.; Dualib, P.M.; Zajdenverg, L.; Dantas, J.R.; de Souza, F.D.; Rodacki, M.; Bertoluci, M.C.; Brazilian Diabetes Society Study Group (SBD). Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: A meta-analysis. Diabetol. Metab. Syndr. 2020, 12, 75. [Google Scholar] [CrossRef]
- Savastano, M.C.; Gambini, G.; Cozzupoli, G.M.; Crincoli, E.; Savastano, A.; De Vico, U.; Culiersi, C.; Falsini, B.; Martelli, F.; Minnella, A.M.; et al. Retinal capillary involvement in early post-COVID-19 patients: A healthy controlled study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2157–2165. [Google Scholar] [CrossRef]
- Szkodny, D.; Wylęgała, E.; Sujka-Franczak, P.; Chlasta-Twardzik, E.; Fiolka, R.; Tomczyk, T.; Wylęgała, A. Retinal OCT Findings in Patients after COVID Infection. J. Clin. Med. 2021, 10, 3233. [Google Scholar] [CrossRef]
- Kal, M.; Winiarczyk, M.; Cieśla, E.; Płatkowska-Adamska, B.; Walczyk, A.; Biskup, M.; Pabjan, P.; Głuszek, S.; Odrobina, D.; Mackiewicz, J.; et al. Retinal Microvascular Changes in COVID-19 Bilateral Pneumonia Based on Optical Coherence Tomography Angiography. J. Clin. Med. 2022, 11, 3621. [Google Scholar] [CrossRef]
- Chiosi, F.; Campagna, G.; Rinaldi, M.; Manzi, G.; Dell’Omo, R.; Fiorentino, G.; Toro, M.; Tranfa, F.; D’Andrea, L.; Rejdak, M.; et al. Optical Coherence Tomography Angiography Analysis of Vessel Density Indices in Early Post-COVID-19 Patients. Front. Med. 2022, 9, 927121. Available online: https://www.frontiersin.org/articles/10.3389/fmed.2022.927121 (accessed on 24 April 2023). [CrossRef] [PubMed]
10 × 10 mm Image | 4 × 4 mm Image |
---|---|
Mean large vessel intensity | Mean capillary intensity |
Mean capillary intensity | Percentage capillary network (vessel density) |
Percentage capillary network (vessel density) | Area of the foveal avascular zone (FAZ) |
Total area of ischaemia | Circularity of the foveal avascular zone (FAZ) |
Total | PCS Group | Control Group | Statistical Test | Significance p < 0.00357 | |||
---|---|---|---|---|---|---|---|
No. of Patients | 80 | 40 | 40 | Chi Squared test | 0.317 | ||
Female | 58 | 31 | 27 | ||||
Male | 22 | 9 | 13 | ||||
Mean | SD | Mean | SD | ||||
Age | 47.80 | 10.40 | 44.00 | 14.60 | Mann-Whitney U test | 0.107 | |
LogMAR Visual Acuity | −0.0045 | 0.168 | +0.0165 | 0.137 | Mann-Whitney U test | 0.302 | |
OCT-A 10 × 10 mm Quality | 7.40 | 0.67 | 7.55 | 0.64 | Mann-Whitney U test | 0.368 | |
OCT-A 4 × 4 mm Quality | 7.68 | 0.76 | 7.83 | 0.90 | Mann-Whitney U test | 0.465 | |
SD-OCT Macula Quality | 8.18 | 0.82 | 8.24 | 0.65 | Mann-Whitney U test | 0.779 |
Physiological System | Clinical Symptoms | |||||
---|---|---|---|---|---|---|
Systemic | Fatigue | Dizziness | Fever | |||
30 | 5 | 0 | ||||
Cardiopulmonary | Dyspnoea | Chest Pain | Palpitations | Pericarditis | ||
23 | 8 | 15 | 1 | |||
Upper Respiratory | Blocked Nose | Cough | Sore Throat | Voice Changes | Laryngeal Disorders * | |
0 | 4 | 0 | 1 | 2 | ||
Gastrointestinal | Nausea | Vomiting | Diarrhoea | Appetite Changes | Abdominal Pain | Weight Loss |
1 | 0 | 0 | 0 | 1 | 1 | |
Musculoskeletal | Joint Pain | Muscle Pain | Worsened Mobility | |||
3 | 3 | 0 | ||||
Neurological Or Neuromuscular | Headache | Hyposmia/ Anosmia | Hypogeusia/ Ageusia | Paraesthesia | ||
10 | 3 | 3 | 1 | |||
Psychological | Anxiety | Depression | Post-Traumatic Stress Disorder (PTSD) | Sleep Disturbances | ||
1 | 2 | 0 | 2 | |||
Neurocognitive | Cognitive Dysfunction i.e., Brain Fog (Reduced Memory And/Or Concentration) | Cognitive Impairment | Confusion | |||
16 | 0 | 0 | ||||
Ophthalmic | Vision Disturbances | Dry Eyes | ||||
3 | 11 | |||||
Auditory | Reduced Hearing | Tinnitus | ||||
1 | 1 | |||||
Other | Hair Loss | Post-Menopausal Bleeding | Restless Legs | |||
0 | 1 | 1 |
Shapiro-Wilk | Statistical Test | Statistic | df | p < 0.00357 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cohort Category | N | Mean | SD | W | p | |||||
Mean Large Vessel Intensity (10 × 10 mm) | PCS | 40 | 225.133 | 2.978 | 0.967 | 0.298 | Student’s t | 0.5435 | 78.0 | 0.588 |
Control | 40 | 225.480 | 2.739 | 0.965 | 0.243 | |||||
Mean Capillary Intensity (10 × 10 mm) | PCS | 40 | 136.504 | 5.687 | 0.887 | <0.001 | Mann-Whitney U | 628 | 0.099 | |
Control | 40 | 134.035 | 3.850 | 0.986 | 0.890 | |||||
Percentage Capillary Network (Vessel Densities) (10 × 10 mm) | PCS | 40 | 45.637 | 1.296 | 0.978 | 0.632 | Mann-Whitney U | 630 | 0.103 | |
Control | 40 | 44.934 | 1.827 | 0.827 | <0.001 | |||||
Total Area of Ischaemia (10 × 10 mm) | PCS | 40 | 203.400 | 680.847 | 0.342 | <0 .001 | Mann-Whitney U | 763 | 0.541 | |
Control | 40 | 198.000 | 683.638 | 0.331 | <0.001 | |||||
Percentage Capillary Network (Vessel Densities) (4 × 4 mm) | PCS | 40 | 41.192 | 1.240 | 0.986 | 0.888 | Student’s t | −0.1327 | 78.0 | 0.895 |
Control | 40 | 41.147 | 1.746 | 0.950 | 0.073 | |||||
Mean Capillary Intensity (4 × 4 mm) | PCS | 20 | 139.245 | 4.323 | 0.949 | <0.359 | Mann-Whitney U | 217 | 0.350 | |
Control | 26 | 140.512 | 6.028 | 0.795 | <0.001 | |||||
Area of Foveal Avascular Zone (FAZ) (4 × 4 mm) | PCS | 40 | 1917.725 | 405.880 | 0.573 | <0.001 | Mann-Whitney U | 715 | 0.399 | |
Control | 40 | 1925.050 | 389.784 | 0.589 | <0.001 | |||||
Circularity of Foveal Avascular Zone (FAZ) (4 × 4 mm) | PCS | 40 | 0.897 | 0.194 | 0.702 | <0.001 | Mann-Whitney U | 699 | 0.319 | |
Control | 40 | 0.869 | 0.202 | 0.775 | <0 .001 |
Shapiro-Wilk Test | Statistical Test | Statistic | df | p < 0.00357 | |||||
---|---|---|---|---|---|---|---|---|---|
Mean Thickness (Microns) | Cohort Category | Mean | SD | W | p | ||||
Mean Outer Segment mRNFL | PCS | 36.11 | 5.23 | 0.930 | 0.018 | Mann-Whitney U | 617 | 0.615 | |
Control | 35.31 | 4.66 | 0.978 | 0.698 | |||||
Mean Inner Segment mRNFL | PCS | 21.71 | 2.30 | 0.959 | 0.166 | Student’s t | 1.1007 | 71.0 | 0.275 |
Control | 21.18 | 1.78 | 0.945 | 0.085 | |||||
Foveal (Central) Segment mRNFL | PCS | 8.67 | 1.90 | 0.913 | 0.005 | Mann-Whitney U | 654 | 0.920 | |
Control | 8.65 | 2.52 | 0.928 | 0.027 | |||||
Mean Outer Segment mGCL | PCS | 30.34 | 3.48 | 0.973 | 0.454 | Mann-Whitney U | 599 | 0.479 | |
Control | 31.63 | 5.05 | 0.706 | <0.001 | |||||
Mean Inner Segment mGCL | PCS | 50.42 | 5.96 | 0.946 | 0.058 | Mann-Whitney U | 645 | 0.842 | |
Control | 50.95 | 5.91 | 0.931 | 0.033 | |||||
Foveal (Central) Segment mGCL | PCS | 19.85 | 5.94 | 0.865 | <0.001 | Mann-Whitney U | 638 | 0.786 | |
Control | 19.35 | 5.71 | 0.965 | 0.328 |
Shapiro–Wilk | Statistical Test | Statistic | df | p < 0.00357 | |||||
---|---|---|---|---|---|---|---|---|---|
Mean Thickness (Microns) | Neurocognitive Symptoms | Mean | SD | W | p | ||||
Mean Outer mRNFL | Y | 36.15 | 5.62 | 0.861 | 0.003 | Mann-Whitney U | 167 | 0.707 | |
N | 36.05 | 4.74 | 0.939 | 0.367 | |||||
Mean Inner mRNFL | Y | 21.79 | 2.35 | 0.917 | 0.050 | Student’s t | 0.2722 | 37.0 | 0.787 |
N | 21.58 | 2.28 | 0.957 | 0.647 | |||||
Foveal (Central) mRNFL | Y | 8.88 | 1.73 | 0.906 | 0.029 | Mann-Whitney U | 157 | 0.510 | |
N | 8.33 | 2.16 | 0.926 | 0.234 | |||||
Mean Outer mGCL | Y | 30.61 | 3.10 | 0.929 | 0.091 | Student’s t | 0.6193 | 37.0 | 0.540 |
N | 29.90 | 4.09 | 0.954 | 0.581 | |||||
Mean Inner mGCL | Y | 50.80 | 5.47 | 0.935 | 0.127 | Student’s t | 0.5056 | 37.0 | 0.616 |
N | 49.80 | 6.83 | 0.934 | 0.315 | |||||
Foveal (Central) mGCL | Y | 20.54 | 5.16 | 0.870 | 0.005 | Mann-Whitney U | 129 | 0.140 | |
N | 18.73 | 7.06 | 0.823 | 0.007 |
Model | R | R2 | ||
---|---|---|---|---|
1 | 0.164 | 0.0288 | ||
Normality Test (Shapiro–Wilk) | Statistic (W) | p | ||
0.928 | 0.014 | |||
Independent Variables | Estimate | SE | t | p |
Intercept ᵃ | 139.061 | 5.3596 | 25.7593 | <0 .001 |
Age | 0.00954 | 0.0967 | 0.0986 | 0.922 |
Gender: | ||||
F—M | 0.09885 | 2.3094 | 0.0428 | 0.966 |
Length Since Initial COVID-19 Infection | −0.13636 | 0.1387 | −0.9832 | 0.332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, M.; McGrath, O.; Drira, I.; Aslam, T. Retinal Microvasculature Image Analysis Using Optical Coherence Tomography Angiography in Patients with Post-COVID-19 Syndrome. J. Imaging 2023, 9, 234. https://doi.org/10.3390/jimaging9110234
Noor M, McGrath O, Drira I, Aslam T. Retinal Microvasculature Image Analysis Using Optical Coherence Tomography Angiography in Patients with Post-COVID-19 Syndrome. Journal of Imaging. 2023; 9(11):234. https://doi.org/10.3390/jimaging9110234
Chicago/Turabian StyleNoor, Maha, Orlaith McGrath, Ines Drira, and Tariq Aslam. 2023. "Retinal Microvasculature Image Analysis Using Optical Coherence Tomography Angiography in Patients with Post-COVID-19 Syndrome" Journal of Imaging 9, no. 11: 234. https://doi.org/10.3390/jimaging9110234
APA StyleNoor, M., McGrath, O., Drira, I., & Aslam, T. (2023). Retinal Microvasculature Image Analysis Using Optical Coherence Tomography Angiography in Patients with Post-COVID-19 Syndrome. Journal of Imaging, 9(11), 234. https://doi.org/10.3390/jimaging9110234