Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks
<p>Distribution of the acquisition parameters TR and TE in the training dataset. The kernel density estimate plot visualizes the density of the bivariate target distribution. The multiple modes of the multimodal distribution (compared with distribution of TE values), arise from varying sequence parameterizations used at different scanners in the dataset.</p> "> Figure 2
<p>Training and inference phase of our GAN. The generator was trained to synthesize MR images for a given latent vector <math display="inline"><semantics> <mi>z</mi> </semantics></math> and a set of acquisition parameters <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, guided by two networks, the discriminator, and the auxiliary classifier. After training, a synthetic MR image can be generated for a given latent vector <math display="inline"><semantics> <mi>z</mi> </semantics></math> with any acquisition parameters <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (prediction phase). The shown images were generated for a random latent vector with two different sets of acquisition parameters (represented by <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> </semantics></math>), corresponding to coronal imaging orientation, and a TR of 3000 ms, TE of 15 ms, and 45 ms for <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>Acquisition parameter interpolation of TR and TE for a single latent vector. A single latent vector was reconstructed with different TR and TE values, showing the capability of the generator to synthesize MR images with adaptable image contrast. The axes describe the intended acquisition parameter values and the values at the bottom left of each image the output of the AC. The images are annotated (in red) with acquisition parameter values as determined by the AC, showing a low overall conditioning error. The contrast adapts properly within images along the axes; however, the anatomy also slightly changes, which is a sign of feature entanglement of the latent vector with the conditions.</p> "> Figure 4
<p>Additional examples of synthetic MR images with varying TR and TE to show the variety of the generated image samples. The imaging orientation alternates between sagittal and coronal. The images are annotated (in red) with acquisition parameter values as determined by the AC, showing a low overall conditioning error.</p> ">
Abstract
:1. Introduction
2. Background
Ref. | Anatomy | Method/Network Architecture | Sequence Specification | Resolution [Pixels] | Application |
---|---|---|---|---|---|
[19] | Brain | LAPGAN | T1w (4/2000 ms) | 128 × 64 | DA |
[21] | Heart | SCGAN | Cine | 120 × 120 | DA |
[22] | Brain | DCGAN/WGAN | T1w, T1c, T2w, FLAIR (BRATS 2016 [31]) | 128 × 128 | DA |
[23] | Brain | CPGGAN | T1c (BRATS 2016) | 256 × 256 | DA |
[24] | Brain | PGGAN + MUNIT/ SimGAN | T1c (BRATS 2016) | 256 × 256 | DA |
[25] | Brain | PGGAN | T1w, T1c, T2w, FLAIR (BRATS 2016) | 256 × 256 | DA, unsupervised classification of pathology |
[26] | Brain | DCGAN | T1w | 220 × 172 | Image denoising |
[27] | Brain | PGGAN | FLAIR | 128 × 128 | Segmentation |
3. Materials and Methods
3.1. Progressive Growing WGAN-GP
3.2. Separate Auxiliary Classifier
3.3. Controllable GAN
3.4. Data
3.5. Training Details
4. Results
4.1. Qualitative Evaluation
4.2. Quantitative Evaluation
5. Discussion
Applications and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American College of Radiology. ACR–SPR–SSR Practice Parameter for the Performance and Interpretation of Magnetic Resonance Imaging (MRI) of the Knee. Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Knee.pdf?la=en (accessed on 23 November 2020).
- Glazer, D.I.; DiPiro, P.J.; Shinagare, A.B.; Huang, R.Y.; Wang, A.; Boland, G.W.; Khorasani, R. CT and MRI Protocol Variation and Optimization at an Academic Medical Center. J. Am. Coll. Radiol. 2018, 15, 1254–1258. [Google Scholar] [CrossRef]
- Sachs, P.B.; Hunt, K.; Mansoubi, F.; Borgstede, J. CT and MR Protocol Standardization across a Large Health System: Providing a Consistent Radiologist, Patient, and Referring Provider Experience. J. Digit. Imaging 2016, 30, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Lesjak, Ž.; Galimzianova, A.; Koren, A.; Lukin, M.; Pernuš, F.; Likar, B.; Špiclin, Ž. A Novel Public MR Image Dataset of Multiple Sclerosis Patients with Lesion Segmentations Based on Multi-rater Consensus. Neuroinformatics 2017, 16, 51–63. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 8–14 December 2014; pp. 2672–2680. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis. arXiv 2016, arXiv:1605.05396. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein GANs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. arXiv 2018, arXiv:1710.10196. [Google Scholar]
- Hong, Y.; Hwang, U.; Yoo, J.; Yoon, S. How Generative Adversarial Networks and Their Variants Work. ACM Comput. Surv. 2019, 52, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Rundo, L.; Murao, K.; Noguchi, T.; Shimahara, Y.; Milacski, Z.; Koshino, S.; Sala, E.; Nakayama, H.; Satoh, S. MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinform. 2021, 22, 31. [Google Scholar] [CrossRef] [PubMed]
- Nakao, T.; Hanaoka, S.; Nomura, Y.; Murata, M.; Takenaga, T.; Miki, S.; Watadani, T.; Yoshikawa, T.; Hayashi, N.; Abe, O. Unsupervised Deep Anomaly Detection in Chest Radiographs. J. Digit. Imaging 2021, 34, 418–427. [Google Scholar] [CrossRef]
- Kazeminia, S.; Baur, C.; Kuijper, A.; van Ginneken, B.; Navab, N.; Albarqouni, S.; Mukhopadhyay, A. GANs for medical image analysis. Artif. Intell. Med. 2020, 109, 101938. [Google Scholar] [CrossRef]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef] [Green Version]
- Calimeri, F.; Marzullo, A.; Stamile, C.; Terracina, G. Biomedical data augmentation using generative adversarial neural networks. In Proceedings of the International Conference on Artificial Neural Networks, Alghero, Italy, 11–14 September 2017; pp. 626–634. [Google Scholar]
- Denton, E.L.; Chintala, S.; Fergus, R. Deep generative image models using a laplacian pyramid of adversarial networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 7–12 December 2015; pp. 1486–1494. [Google Scholar]
- Zhang, L.; Gooya, A.; Frangi, A.F. Semi-supervised assessment of incomplete LV coverage in cardiac MRI using generative adversarial nets. In International Workshop on Simulation and Synthesis in Medical Imaging; Springer: Cham, Switzerland, 2017; pp. 61–68. [Google Scholar]
- Han, C.; Hayashi, H.; Rundo, L.; Araki, R.; Shimoda, W.; Muramatsu, S.; Furukawa, Y.; Mauri, G.; Nakayama, H. GAN-based synthetic brain MR image generation. In Proceedings of the IEEE 15th International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 4–7 April 2018; pp. 734–738. [Google Scholar]
- Han, C.; Murao, K.; Noguchi, T.; Kawata, Y.; Uchiyama, F.; Rundo, L.; Nakayama, H.; Satoh, S. Learning more with less: Conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), Beijing, China, 3–7 November 2019; pp. 119–127. [Google Scholar]
- Han, C.; Rundo, L.; Araki, R.; Nagano, Y.; Furukawa, Y.; Mauri, G.; Nakayama, H.; Hayashi, H. Combining Noise-to-Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection. IEEE Access 2019, 7, 156966–156977. [Google Scholar] [CrossRef]
- Beers, A.; Brown, J.; Chang, K.; Campbell, J.P.; Ostmo, S.; Chiang, M.F.; Kalpathy-Cramer, J. High-resolution medical image synthesis using progressively grown generative adversarial networks. arXiv 2018, arXiv:1805.03144. [Google Scholar]
- Bermudez, C.; Plassard, A.J.; Davis, L.T.; Newton, A.T.; Resnick, S.M.; Landman, B.A. Learning implicit brain MRI manifolds with deep learning. In Proceedings of the Medical Imaging 2018: Image Processing, Houston, TX, USA, 10–15 February 2018; p. 105741L. [Google Scholar]
- Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, D.A.; Hernández, M.V.; Wardlaw, J.; Rueckert, D. GAN augmentation: Augmenting training data using generative adversarial networks. arXiv 2018, arXiv:1810.10863. [Google Scholar]
- Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved liver lesion classification. In Proceedings of the IEEE 15th International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 4–7 April 2018; pp. 289–293. [Google Scholar]
- Madani, A.; Moradi, M.; Karargyris, A.; Syeda-Mahmood, T. Chest X-ray generation and data augmentation for cardiovascular abnormality classification. In Proceedings of the Medical Imaging 2018: Image Processing, Houston, TX, USA, 10–15 February 2018; p. 105741M. [Google Scholar]
- Huang, X.; Liu, M.-Y.; Belongie, S.; Kautz, J. Multimodal unsupervised image-to-image translation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; Lecture Notes in Computer Science. pp. 172–189. [Google Scholar]
- Menze, B.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef]
- de Coene, B.; Hajnal, J.V.; Gatehouse, P.; Longmore, D.B.; White, S.J.; Oatridge, A.; Pennock, J.M.; Young, I.R.; Bydder, G.M. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJR Am. J. Neuroradiol. 1992, 13, 1555–1564. [Google Scholar]
- Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang, W.; Webb, R. Learning from simulated and unsupervised images through adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2107–2116. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected cnvolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Lee, M.; Seok, J. Controllable Generative Adversarial Network. IEEE Access 2019, 7, 28158–28169. [Google Scholar] [CrossRef]
- Zbontar, J.; Knoll, F.; Sriram, A.; Murrell, T.; Huang, Z.; Muckley, M.J.; Defazio, A.; Stern, R.; Johnson, P.; Bruno, M.; et al. fastMRI: An open dataset and benchmarks for accelerated MRI. arXiv 2018, arXiv:1811.08839. [Google Scholar]
- Kinga, D.; Adam, B.J. A method for stochastic optimization. In Proceedings of the International Conference Learn Represent (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Kudo, A.; Kitamura, Y.; Li, Y.; Iizuka, S.; Simo-Serra, E. Virtual thin slice: 3D conditional GAN-based super-resolution for CT slice interval. In Machine Learning for Medical Image Reconstruction; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–100. [Google Scholar]
- Chuquicusma, M.J.M.; Hussein, S.; Burt, J.; Bagci, U. How to fool radiologists with generative adversarial networks? a visual turing test for lung cancer diagnosis. In Proceedings of the IEEE 15th International Symposium on Biomedical Imaging, Washington, DC, USA, 4–7 April 2018. [Google Scholar]
- Gold, G.E.; Han, E.; Stainsby, J.; Wright, G.; Brittain, J.; Beaulieu, C. Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast. Am. J. Roentgenol. 2004, 183, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Bitar, R.; Leung, G.; Perng, R.; Tadros, S.; Moody, A.R.; Sarrazin, J.; McGregor, C.; Christakis, M.; Symons, S.; Nelson, A.; et al. MR Pulse Sequences: What Every Radiologist Wants to Know but Is Afraid to Ask. Radiographics 2006, 26, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–19 June 2019. [Google Scholar]
- Yoon, J.; Drumright, L.N.; Van Der Schaar, M. Anonymization Through Data Synthesis Using Generative Adversarial Networks (ADS-GAN). IEEE J. Biomed. Health Inform. 2020, 24, 2378–2388. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online. 14–19 June 2020. [Google Scholar]
True Label | ||||
---|---|---|---|---|
Real | Synthetic | |||
Predicted label | Real | Expert 1 | 53 | 22 |
Expert 2 | 36 | 39 | ||
IRA | 29 | 10 | ||
Synthetic | Expert 1 | 22 | 53 | |
Expert 2 | 39 | 36 | ||
IRA | 15 | 24 |
Model Architecture | Image Orientation | TR | TE |
---|---|---|---|
Accuracy [%] | MAE [ms] | MAE [ms] | |
ACGAN | 63.8 | 640.0 | 6.4 |
Separate AC: DenseNet-121 and HP Tuning | 100 | 239.6 | 1.6 |
Synthetic | 100 | 219.4 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denck, J.; Guehring, J.; Maier, A.; Rothgang, E. Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks. J. Imaging 2021, 7, 133. https://doi.org/10.3390/jimaging7080133
Denck J, Guehring J, Maier A, Rothgang E. Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks. Journal of Imaging. 2021; 7(8):133. https://doi.org/10.3390/jimaging7080133
Chicago/Turabian StyleDenck, Jonas, Jens Guehring, Andreas Maier, and Eva Rothgang. 2021. "Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks" Journal of Imaging 7, no. 8: 133. https://doi.org/10.3390/jimaging7080133
APA StyleDenck, J., Guehring, J., Maier, A., & Rothgang, E. (2021). Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks. Journal of Imaging, 7(8), 133. https://doi.org/10.3390/jimaging7080133