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Abstract: To evaluate the advantages of dual-energy computed tomography (DECT) virtual non-
hydroxyapatite color mapping (VNHAP) in combination with standard bone CT (BCT) in the identi-
fication of subtle or occult traumatic fractures referred to emergency and acceptance departments
(DEAs). Forty patients (22 men; mean age 83 ± 23.7 y) with suspected traumatic fractures referred to
our emergency department and examined with a fast kilovoltage-switching single-source spectral
CT scan between January and October 2023 were retrospectively reviewed. The BCT and VNHAP
images were blindly evaluated by two radiologists with >10 years and <2 years of experience in
musculoskeletal imaging. Both techniques were evaluated in terms of sensitivity (SE), specificity
(SP), positive and negative predictive values (PPVs and NPVs) and accuracy for fracture detection, as
confirmed at a 3-month clinical–instrumental follow-up. Inter-observer agreement and examination
times were also analyzed. Fractures were confirmed in 18/40 cases. The highest values of diagnostic
performance for VNHAP images were obtained in terms of SP (90.9% and 95%) and PPV (87.5% and
92.8%) and for the less experienced operator. No statistically significant differences were observed be-
tween the diagnostic accuracy of the two readers in the evaluation of VNHAP images. Inter-observer
agreement was moderate (κ = 0.536) for BCT and substantial (κ = 0.680) for VNHAP. Comparing
the two operators, a significantly longer examination time for BCT and no significant difference for
VNHAP were registered. Our preliminary experience may encourage the employment of VNHAP
maps in combination with BCT images in emergency settings. Their use could be time-saving and
valuable in terms of diagnostic performance, especially for less experienced operators.

Keywords: dual-energy computed tomography (DECT); material decomposition; bone marrow
edema; traumatic fractures; emergency radiology

1. Introduction

Traumatic fractures are a common age-independent clinical issue and represent a
major drain on the healthcare resources of all countries, due to their high morbidity, dis-
ability, and hospitalization rates [1]. In this regard, their delayed and inaccurate diagnoses
negatively affect proper functional recovery over the longer term, causing additional risks
and avoidable costs [2,3]. The incidence of traumatic fractures is extremely variable in
different countries, based on different socioeconomic conditions. Furthermore, in many
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studies, fractures are overestimated due to overdiagnosis from inexperienced operators
and the use of trauma center general data [4]. Another problem lies in the fact that, in
larger cities, orthopedic trauma is managed in differently equipped hospitals, and data
analysis is therefore biased. Despite the real incidence of traumatic fractures being difficult
to establish, the evaluation of operators’ abilities in the identification of subtle or occult
fractures remains an interesting subject of study, as well as the increasing use of advanced
diagnostic methods to obtain precise diagnoses in a sufficiently timely manner. An accurate
and effective three-dimensional imaging of traumatic fractures such as bone CT (BCT) is
therefore needed, when clinical and radiographic examinations are inconclusive [4,5]. In
selected cases, Magnetic Resonance Imaging (MRI), due to its high potential in detecting
bone marrow edema (BME), would be extremely useful in the assessment of nondisplaced
fractures. Nevertheless, it is known how logistically challenging it is to employ MRI in
emergency settings [6–8]. First of all, MRI requires an examination time that is too long
for it to be routinely performed in all clinical settings. Furthermore, the patient should
lie still during examination, and this is frequently impossible for children, the elderly, or
trauma patients. Recent developments have allowed for the ever-increasing dissemina-
tion of dual energy computed tomography (DECT), which enables the differentiation of
materials according to their chemical composition, thus obtaining precise information on
tissues’ compounds through spectral acquisition [9,10]. In the last decade, DECT, or spectral
imaging, has become a decisive diagnostic method in many clinical applications, such as in
neuroradiology, and cardiovascular, chest, abdominal and musculoskeletal fields [11].

Six main DECT technologies are currently available, listed as follows: (1) dual-source
DECT (Siemens Healthineers, Forchheim, Germany), (2) fast kilovolt peak (kVp) switching
(GE Healthcare, Milwaukee, Wisconsin), (3) dual-layer DECT (Philips Healthcare, Best,
Netherlands), (4) split-filter DECT (Siemens Healthineers, Forchheim, Germany), (5) con-
secutive acquisitions DECT (Canon Medical Systems, Ōtawara, Japan), (6) photon-counting
CT (Naeotom Alpha, Sie-mens Healthineers, Forchheim, Germany). Though all DECT tech-
nologies produce images with similar characteristics, the nomenclature varies depending
on the technologies and manufacturers. One of the most recent DECT technologies is kV
rapid switching, whose single x-ray source can modify voltage during a single rotation.
Specific post-processing algorithms may be applied to the acquired data set for different
purposes, such as subtracting a certain material to evaluate another without superposition,
providing color-coded maps of tissue iodine content, and analyzing the composition of
specific targets [10–12].This includes virtual non-hydroxyapatite application (VNHAP),
which enables calcium removal and a color-coded visualization of the areas of increased
bone marrow attenuation [13,14].

BME is an indirect sign of bone contusion secondary to the disruption of marrow
trabeculae, with the leakage of blood and interstitial fluid to marrow spaces. The presence
of BME, identified as an increased bone intensity at MRI, is often associated with acute bone
pain and joint function loss and should lead to additional and careful objective examination
of the traumatic sites [8,11]. The detection of BME could therefore be a useful tool to
prevent adverse patient outcomes, prolonged recovery times, and avoidable complications
such as dislocation, subchondral bone necrosis, osteoarthritis, and osteomyelitis. Despite
the role of DECT in detecting and characterizing BME in various anatomical locations
having been widely recognized, only a few recent studies support DECT as an alternative
imaging method for BME in trauma patients and its effectiveness in the identification of
BME in traumatic fractures [10,15,16]. In this scenario, the potential of DECT lies in a better
identification of the lesion, performing a all-inclusive examination [16,17]. The aim of our
study was to evaluate the value of DECT, with VNHAP as an aid to standard bone CT, in
the identification of subtle or occult fractures in emergency settings.
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2. Materials and Methods
2.1. Study Population and Study Design

This single-center study was approved by our Internal Review Board (IRB) and con-
ducted in conformity to the ethics guidelines of the 1964 Declaration of Helsinki and
its amendments. Due to its retrospective design, an informed consent to study partici-
pation was waived. A total of 54 patients submitted to DECT for suspected traumatic
fracture in our Emergency Department between January and October 2023 were selected
and retrospectively reviewed. All the considered fractures were radiographically occult
or radiographically subtle. In both cases, the clinical suspicion of osseous injury with a
negative or uncertain radiographic diagnosis has led to an advanced imaging examination.

The exclusion criteria included an age of less than 18 years, non-traumatic frac-
tures, bone infections such as osteomyelitis, diseases affecting calcium and phosphorus
metabolism, and metal bone prostheses of any type. In all the selected cases, a 3-month
clinical examination, performed in the orthopedic clinic of our institution, and an X-ray
or CT imaging follow-up were available. A total of 14 patients were excluded: 4 minors,
7 non-traumatic pathological fractures, 2 cases of osteomyelitis and 1 case of spondy-
lodiscitis. The final study population included 40 patients (22 males and 18 females;
mean age ± standard deviation, 83 ± 23.7 years). A flowchart the summarizing inclusion
and exclusion criteria and methodology workflow is shown in Figure 1.
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Figure 1. Diagram showing flowchart of patients enrolled and methodology workflow.
CT = computer tomography; GSI = Gemstone Spectral Imaging; VNHAP = virtual non-hydroxyapatite.

The diagnostic performance of BCT and VNHAP evaluated in terms of sensitivity (SE),
specificity (SP), positive and negative predictive values (NPVs and PPVs), and diagnostic
accuracy resulting from the analyses performed by two readers was considered as primary
endpoint. The 3-month clinical evaluation and imaging confirmation obtained by radio-
graphs, computed tomography, and/or magnetic resonance were adopted as the standard
of reference.

The times taken by each reader for the evaluation of each imaging technique were
considered as the secondary endpoint.

2.2. CT Protocol and Post-Processing

All the CT scans were obtained by a 256-slice, single-source DECT, with fast kV-
switching between 80 and 140 kVp (Revolution CT, GE Healthcare® Milwaukee, WI, USA).
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All patients were in a supine position with the head positioned towards the gantry. No
intravenous contrast medium was administered. For fracture detection, axial, coronal,
and sagittal reconstructions (section thickness, 0.625 mm) were reconstructed with a Bone
Plus kernel. The detailed acquisition parameters were reported in Table 1. The acquired
data set was postprocessed using an advanced workstation (GSI Viewer, AW Server 3.2,
Ext 2.0; GE Medical Systems, Milwaukee, WI, USA). The VNHAP images were generated
by two-material decomposition and displayed as color–water maps with hydroxyapatite
subtraction. VNHAP maps and standard grayscale DECT series were sent to the picture
archiving and communication system (PACS).

Table 1. Dual-energy computed tomography (DECT) scanning parameters.

DECT Parameters Values

Reconstruction slice thickness (mm) 2

Reconstruction FOV * diameter (mm) 120–500

Slice Thickness (mm) 0.625

Scan-Pitch Ratio 0.516:1

Low energy (kVp) 80

High energy (kVp) 140

Tube current (mA) 190–480

Rotation Time (s) 0.8

Reconstruction algorithm 50% ASIR V **

Reconstruction kernel Bone Plus
* FOV = Field of view; ** ASIR V = Adaptive Statistical Iterative Reconstruction.

2.3. Image Analysis

After a training period of 20 cases, different from the study population, for the purpose
of reducing any bias, the BCT images displayed on a dedicated PACS workstation (Impacs
version 6.6.1.7028, Agfa Healthcare®, Mortsel, Belgium) were blindly and independently
analyzed for the presence of fractures by two radiologists (Operator 1, SC, with >10 years of
experience in musculoskeletal radiology and Operator 2, CV, with <2 years of experience).
After the analysis of the BCT images, both the operators evaluated the color-coded VNHAP
maps for the presence of BME. The data obtained by the two readers were compared to the
3-month clinical examinations and imaging follow-up to confirm the presence of traumatic
fractures. The times taken for each individual assessment of the BCT and VNHAP images
were also recorded.

2.4. Statistical Analysis

Continuous variables were expressed as mean ± standard deviation. The data analysis
was conducted using GraphPad Prism version 9.1.1 (GraphPad Software, Boston, MA,
USA) statistical software and Excel 2021®. Qualitative variables were analyzed by Fisher’s
test. Wilcoxon’s matched-pairs signed-rank test was used for qualitative variables and for
quantitative variables with abnormal distribution. The overall diagnostic performance of
the visual assessment of BCT and VNHAP images was calculated according to the following
formulas: true positive (TP)/true positive (TP) + false negative(FN) for sensitivity; true
negative (TN)/true negative (TN) + false positive (FP) for specificity; (TP)/(TP + FP) for
positive predictive value (PPV); (TN)/(TN + FN) for negative predictive value (NPV); (TP
+ TN)/(TP + TN + FP+ FN) for accuracy. Inter-observer agreement was measured using
Cohen’s κ test and interpreted as follows: for values 0.01–0.20, the agreement was poor;
for values between 0.21 and 0.40, the agreement was modest; for values between 0.41 and
0.6, the agreement was moderate; for values between 0.61 and 0.80, the agreement was
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substantial; and for values between 0.8 and 1, the agreement was excellent. The significance
levels were set at p < 0.05.

3. Results

Over a total of 40 patients, a traumatic fracture was detected and confirmed at follow-
up in 18 (45%) cases. Four (10%) vertebral fractures, four (10%) hip fractures, four (10%)
wrist fractures, three (7.5%) ankle fractures, and one (2.5%) knee fracture were the most
frequently detected lesions. Traumatic fractures were associated with local pain in 36 (90%)
cases, local swelling in 24 (60%) cases, and determined a functional compromise in 28 (70%)
cases. The demographic, etiological, and clinical characteristics of the study population
were summarized in Table 2.

Table 2. The demographic, etiological, and clinical characteristics of study population.

Demographic Features

Patients (n) 40

Age (yrs) mean ± standard deviation [Range] 83 ± 23.7 [22–95]

Sex (male/female) 22/18

Trauma history n (%)

Positive history for trauma 40 (100%)

Confirmed fracture 18 (45%)

Negative for fracture 22 (55%)

Etiological classification n (%)

Vertebral body fractures 4 (10%)

Hip fractures 4 (10%)

Knee fractures 1 (2.5%)

Wrist fractures 4 (10%)

Ankle fractures 3 (7.5%)

Foot fractures 1 (2.5%)

Hand fractures 1 (2.5%)

Clinical features n (%)

Local pain 36 (90%)

Local swelling 24 (60%)

Functional compromise 28 (70%)

Acute hemorrhage 0

The results of visual examinations of BCT and VNHAP images performed by Operator
1 and Operator 2 were illustrated in Figures 2 and 3, respectively.

The visual assessment of BCT images performed by Operator 1 and compared to
a clinical–instrumental 3-month evaluation resulted in SE, SP, PPV, VPN, and accuracy
values of 83.3%, 90.9%, 88.2%, 86.9% and 87.5%, respectively. Accordingly, the evaluation
of BCT images performed by Operator 2 showed SE, SP, PPV, VPN, and accuracy values of
72.2%, 86%, 81.2%, 79.1% and 80.0%, respectively. Concerning the assessment of VNHAP
maps, SE, SP, PPV, VPN, and accuracy values of 77.7%, 90.9%, 87.5%, 83.3%, and 85.0% for
Operator 1 and SE, SP, PPV, VPN, and accuracy values of 72.2%, 95%, 92.8%, 80.7%, and
85.0% for Operator 2 were recorded, respectively. No statistically significant differences
were observed between the diagnostic accuracy of the two readers in the evaluation of
VNHAP images. The highest values of diagnostic performance for VNHAP images were
obtained in terms of SP (90.9% and 95%) and PPV (87.5% and 92.8%) and for the less
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experienced operator. The cumulative diagnostic performance of the visual assessment of
BCT and VNHAP images was summarized in Table 3.
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Figure 3. Operator 2’s evaluation of standard bone CT images and virtual non-hydroxyapatite
maps (VNHAP) compared to the 3-month clinical and imaging follow-up using Fisher’s exact test.
Op. 2 = Operator 2; M+ = positive for fracture; M− = negative for fracture; VNHAP = virtual
non-hydroxyapatite; bone CT = bone computer tomography.

Table 3. Cumulative diagnostic performance (qualitative assessment) of the visual assessment
performed by Operator 1 and Operator 2 for the bone CT and virtual non-hydroxyapatite (VN-
HAP) images.

Variables Operator 1 Operator 1 Operator 2 Operator 2
Bone CT VNHAP Bone CT VNHAP

SE 15/18 83.3% 14/18 77.7% 13/18 72.2% 13/18 72.2%
SP 20/22 90.9% 20/22 90.9% 19/22 86.0% 21/22 95.0%

PPV 15/17 88.2% 14/16 87.5% 13/16 81.2% 13/14 92.8%
NPV 20/23 86.9% 20/24 83.3% 19/24 79.1% 21/26 80.7%

Accuracy 35/40 87.5% 34/40 85.0% 32/40 80.0% 34/40 85.0%

SE = sensitivity; SP = specificity; NPV = negative predictive value; PPV = positive predictive value.
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The inter-observer agreement showed a moderate agreement between the two op-
erators when applied to BCT evaluation results (Cohen’s κ = 0.536), instead of what
was obtained in the evaluation of VNHAP color maps, wherein a substantial agreement
(Cohen’s κ = 0.680) had been registered. Statistically significant differences in terms of
evaluation time were obtained for BCT images as follows: 58.7 ± 25 s for Operator 1 and
81.2 ± 33.1 s for Operator 2 (p < 0.0001), as shown in Figure 4.
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VNHAP evaluations (p < 0.127). The results were obtained by Wilcoxon matched-pairs signed rank
test. Op. 1 = Operator 1; Op. 2 = Operator 2; VNHAP = virtual non-hydroxyapatite; bone CT = bone
computer tomography.

Conversely, no statistically significant differences in VNHAP image evaluation time
between the more experienced and the less experienced radiologists were documented
(110.8 ± 39.1 s vs. 114.9 ± 41.6 s; p < 0.127).

4. Discussion

Since its introduction into clinical practice, DECT has achieved numerous and relevant
applications in different fields such as oncological, vascular, urological, and musculoskeletal
imaging [13,14,18–21]. Significant results have been obtained in the identification of metas-
tases and primitive lesions, in perfusion studies, and in the characterization of plaques,
crystals, and stones [12,18]. In musculoskeletal imaging, several interesting DECT appli-
cations have been developed and have become easily accessible with the use of specific
post-processing algorithms. The principal ones in musculoskeletal imaging are represented
by crystal detection in crystal-induced arthropathies, such as gout disease; the reduction
of metal beam-attenuating artifacts; the characterization of soft and collagenous tissues
such as tendons, ligaments and vertebral disks; the analysis of bone mineral density; and
the detection of BME [11]. The study of bone marrow edema was first carried out in the
clinical routine of inflammatory bone and rheumatic diseases, in malignant bone marrow
infiltrations, and in chronic pain conditions such as algoneurodystrophy [11,12]. In recent
studies, the detection of BME has also proven to be of extreme interest in daily urgent and
emergency settings, where MRI is infrequently employed due to the long execution times,
low availability, and multiple contraindications [6,22,23]. In both settings, DECT imaging
may represent a potential alternative to MRI for acute traumas, especially in elderly or
unstable patients. Several DECT technologies such as double-tube, sequential, dual-layer,
and single-tube rapid kV switching are currently capable of identifying bone edema [24].
In previous studies, fast kV-switching DECT demonstrated similar results in terms of
diagnostic performance compared to other technologies [25]. Furthermore, the HAP-water
decomposition technique of rapid kV-switching DECT has previously been described as a
feasible tool in the detection of abnormal edema in vertebral compressive fractures [10]. In
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our study, the utility of VNHAP maps in the identification of traumatic BME not identifiable
with standard bone reconstruction (Figure 5) was confirmed by notable results in terms of
sensitivity, specificity, and diagnostic accuracy.
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Figure 5. A patient referred for direct trauma to the greater trochanter with right hip pain on acupres-
sure and during walking. A plain radiograph of the right hip showing a compound fracture of the
right femoral neck (white arrows) with a transverse course (A), confirmed upon bone reconstruction
coronal and axial CT images (B,F); 1.5 T MRI coronal T1W highlighted the fracture (D), and coro-
nal and axial STIR images highlighted the bone marrow edema (E,H). VNHAP coronal and axial
reconstructions confirmed the presence of bone marrow edema at the fracture site (C,G).

The performance of the two readers in the visual analysis of BCT and VNHAP images
demonstrated different results in terms of sensitivity, specificity, PPV and NPV, as expected
from the different experience levels. However, no statistically significant differences were
observed between the diagnostic accuracy of the two readers in the evaluation of VNHAP
images. The visual analysis of VNHAP images also showed greater SP and PPV in the
evaluation performed by the operator with less experience in musculoskeletal imaging.

The inter-reader agreement for VNHAP images was substantial (κ = 0.680), in concor-
dance with previously published research, indicating that the VNHAP algorithm could
be considered a promising technique for undetectable fractures on bone reconstruction
CT images in an emergency workflow. In agreement with the previous series, our qualita-
tive analysis findings depended on multiple technical factors, the personal routine of the
readers, and also on the different expertise of the two readers.

Previous studies, mostly focused on vertebral fractures, have demonstrated the high
diagnostic performance of DECT, by means of virtual non-calcium reconstructions, in the
identification of the presence and extent of BME [15,16,26]. Compared to MRI, whose ad-
vantages stem from its precise evaluation of soft tissues and disco-ligamentous structures,
DECT showed higher sensitivity and diagnostic confidence in the assessment of acute
fractures, especially in cases of subtle or complex orientated fracture lines [16,27]. In this
scenario, several studies in the literature have described the use of Virtual NonCalcium
(VNCa) rather than VNHAP maps in the identification of traumatic bone edema, from the
spine to the appendicular skeleton, demonstrating high values in terms of sensitivity and
specificity [26,28–30]. However, the utility of single-source, fast kV-switching Gemstone™
Spectral Imaging (GSI) VNHAP maps in identifying traumatic bone edema and the em-
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ployment of this technique in emergency settings and in appendicular traumatic fractures
has not been reported in the literature.

A series of 25 cases evaluated by Reddy et al. assessed the use of DECT in emergency
settings for the detection of BME in hip fractures of patients with normal radiographs. This
study obtained highly sensitive but poorly specific results (SE, SP, PPV, and NPV values of
90%, 40%, 86%, and 50%, respectively) compared to the present study. The difference could
be related to the considered district. The reference study examined the hip district alone,
where BME could be frequently due to degenerative changes rather than traumas, while in
the present study different districts were investigated [6]. Furthermore, in our study, the
diagnostic performance of DECT imaging was compared to a 3-month clinical examination,
conducted in the same referral orthopedic department, as well as an imaging follow-up
performed in the same institution for the presence of previous traumas, with the aim of
matching the process as closely as possible to real daily clinical practice (Figure 6).
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Figure 6. A patient referred for direct trauma to the left lateral condyle-patella, with severe pain on
acupressure on the lateral condyle and functional impotence. A plain radiograph of the left knee
showing a suspected compound fracture of the lower edge of the left patella (white arrows) (A,E),
further confirmed by the bone reconstruction of axial (C) and coronal CT images (F,G). VNHAP
axial and coronal color-coded maps confirmed the presence of bone marrow edema at the fracture
site (B,D).

Several important limitations of the present study must be mentioned. First, the
limitations include the limited number of patients, the retrospective design, the limited
number of readers evaluating images, the lack of an MRI confirmation of BME, and the
fact that pediatric cases were not taken into consideration. Secondly, many factors such
as age, drugs, comorbidities, and unknown conditions modifying bone mineral density
could influence DECT attenuation values and VNHAP maps. The lack of a quantitative
evaluation of VNHAP maps could be considered another limitation, although a recent
meta-analysis about the diagnostic performance of DECT for BME detection recommended
the qualitative assessment of DECT findings rather than a quantitative assessment for a
more sensitive diagnosis of BME (SE 85%; SP 97% vs. SE 84%; SP 88%) [31].

5. Conclusions

Regarding clinical impact, our preliminary data may encourage the use of DECT-
GSI virtual non-hydroxyapatite–water decomposition color maps in the evaluation of
suspected fractures in the emergency departments. The employment of VNHAP maps for
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the detection of BME in emergency settings was particularly valuable in terms of SP and
PPV and for less experienced operators, without being time consuming.
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