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Abstract: Climate changes have exacerbated the progression of drought conditions on a
global scalethreating to crop production and heightening concerns over food security. Water
scarcity enforces alterations in fundamental morphology, physiology and biochemical traits
in crops. Consequently, it is imperative to identify environmentally sustainable alternative
solutions to mitigate this problem and enhance overall plant performance. In this sense,
biostimulants have emerged as a promising alternative as they improve plant resilience,
enhance physiological processes, and mitigate the detrimental consequences of water
deficit conditions on crop production. This review compiles the latest research on the
application of organic extracts and inorganic compounds in crops subjected to drought
conditions, specifically humic acids, protein hydrolysates, seaweed extracts, and silicon.
Moreover, it offers a comprehensive overview of the origins and effectiveness of these
biostimulants, with a detailed analysis of their application and the associated physiological,
biochemical, and genetic modifications induced by these bioactive compounds. This
knowledge enhances the understanding of the efficacy and implementation strategies
pertinent of these compounds under water stress scenarios in agricultural settings.
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1. Introduction
In recent years, changes in climate patterns have exerted a significant influence on

agricultural regions, particularly manifesting notable impacts in arid, semi-arid, and coastal
regions [1]. Currently, approximately one-third of arable lands are categorized as arid or
semi-arid regions, with the severity of drought exhibiting an escalating trajectory. Drought
is a major abiotic stressor, exerting profound detrimental effects on crops worldwide [2,3].
Forecasts predict a notable increase in mean air temperature by 5 ◦C in forthcoming years,
further exacerbating the prevalence of drought occurrences and intensities [4,5].

The negative impact of drought stress on plants is contingent upon both the intensity
and duration of the stress, with its severity intricately linked to the developmental stage
of the plant. Drought stress elicits a spectrum of effects on plants at multiple levels of
biological organization, encompassing anatomical and biochemical aspects [2,6] (Figure 1).

In terms of morphology, the impact of water scarcity on crops is manifested by ob-
servable reductions in plant growth and hastened leaf senescence. These conspicuous
phenotypic changes culminate in a pronounced deterioration in both the quality and quan-
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tity of yield, serving to underscore the profound deleterious effects of drought stress on
agricultural productivity [7,8].
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Figure 1. Water stress-induced plant anatomical and biochemical changes. The figure was generated
using BioRender software (https://www.biorender.com/, accessed on 11 July 2024).

At the physiological level, water stress “pushes” plants to close their stomata, a pivotal
mechanism aimed at reducing water loss by transpiration and thus conserving water
resources. This response inevitably limits the diffusion of carbon dioxide (CO2) into the
leaf for photosynthetic assimilation. Furthermore, drought stress disrupts the hydraulic
conductivity of plants, impeding the upward movement of water from roots to shoots. This
disruption not only compromises the transport of water and essential nutrients but also
disturbs the delicate balance of osmotic regulation within plant tissues [9,10].

At the biochemical level, the imposition of drought-induced water deficits triggers an
elevation in the production of reactive oxygen species (ROS) within plant cells. This surge
in ROS levels instigates oxidative stress, which can inflict damage on cellular structures
and biomolecules. In response, plants activate an array of antioxidant defense mechanisms
to scavenge excess ROS and mitigate oxidative injury, thereby preserving cellular integrity
and function [11,12].

At the genetic level, drought stress can induce the overexpression or downregulation
of several functional and regulatory genes. Functional genes are linked to the resistance
against environmental stress, such as aquaporin genes, LEA proteins genes. In contrast,
regulatory genes are focused on signal transduction and regulation of gene expression,
enabling an indirect response to stress. These include genes encoding protein kinases,
protein phosphatases genes, and other signaling molecules [6].

In the face of the escalating challenges posed by drought stress on crop productiv-
ity, the strategic application of biostimulants emerges as a compelling imperative. These
substances and/or microorganisms offer a multifaceted approach to strengthen plant re-
silience, enhance physiological processes, and ameliorate the detrimental consequences
of water deficit conditions on crop production. Under European Community Regulation
(EU) 2019/1009 [13], plant biostimulants have been delineated based on four distinct
claims: “Plant biostimulants are EU fertilizer products intended to stimulate plant nutrition
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processes regardless of the nutrient content of the product. Their primary objective is to
improve one or more of the following plants and/or rhizosphere characteristics: (1) nu-
trient use efficiency, (2) tolerance and resistance to biotic and abiotic stressors, (3) quality
attributes, or (4) availability of nutrients confined in the soil or rhizosphere. Under the
current regulatory framework, biostimulants are subject to classification, a fundamental
process designed to delineate their various constituents and functional attributes. Within
this framework, biostimulants have been systematically categorized into two principal
groups: microbial and non-microbial. The microbial classification encompasses organisms
such as beneficial fungi and bacteria, while the non-microbial category encompasses a
broad spectrum of substances, including plant and seaweed extracts, biopolymers, protein
hydrolysates, amino acids, humic acids, and minerals. This classification schema is integral
to regulatory coherence and scientific elucidation within the realms of agricultural and
environmental jurisprudence, offering a structured framework for the assessment and
management of biostimulant products [13].

The effectiveness of nonmicrobial biostimulants is mainly attributed to their rich
repertoire of bioactive compounds, particularly amino acids and phytohormones. These
constituents exert pronounced effects on plant growth dynamics by intricately modulating
primary metabolic pathways. They also play a pivotal role in orchestrating secondary
metabolic processes within plants [14,15].

Originally confined primarily to organic agricultural practices, plant biostimulants
have undergone a notable expansion in their utilization, permeating various cropping
systems, including conventional and integrated crop production methodologies. This
evolution highlights a fundamental shift in the perception and application of biostimulant
technologies, signifying their broader recognition and acceptance within the agricultural
community. Such widespread adoption signifies a pivotal shift in agricultural practices,
wherein biostimulants are increasingly acknowledged as valuable tools for enhancing crop
productivity and sustainability across diverse farming paradigms [16].

According to analysis by Traon et al. (2014) [17], Italy, France, and Spain are the leading
producers of biostimulants in the world. The market analyses revealed that during the
period from 2016 to 2021, the global biostimulant market had a compound annual growth
rate (CAGR) of more than 10%. One of the issues still poorly discussed concerns the analysis
of the influence of biostimulant treatments on the production and economic structure. In
any case, while the use of biostimulants, regardless of their mode of application, represents
a cost, the possibility of increasing yield would improve the economic efficiency of the
farm. These economic benefits would increase even more there where the application of
biostimulants would lead to a significant reduction in utulized inputs such as nutrients
and water.

Recent reviews on the role of non-microbial biostimulants in mitigating drought
stress [18–27] have examined scientific reports and book chapters published in recent years.
These reviews summarize the potential role of non-microbial biostimulants in mitigating
the effects of climate change on crops.

Despite these insights, the mechanism of action of biostimulants remains unclear
and is only hypothesized. We believe it is essential to study the multifaceted actions
of biostimulants to understand their effectiveness against stress, much like assembling
pieces of a puzzle. Our review is innovative because we are among the first to detail
the physiological, molecular, and genetic mechanisms of non-microbial biostimulants
in mitigating water stress. Additionally, unlike many reviews that focus on a single
crop, we have addressed various crops, including herbaceous, fruit trees, vines, and
vegetable species.
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The objective of this review goes to elucidate opportunities that could be effectively
exploited by applying nonmicrobial biostimulants to increase plant resilience to water
stresses often associated with climate change.

2. Humic Acids
2.1. Origin and Effectiveness of Humic Acids as Biostimulants in Agriculture

Humic substances (HS) are the product of intricate chemical and biological processes
involving the incorporation of organic materials derived from plant and animal residues,
along with microbial metabolism. Humic substances represent the predominant reservoir
of organic carbon within Earth’s terrestrial ecosystems. Constituting over sixty percent of
soil organic matter, they serve as a fundamental component in organic fertilizers. For this
reason, HS are recognized for their significant nutrient content [28]. Humic substances,
integral components of soil and natural organic matter, are traditionally categorized into
distinct classes, namely humic acids (HA), fulvic acids (FA), and humins. This classification
is mainly based on the solubility behavior of these substances in aqueous environments [29].
Due to their chemical reactivity, ability to resist microbial interactions, and lower degra-
dation, researchers have turned their focus to humic acids for their remarkable ability to
improve fertility and promote soil health in a relatively short time [30]. The structure of
HAs comprises numerous functional groups, with phenolic (OH) and carboxylic (COOH)
groups being predominant [29].

Humic acids represent a constituent of organic matter serving as a precursor to humic
compounds, and they exhibit solubility under acidic conditions. The presence of several
functional groups in humic acids results in unique characteristics that can promote plant
development by inducing carbon uptake and metabolism [30]. In addition to its role in
carbon cycling, the utilization of HAs has been shown to augment nitrogen metabolism
by enhancing the activities of key enzymes such as nitrate reductase (NR), glutamate
dehydrogenase (GDH), and glutamine synthetase (GS), all of which are integral to nitrogen
assimilation pathways [31].

At the soil level, HA supplementation enhances the physicochemical properties of the
soil, improving its structure, texture, microbial abundance, water-holding capacity (WHC)
and soil nutrient availability [32]. As a result, root growth is stimulated, promoting the
exudation of molecular weight organic anions by roots, which culminates in the release
of soil micronutrients such as Fe, Mn and Zn [33]. Humic acids have been observed to
facilitate crop growth through a myriad of metabolic mechanisms. These include increased
cell membrane permeability, enhanced mineral assimilation, elevated rates of photosyn-
thesis and respiration, and enhanced protein synthesis and hormonal activities [34]. The
increased promotion of root and leaf growth and development has a considerable impact
on the commercial quality and market value of plant products [35,36]. The impact of HA
on soil and crop dynamics is contingent upon the specific source of HS utilized [30]. The
selection of an HA source is predicated upon a multitude of factors, including its nutri-
tional composition, method of production, functional group distribution, and intended
application purpose. A comparative analysis of five distinct HA sources, scrutinized for
their efficacy in influencing crop agronomic parameters, revealed a hierarchical trend in
their effectiveness. Notably, the observed order of effectiveness delineated from highest to
lowest efficacy includes compost derived from manure, compost sourced from green waste,
native soil HS, HAs derived from brown coal, and those derived from peat, reviewed by
Sible et al. [37].
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2.2. Morphological, Physiological, and Biochemical Changes Induced from Humic Acids to Mitigate
Drought Stress in Agriculture Crops

Drought stress poses a significant threat to global agricultural productivity, necessitat-
ing the exploration of innovative strategies to mitigate its adverse effects. Among these
strategies, the application of humic acids has garnered attention due to their multifaceted
beneficial effects on plant growth and stress tolerance. The application of HAs has been
correlated with discernible morphological alterations in plants experiencing drought stress.
Their ability to augment stomatal conductance and improve water use efficiency contributes
to the amelioration of water loss and the preservation of cellular hydration status [38].
Additionally, HAs have been demonstrated to upregulate the enzymatic scavenging of
ROS, thereby enhancing the antioxidant defense mechanisms within plant cells [39,40].

A plethora of scholarly research papers have delved into the utilization of humic
acids to ameliorate physiological and biochemical responses in diverse crop species under
water scarcity conditions, as delineated in Table 1. Predominantly conducted in open field
environments, these investigations have rigorously examined the application modalities of
HA products, encompassing both irrigation and foliar spraying techniques. Such method-
ological diversity underscores the meticulous approach adopted in elucidating the potential
of humic acids to bolster crop resilience, particularly against the backdrop of drought stress,
within agricultural contexts.

Kiran et al. [41] investigated the impact of drought stress on Cucumis melo cultivated
under greenhouse conditions. Plants were subjected to drought stress (100% and 50% of
field capacity irrigation) from 35 to 77 days after seed sowing. Aiming to mitigate the effects
of water scarcity, plants received liquid humic acid at a dose of 2000 mg L−1 applied via
irrigation. The findings obtained revealing an increase in leaf SOD, CAT, and GR activities
and a reduction in leaf H2O2 concentration.

Forotaghe et al. [42] assessed the performance of onions cultivated under greenhouse
conditions and subjected to three different levels of water stress (80, 70 and 60% field
capacity). Drought stress was imposed during both vegetative and reproductive stages. To
mitigate the adverse effects of water scarcity, solid humic acid powder (1 g per pot) was
applied. The results demonstrated that onion plants showed increased leaf protein content
as well as enhanced SOD and POD activities.

2.3. Genes Involved in Drought Tolerance in Agriculture Crops Treated with Humic Acids

The application of HAs in agriculture has been proved to alter genes expression
in crops contributing to various physiological and biochemical changes that enhance
plant growth, stress resilience, and yield. Stress-responsive genes, nutrient uptake genes,
hormone-related genes, defense-related genes and genes expression networks can be
stimulated under the application of HAs [38]. Although changes in plant physiology and
metabolism have been well documented in crops subjected to drought stress and humic
acid application, the paucity of literature on transcriptomic studies has led to further
research to discern the role of genes in orchestrating the plant response to stress. In this
comprehensive review, we have collected, with respect to studies conducted on humic
acid-treated plants, references from the existing literature including stress-responsive genes,
transcription factors, and genes associated with photosynthesis and growth regulation,
briefly presented in Table 2.
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Table 1. Drought stress physiological and biochemical changes in agriculture crops treated with humic acids.

Humic Acids
Description Crop Growing

Conditions
Drought Stress

Treatment

Plant Growth Stage at
the Stress Treatment

Application

Effects of Humic Acids
on Stressed Crops References

Humic acid (C9H9NO6,
seeds soaking for 12 h

(0, 50, 100, 200 and
300 mg L−1))

Setaria italica Beauv.
Potted experiment

under
field conditions

3–5 leaf stage (set as 0 d),
water application

was stopped

10 d after
drought treatment

Reduction in H2O2 and
MDA content and

SOD and POD
activities increase,

[34]

Humic acid (5 mM)
applied via fertigation Fragaria ananassa Glasshouse 100, 70 and

40% field capacity

From 4 weeks after
sowing until 12 weeks

after sowing

Increase in Chl content,
reduction in leaf proline

and MDA content
[43]

Humic acid (as 3-ethoxy-
4-hydroxybenzaldehyde
(foliar application (dose

5 mL per plant)) at 1 mM

Zea mays L. Hydroponic
10% (w/v) PEG-6000 to

achieve −0.15 MPa
osmotic potential

Only 18 days

Reduction in electrolyte
leakage and increased

leaf membrane
stability. Increase in

pigments concentration.

[44]

Humic acid foliar
application at different

concentrations:
0, 3, and 6 mg L−1)

Brassica napus L. Field

Drought treatments: 60,
100, and 140 mm
evaporation from

class A pan

Vegetative and early
flowering stages

Increase in APX and
POD activities and

MDA level and soluble
protein content

[45]

Humic acid application at
0, 2, 4 and 6 L per ha Zea mays L. Field

Three irrigation levels
after depleting 30, 40 and

50% of field capacity
(optimum irrigation,
moderate stress and

severe stress)

From 30 days after
planting to 25 days

before harvest
(60 days

approximately)

Higher yield and SOD
and CAT activities [46]

Humic acid foliar
application

(0, 150 and 300 ppm)
Triticum aestivum Field

Complete irrigation,
irrigation withholding at

stem elongation stage,
irrigation withholding at

flowering stage and
irrigation withholding at

seed setting stage

Stem elongation,
flowering and seed

setting stages

Higher SOD and GPX
activities and lower

MDA content
[47]
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Table 1. Cont.

Humic Acids
Description Crop Growing

Conditions
Drought Stress

Treatment

Plant Growth Stage at
the Stress Treatment

Application

Effects of Humic Acids
on Stressed Crops References

Humic acid, foliar
application in the volume
of 4.5 L per one thousand

liters of water

Oryza sativa Field

Well-watered conditions,
water restriction at the

tillering stage and grain
filling stage

Tillering and grain
filling stages

Lower leaf proline
content, reduced CAT
activity and increased

APX activity

[48]

Humic acid application
through irrigation water
(0 and 4 kg ha−1). two

times during vegetative
growth of roselle (15 and
35 days after emergence).

Hibiscus sabdariffa L. Field

Water regimes [irrigation
after pan evaporation

of 100 mm (normal
irrigation) and 200 mm

(deficit irrigation)]

After the first week
of seed sowing until

the harvest
(approximately

7 months)

Enhanced acidity and
maturity index in

calyx of roselle
[49]

Humic acid application
through irrigation water

(0 and 4 kg ha−1).
Zea mays Greenhouse 100 and 60% water

holding capacity
28 days after seedlings

establishment

Enhanced photosynthesis
by increasing the electron

transport rate (ETR) of
photosystem II (PSII) and

the ratio between
effective photochemical

quantum yield to
non-photochemical

quenching (Y(II)/Y(NPQ)

[50]

Humic acid drenched in
the soil (0, 250, 500 and

1000 mg kg−1)
Echinacea purpurea Field 100, 80, 60 and

40% field capacity
After three months

of sowing

Enhanced relative water
content, electrolyte

leakage reduction and
higher content of total

phenolic and flavonoid
content in shoot

[51]
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Table 2. Drought stress responsive genes in agriculture crops treated with humic acids.

Biostimulant Crop Growing Conditions Drought Stress Treatment Genes Activated by
Drought Stress References

Liquid phase, rate of
60 Kg ha−1 in 3 equally doses
(first in germination, second

two weeks later and third:
initiation of flowering)

Vigna radiata Field
No irrigation after 15 days
from the vegetative stage

until the reproductive stage

Upregulation of VrHsfA6a
genes and VrDREB2a, and

VrBZIP17 transcription factors
[52]

Foliar spray of HA at
increasing concentrations

(50, 100, 200, 300,
and 400 mg L−1)

Setaria italica Beauv. Field Dry region simulating a
drought environment

Upregulation of
SETIT_021707mg,

SETIT_016840mg, and
SETIT_015030mg genes and

downregulation of
SETIT_004913mg and

SETIT_016654mg genes

[34]

Drenching into the soil with
two different rates:
0 and 45 Kg ha−1

Zea mays Field

Drought stress (W1,
45–60% soil water holding

capacity (SWHC)) and
well-watered

(W2, 75–100% SWHC).

Upregulation of psbQ and
psbP genes (encoding the

extrinsic proteins of
PS II complexes) and genes

involved in the Calvin
cycle regulation

[53]

Foliar spray of HA at 1% w/v Triticum aestivum Hydroponic

After the 7th day of drought
stress treatments (MD,

moderate drought
(−6 bar PEG6000); HD, high
drought (−8 bar PEG6000)

Downregulation of
miR396-targeted

growth-regulating factor
(GRF) and AP2 gene

(miRNA Apetala 2) in root
and upregulation in leaf

[54]
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3. Protein Hydrolysates from Vegetal and Animal Sources
3.1. Origin and Effectiveness of Protein Hydrolisates as Biostimulants in Agriculture

Protein hydrolysates are mixtures consisting mainly of free amino acids and peptides
and, in a small percentage, carbohydrates and minerals. They are obtained by chemical
and/or enzymatic hydrolysis of animal and plant proteins often from agrifood by-products
(e.g., blood, viscera, plant residues, etc.). The possibility of valorizing waste from other sec-
tors makes these biostimulants attractive from an economic and environmental circularity
perspective [55,56]. The most used modes of application are foliar and root applications.
As reported by Paul et al. [57], foliar applications respond in a short time, while root
applications have a long-term effect. In any case, it has been found that the application
method differentially regulates ammonium and nitrate transporter genes and some ni-
trogen metabolism genes in tomato plants [58]. They can act directly on the plant, or
their action is modulated through interaction with soil microorganisms [59]. Furthermore,
protein hydrolysates can have direct action on carbon and nitrogen metabolism, as they
activate enzymes involved in the absorption and assimilation of nitrate, the Krebs cycle
and glycolysis, and an indirect action on nutrient-use efficiency, through a change in the
root system (increase in root length, thickness, number of lateral and secondary roots) [60].
Like other plant biostimulants, their action appeared to be most efficient under suboptimal
growth conditions [58,61].

As observed by Trevisan et al. [62] exogenous application of protein hydrolysate regu-
lated nitrogen uptake and antioxidant defense of Zea mays L. plants grown under salt stress
and hypoxic conditions. Similarly in lettuce plants subjected to high salt stress, improved
photosynthetic activity and increased osmolytes and nitrogen metabolism were recorded
following the application of a plant-derived protein hydrolysate [63]. These studies are
confirmed by the positive effect of specific exogenous amino acids and peptides on the phys-
iological processes of several plants under abiotic stress [64–66]. Several grapevine crops
have improved their resistance to fungal attacks (for example, Botrytis cinerea, Plasmopara
viticola) due to an increase in secondary metabolites such as anthocyanins, resveratrol,
polyphenols, in leaves and fruits, induced by treatment with protein hydrolysates [67–71].
The aforementioned results have demonstrated that protein hydrolysates can act at both the
primary and secondary metabolism levels, activating physiological and molecular mecha-
nisms that allow plants to defend themselves against different types of stress. The ability
of protein hydrolysates to mitigate the growth reduction induced by different types of
stress is due to their ability to modify the metabolism of phytohormones, to activate signals,
such as the increase in calcium ions in the cell, or proteins and molecules involved in the
stress response, which increase the plant’s tolerance to stress [72], Wang et al., 2022 [73];
Paul et al., 2019 [57]; Bavaresco et al., 2020 [74].

Some studies have shown that plants exposed to low concentrations of natural or
synthetic substances can respond efficiently to a subsequent stress event. This practice is
called priming and allows the plant to activate a defense before the stress has appeared, so
that it quickly implements its response to stress [75].

Given the potential of biostimulants and the worsening of climate change today, this
review aimed to highlight the effect of protein hydrolysates on drought stress.

3.2. Morphological, Physiological, and Biochemical Changes Induced from Protein Hydrolysates to
Mitigate Drought Stress in Agriculture Crops

Drought stress affects all crops, especially those that require large quantities of water
during their growth. Viticulture is among the first to be affected by drought, as drought
can significantly reduce growth, physiology, production, and quality [76].
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There are several attempts to increase grapevine tolerance to drought, and these
concern optimal irrigation cycles [77], selection of more suitable rootstocks, genetic and
biotechnological improvement.

Boselli et al. [71] examined the performance of water-stressed grapevines treated with
three protein hydrolysates, obtained by enzymatic hydrolysis of soybean, lupin and dairy
casein (Soy, Lup, Cas). The protein hydrolysates were applied three times during the
growing seasons of Vitis vinifera L. cv. Corvina, over an experimental period of five years.
The authors showed that application of the biostimulants significantly reduced stomatal
conductance, a physiological response that would allow the plants to reduce transpiration
demand and consequently better tolerate the imposed irrigation deficit [71,78]. However,
the reduction in transpiration resulted in a significant increase in leaf temperature that
may have triggered as suggested by Kauffman et al. [78] an early stress response through
metabolic pathways related to abscisic acid (ABA) production. Not surprisingly, the
reduction in stomatal conductance could be related to an anatomical change in leaves (such
as number and size of stomata and cuticular thickness) induced by biostimulant application
(Carillo et al., 2022; Vitale et al., 2021; Kirubakaran et al., 2007 [79–81]. The improved water
management at the cellular level mediated by biostimulants applied under water stress
conditions would justify the improved production performance recorded in treated plants.

Lachhab et al. [68] revealed the role of protein hydrolysates obtained from soybean
and milk as activators of early response to water stress through increased abscisic acid,
cytosolic calcium, and defense responses in grapevine cells.

Bavaresco et al. [74] investigated the effect of foliar application of two protein hy-
drolysates (Trainer® and Stimtide®) on the metabolism and protein profile of grapevine
(Vitis vinifera L., cv Montepulciano) subjected to water stress and re-irrigation. Both bios-
timulants changed the metabolomic and protein profile of plants during stress, compared
to the untreated control. The Trainer®, changed the concentration of 69 of the metabolites
analyzed. Specifically, 19 were upregulated and 50 were downregulated. Those upreg-
ulated included adenine, which is a nucleic acid involved in various cellular processes,
such as cell division, nitrogen absorption, cytokinin metabolism [82]. Furthermore, the two
biostimulants increased the synthesis of (5-alpha)-campestan-3-one, a metabolite involved
in the synthesis of brassinosteroids, which are phytohormones that regulate cell division
and plant growth through modulation of auxins [83]. The increase of the brassinosteroids
corresponded to the lowest leaf water potential (−1.4). Other upregulated metabolites be-
longed to the synthesis of waxes. Compounds involved in the biosynthesis of flavonols and
flavonoids or their precursors were downregulated. 3-hidroxy-β-ionone, found increased
with both biostimulants, is a compound involved in the cleavage of lutein and zeaxan-
thin, two carotenoids that epoxidize and deoxidize in a cycle that dissipates energy in the
form of heat [84]. Among the physiological parameters examined (P, gs, E), transpiration
measured five days after re-watering, was found higher in the leaves treated with the two
biostimulants, compared to the control. Furthermore, at harvest (when the vines had a TSS
concentration of 24 ◦Brix), the treatment with the two biostimulants produced a reduction
in TSS in grapes, an increase in titratable acidity, and a reduction in pH, compared to the
control. While anthocyanins and total phenolics did not differ between treatments.

Through a study on Capsicum annum L., Agliassa et al. [83] sought to understand
whether the application of a protein hydrolysate could exert a priming action. To answer
this question, the authors applied a plant-derived protein hydrolysate before a major
stress event to highlight the action of the biostimulant in increasing stress tolerance and its
priming action. The stress consisted of stopping irrigation until the stem water potential
was less than −2 MPa. The stress was followed by the recovery phase, which consisted of
irrigating the plants until they were brought back to a physiological condition similar to
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those that the plants had before the start of the stress, monitoring the gaseous exchanges
and the water potential of the stems every day. In conditions of severe stress, the plants
treated with biostimulant (stressed-BIO) mitigated the stress, increasing plant growth (leaf
area, height and diameter of the stems), compared to control plants (stressed-NO BIO). In
the recovery phase, the plants treated with the biostimulant restored photosynthetic activity
faster (1 day) compared to the plants not treated with the biostimulant (3 days). During
recovery, the treated plants also had a higher stomatal density, a lower concentration of
H2O2, and a higher activity of the catalase enzyme, compared to the stressed-NO BIO
plants, Finally, the stressed-BIO plants presented a higher content of soluble sugars at the
end of the stress and in the recovery phase. High levels of proline were detected at the
end of the stress and in the first 4 h of recovery of the treated plants, which is probably
an effective state for rapid recovery of stressed-BIO plants, A similar priming effect was
shown for plants of Vitis vinifera L., Sauvignon blanc cultivar, grown in pots, were treated
with a collagen-derived protein hydrolysate 48 days before progressive water stress (from
100% field capacity up to 30% field capacity, for 18 days) [85]. The protein hydrolysate
mitigated water stress by supporting growth (internode length, leaf area), the water state of
the cells (leaf water potential), and the increase of epigeal part of plants and berry diameter.
Lysine, the most abundant amino acid in the protein hydrolysate used, is a precursor of
glutamate, which is involved in growth and used as a signal molecule during stress [86,87].
Plants pre-treated with biostimulant before stress had a higher SPAD index compared to
untreated plants. The SPAD index is a parameter related to the chlorophyll and nitrogen
content of the leaves [88–91].

In the work of Francesca et al. [91], tomato plants (genotype ’E42’) grown in open
fields were treated with a protein hydrolysate of plant origin (CycoFlow), consisting of a
mixture of sugar cane and Saccharomyces cerevisiae extracts, and applied every two weeks by
fertigation (3 g L−1), for a total of four applications. The biostimulant was rich in glutamic
acid, glycine betaine, and micronutrients, such as boron, manganese, and zinc. The plants
were grown in two different water regimes, one optimal (100% water) and one suboptimal
(50% water). The water deficit state was applied 22 days after transplanting the plants, until
the end of the crop cycle. The effect of water stress in plants not treated by the biostimulant
was manifested by a notable reduction in pollen viability, number of fruits per plant, the
average weight of the fruits, and yield., Under conditions of water stress, the biostimulant
increased the values of pollen viability, number of fruits per plant, and the average weight of
fruits, by 51%, 70%, and 95%, respectively, compared to untreated plants. Therefore, under
conditions of water stress, the yield of the plants treated with the biostimulant reached
6 times the value of the untreated plants. The increase in pollen viability has been linked
to the high concentration of β-alanine in the protein hydrolysate, which is considered
a promoter of pollen germination in tomato plants subjected to high temperatures. In
conditions of water deficit, stomatal conductance of biostimulant treated plants and control
plants remained similar, while the water potential of biostimulant treated plants increased
by 27% compared to the control plants leaves. In optimal water conditions, the biostimulant
treatment reduced the content of ascorbic acid by 29%, the content of chlorophyll a and b
by 14%, increased the content of carotenoids (+33%) and lycopene (+31%) compared to the
untreated control. In conditions of water stress, biostimulant treatment increased leaves
antioxidant activity (+98%), while reducing both total carotenoids (−20%) and lycopene
content (−15%), compared to stressed and non-treated plants. Furthermore, ascorbic
acid content of the treated plants did not differ from that of the untreated plants. The
greater antioxidant power was probably due to the presence of a high concentration of
molecules with antioxidant power already present in the biostimulant, such as glutamic
acid, phenylalanine, glycine, and proline [92,93]. These molecules also play an important
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role as signaling molecules in endogenous hormonal pathways, thus supporting growth
and productivity under stress conditions [51].

Wang et al. [64] examined the response of tomato plants treated with protein hy-
drolysate obtained from the enzymatic hydrolysis of pig blood, rich in peptides and free
amino acids. Plants were grown in a controlled growth chamber, in plastic containers, and
irrigated with Hoagland nutrient solution. At the phenological stage of 6 true leaves, plants
were subjected to drought stress, which consisted of adding 10% PEG-6000 in the nutrient
solution, compared with a control irrigated with the same nutrient solution, without stress.
Both treatments were then divided into two parts: some plants were sprayed on the leaves
with the protein hydrolysate at different doses (1, 2 and 3 g L−1), while others received
only water. Each treatment was applied three times before harvest. The authors showed a
positive effect of protein hydrolysate on growth, chloroplast structure, chlorophyll content
(a, b, total), photosynthetic activity and water-use efficiency in stressed plants. Further-
more, the protein hydrolysate increased the antioxidant defense in terms of enzymes (SOD,
POD, CAT, and APX), and molecules (total phenolic, total flavonoid, ascorbic acid, and
glutathione), with a consequent reduction of oxygen radicals, both in the leaves and in
the roots.

An improvement in the mineral profile (K, Mg, Ca) in both leaves and stems and roots,
and an increase in osmolytes (proline, sugars, and soluble proteins) were also observed.
Sitohy et al. [94] attributed the tolerance of Phaseolus vulgaris subjected to salt stress to the
increase in the mineral profile and osmolytes following the application of pumpkin seed
protein hydrolysate. Protein hydrolysates have been shown to increase nutrient uptake by
acting on specific root transporters [55,60,61], indirectly stimulating plant growth. A better
performance of photosynthetic parameters in plants subjected to different abiotic stresses
(hypoxia, salt, and nutrient deficiency) and treated with protein hydrolysate, was seen in
Zea mays (L.) plants grown in hydroponics [62]. This result was attributed to the presence
of amino acids in the biostimulant involved in the biosynthesis of chlorophylls, such as
alanine, glycine, and lysine.

The activity of protein hydrolysates under drought conditions was examined by
high-throughput phenotyping and metabolomic analysis of physiological and growth pa-
rameters of drought-stressed tomato plants grown in a controlled growth chamber by Paul
et al. [48]. The biostimulant (protein hydrolysate obtained from legume seeds by enzymatic
hydrolysis) was applied foliar (5 and 12 days after transplanting, 2 mL/500 mL of distilled
water) or by soil soaking (4 mL L−1). Both treatments increased tomato plant biomass
and photosynthetic activity. There was a reduction in cytokinins and an accumulation
of salicylic acid with both biostimulant treatments. Cytokinins are phytohormones that
negatively regulate tolerance to water stress [95], so their reduction in treated plants is
considered a positive aspect of the biostimulant action in stress conditions. Salicylic acid
regulates the formation and accumulation of ROS in the plant [96], and together with
jasmonate it increases tolerance to water stress [97]. The biostimulant treated plants in the
work of Paul et al. [57] showed a better response in regulating the concentration of ROS,
also due to the carotenoids and prenyl quinones increase, and reduction in tetrapyrrole
coproporphyrins. Prenyl quinone is a chloroplast compound, with a signal molecule func-
tion and antioxidant activity, found to be involved in adaptation to stress [98]. Tetrapyrrole
coproporphyrins is a molecule of the chlorophyll biosynthetic pathway that accumulates
following cellular necrosis induced by excess light, it is involved in the formation of singlet
oxygen following excess light [57].

Some of these results are summarized in Table 3.



Horticulturae 2025, 11, 91 13 of 34

Table 3. Drought stress physiological and biochemical changes in agriculture crops treated with protein hydrolysates.

Protein Hydrolysates
Description Crop Growing Conditions Drought Stress

Treatment

Plant Growth Stage
at the Stress

Treatment Application

Effects of Protein
Hydrolysates on
Stressed Crops

References

PHs from soybean (Soy), lupin
(Lup) and dairy mix-based

casein (Cas). PHs were
sprayed three times every

10 days, at 0.5 and 2.0 kg ha−1

Vitis vinifera L. cv.
Corvina Field

Mediterranean climate
(hot and dry summer,

moderately cold and wet
winter), compared to
water-treated plants

Fruit set (BBCH 71)

Increase in yield, total
soluble solids content, total

anthocyanin content
Reduction in stress
index IG, water loss

[71]

Commercial Trainer and
Stimtide obtained from an

enzymatic hydrolysis legume
biomass. PHs were sprayed 1

time per year at day of the
year 201, at 3 mL L−1

Vitis vinifera L. cv.
Montepulciano

Outdoor area. Plants
grown into pots filled
with a loamy soil and
peat mixture (80:20)

Progressive water stress
by shutting down

irrigation, followed by
plants re-watering

Four-year-old
grapevines

Up regulation of metabolites
involved in plant growth

and photosynthesis-related
proteins

Improvement of
leaf transpiration

Increase of titratable acidity
Reduction in total soluble

solids and pH

[83]

Commercial GHI_16_VHL
biostimulant obtained from
Cruciferae and Leguminosae

protein hydrolysates.
PH was applied two times

before the beginning of water
stress, by fertigation

(1.5 mL L−1)

Capsicum annuum L.
plants (“Corno di Toro

Giallo” variety)

Greenhouse under
partially controlled
conditions. Plants

growth into pots filled
with sand:clay:peat

(1:2:2 by weight)

Stopped irrigation until
the stem water potential

was below −2 Mpa.
Followed by re-watering

of plants.

3-month-old plants

Faster leaf gas
exchange recovery

Increase in leaf area, height
and diameter of the stems,

CAT activity
Reduction in hydrogen

peroxide level

[85]

Novel collagen-derived
protein thermal hydrolysate,
APR® (0.5 g L−1) added as a
soil drench, and applied at

flowers separating stage
(day of the year 135).

Vitis vinifera L., cultivar
Sauvignon Blanc

Plants grown in the
tunnel with

semi-controlled
conditions, into pots

filled with a
sand–pumice-peat

mixture
(2:2:6 in volume).

Progressive water deficit
starting at DOY 183,

48 days after
biostimulant application,

and for 18 days

4-year-old plants
Increase in internode length,

leaf area, berry diameter,
leaf water potential

[86]
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Table 3. Cont.

Protein Hydrolysates
Description Crop Growing Conditions Drought Stress

Treatment

Plant Growth Stage
at the Stress

Treatment Application

Effects of Protein
Hydrolysates on
Stressed Crops

References

Novel protein
hydrolysate-based

biostimulant (CycoFlow)
applied by fertigation

(3 g L−1 of water, 400 mL per
plant) every 15 days until the

end of the cultivation cycle

Solanum lycopersicum
genotype ‘E42’

Open field on a
clay-loam soil irrigated
every 10 days (5 L h−1)

Limited water
availability

(50% irrigation) until the
end of the experiment

22 days after transplant

Increase in yield, water
potential, pollen viability,
number of fruits per plant,
average weight of fruits,

leaves antioxidant activity
Reduction in total
carotenoids and
lycopene content

[92]

Pig blood-derived protein
hydrolysate (PP, Win Plus)
sprayed on the leaves at

different doses
(1, 2, and 3 g L−1), three

times before harvest.

Solanum lycopersicum

Plants growth in
controlled chamber, into
a plastic container with

1 L of Hoagland
nutrient solution.

10% PEG-6000 in
the Hoagland

nutrient solution

Tomato seedlings
with six leaves

Increase in SOD, POD, CAT,
APX activities, total

phenolic, total flavonoid,
ascorbic acid, and

glutathione content, mineral
profile (K, Mg, Ca) and

osmolytes (proline,
sugars, and soluble

proteins) content

[73]

Commercial plant-derived PH
biostimulant Trainer obtained

from legume seeds, foliar
supply (5 and 12 days after

transplanting, 2 mL/500 mL
distilled water) or soil

drench (4 mL L−1).

Solanum lycopersicum
L.–cv. Hybrid F1

Chicco Rosso

Plants growth in
controlled chamber, into
pots filled with a mixture

of a commercial
peat-based substrate and

river sand (3:1), and
fertigated with a
nutrient solution.

Moisture content
adjusted to 60% of
container capacity

Twenty-day-old plants

Increase in plants biomass,
stomatal conductance
Different regulation of

phytohormones activity and
lipids biosynthesis

Reduction of cytokinins,
and an accumulation

of salicylic acid

[57]
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3.3. Genes Involved in Drought Tolerance in Agriculture Crops Treated with Protein Hydrolisates

Few studies in literature have been interested in understanding the gene mechanisms
activated following the application of protein hydrolysates under water stress conditions.
However, some works have reported the expression of genes encoding for secondary
metabolites involved in defense against many abiotic stresses, such as drought, in plants
treated with protein hydrolysates. An example is reported by Ertani et al. [99], who noted
up-regulation of genes involved in detoxification processes from reactive oxygen species
in tomato plants treated with alfalfa-based protein hydrolysate. Among these genes were
glutathione peroxidase, glutathione reductase, peroxidases and thioredoxins. Most of
these genes are involved in the glutathione/ascorbate detoxification cycle. In addition,
hydrolysate-treated plants exhibited upregulation of genes involved in the biosynthesis of
hormones such as ethylene, jasmonic acid, abscisic acid and salicylic acid. These hormones
are involved in the phosphorylation of protein kinases which leads to the transcription
of the abiotic stress defense-related genes. The authors also emphasize that the ethylene
hormone, whose synthesis is stimulated by protein hydrolyzed, increased the expression of
the gene that encodes the PAL enzyme, in the plants treated with the biostimulant. PAL
enzymes are essential for the biosynthesis of many phenolic compounds used by plants
against abiotic stress [100].

Xu et al. [101] showed that protein hydrolysates vary the expression of transcription
factors involved in a multiplicity of transcriptional programs related to abiotic stress.
AP2/ERBPS (APETALA2), WRKY, ZINC Finger (ZFN) proteins, and BZIP Proteins are
some of these factors.

4. Seaweed Extracts
4.1. Origin and Effectiveness of Seaweed Extracts as Biostimulants in Agriculture

Macroalgae belong to Phaeophyta, Rhodophyta, and Chlorophyta classes, also known
as brown, red, and green algae, respectively based on their color. Their use by humans
has deep roots [102]. They have been used in medicine, cosmetics, and in agriculture as
food to feed animals and as fertilizers, since the ancient Romans [102,103]. The use of algae
extracts instead has more recent uses. They have been called plant biostimulants for their
ability to promote plant growth and improve the nutritional aspect and shelf life [102].
The biostimulant action of algae extracts has not been attributed to their nutritional con-
tent (macronutrients) but to elicitor compounds capable of activating the physiological
responses of the treated plants. Algae extracts regulate plant growth similarly to phyto-
hormones as they stimulate, or slow down growth based on their concentration [104]. The
phytohormone-like activity is due to the content of indole acetic acid, cytokinin, gibberel-
lic acid, polyamines, and abscisic acid in the seaweed extracts [104,105]. They are rich
in phenolic compounds with antioxidant activity [106], osmolytes such as mannitol and
betaines, amino acids, vitamins [105]. They also contain polysaccharides [107] (alginates
and laminarins) that promote plant growth and act as elicitors of plant defense against
pathogenic infections [101,104]

The concentration of these substances and hormonal activity depends on the type of
seaweed, seasonality, extraction method, and the type of processing they undergo [106].

Seaweed extracts are generally in liquid or soluble powder form. In liquid form, the
extracts can be mixed into irrigation water and applied as drip irrigation to the crops, or as
foliar sprays [102]. Seaweed extracts effectively depends on the growth stage of the plants
and is highest when the stomata are open [102].

Ascophyllum nodosum, Ecklonia maxima, Macrocystis pyrifera, and Durvillea potatorum are
the main brown macroalgae (Phaeophyta) used to produce extracts intended for agriculture
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and horticulture [104]. The main bioactive compound found in these macroalgae are
summarized in the Table 4.

Table 4. Main brown macroalgae used as biostimulant.

Species Main Bioactive Compound Cellular Action References

Ascophyllum nodosum Indoleacetic acid;
Abscisic acid

Increase of roots number
and length; regulation of

stomata closure
Sanderson et al., 1987 [108]

Ecklonia maxima
1-aminocyclo-propane-1-

carboxylic acid;
Abscisic acid

Precursor of ethylene
synthesis, it promotes

flowering and fruit ripening;
regulation of stomata closure

Nelson and Van Staden,
1985 [109]

Macrocystis pyrifera Molecules with
auxin-like activity

Increase of roots,
fruit setting

Briceño Dominguez et al.,
2014; Colla and Rouphael,

2019 [110,111]

Durvillea potatorum Fibres, alginic acid, laminarin,
fucoidan, mannitol

Regulation of response
to pathogens

Madgwick and Ralp, 1972;
Di Stasio et al., 2018;
Colla and Rouphael,

2019 [111–113].

Brown algae extracts are found to improve the soil water retention capacity, root
growth and soil microbial activity [114,115]. Some extracts have modified the acidification
activity of the plasma membrane proton pumps by inducing the secretion of H+ ions, the
rhizosphere, and increasing the solubility of some useful ions for plants [105]. Brown algae
extract increased the absorption of copper, iron, calcium, potassium, and magnesium in
grapevine, lettuce, cucumbers, and tomatoes, especially when the plants are in sub-optimal
growth conditions or under environmental stresses [102]. Higher nitrogen and sulfur
uptake were detected, too [116].

The bioactive compounds in the algae extracts are considered responsible for the
increased tolerance to biotic and abiotic stresses of numerous crops [117]. Ascophyllum
nodosum extracts applied to strawberry [118] and lettuce [119] plants allowed increased
plant and root growth under salinity conditions. Yield and antioxidant defense increases
were found in tomato plants grown in saline conditions and treated with Dunaliella salina
extracts [120]. Chickpea plants treated with Sargassum muticum extracts had a greater
tolerance to salinity due to the restoration of the ionic balance, a better antioxidant defense,
and better regulation of the amino acids synthesis, compared to plants not treated with a
biostimulant [121].

The Padina gymnospora seaweed extract improved the salinity tolerance of tomato
plants due to the increase in photosynthetic activity, stomatal conductance, and the content
of antioxidant enzymes [122]. Brassica juncea plants under thermal stress conditions had
better growth and yield and less membrane impairment when treated with seaweed extract
(3 mL L−1 and 5 mL L−1) [123]. The positive effect of seaweed extracts under salt stress
conditions was also observed in pepper plants [124]. Extracts of Ascophyllum nodosum and
Sargassum spp. sprayed on barley plants increased the plants’ tolerance to cold through
proline and non-structural carbohydrates increase, and osmotic adjustment [125].

A wide range of crops has been shown to increase chlorophyll content following treat-
ment with algae extracts [116,126]. According to the authors, the increase in chlorophyll was
linked to a high content in chloroplasts or a reduction in chlorophyll degradation [116,127].
According to some authors, the cytokinin-like activity of seaweed extracts induced the
synthesis of cytokinins that imparted protection to chloroplasts [102,105]. The growth and
concentration of photosynthetic pigments were found to be increased in cabbage [126] and
Spinacia oleracea L. plants [127] treated with Ecklonia maxima extracts.
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Seaweed extracts have antifungal properties against Macrophomina phaseolina (Tassi)
Goid., and Fusarium oxysporum, blocking the growth of their mycelium [128]. The mycelial
growth of four plant pathogenic fungi (Botrytis cinerea, Aspergillus niger, Penicillium expansum,
and Pyricularia oryzae) was blocked using Gracilariopsis persica extract at 1000 µL [129].

Norrie et al. [130] examined the response of Thompson seedless grapes (Vitis vinifera L.)
to the extracts of Ascophyllum nodosum in an experiment conducted over three years. The
extract was applied as a spray at different stages: before and after flowering, before and
during the sizing stage, during veraison, and in pre-harvest. For all three years of the
experiment, the authors obtained a positive effect of the treatment on the total number of
fruits, on the uniformity and weight of the berries, on the number of primary bunches,
on the number of berries per bunch, with increases in yields, compared to untreated
control plants.

However, the activity and mechanisms of action of algae and algae extracts on plants
depend on various factors, such as the type of algae, the extraction mechanism, and the
plant species [102]. For future studies, it would be interesting to understand the possible
synergistic effect of extracts from different algae. Likewise, the plants stage should be
understood to have the best benefits following the application of the extract.

4.2. Morphological, Physiological, and Biochemical Changes Induced from Seaweed Extracts to
Mitigate Drought Stress in Agriculture Crops

Broccoli [131] and spinach [132] plants treated with A. nodosum extracts had better
resistance to drought stress due to an increase in gaseous exchange parameters, compared
to untreated plants. Another symptom of drought stress is leaf yellowing caused by chloro-
phyll degradation. Extracts of A. nodosum have been shown to increase the chlorophyll
content in tomato plants subjected to water stress [133]. Drought-stressed tomato plants
had improved plant height, root length, and the number and area of the leaves [134] when
treated with a microalgae-based biostimulant.

Extracts of A. nodosum reduced wilting, increased WUE, and accelerated recovery of
several drought-stressed vegetables [102,135]. Extracts of A. nodosum also increased the
water potential of almond plants under high-temperature conditions [130]. According
to some authors, the cytokine-like activity and the increase in K+ absorption induced
in the plants treated by seaweed extracts explained the tolerance of creeping bentgrass
to heat [102].

Foliar application of brown algae extract (A. nodosum) alleviated drought stress by
increasing the synthesis of antioxidant enzymes, the accumulation of defense metabolites,
and growth and sugar production in sugarcane plants [136].

Lenart et al. [137] applied marine algae extracts to 12 blueberry species grown in green-
house pots under controlled stress conditions (the substrate was maintained at 40% field
water). The authors showed an increase in the activity of antioxidant enzymes (peroxidase
and catalase) in plants subjected to water deficit, compared to untreated control plants,
with no differences in nutrient and chlorophyll content between treated and control plants.
Similarly, Lenart et al., 2022 [138] showed that fertilization of blueberry fruit plants with
algae increased the content of antioxidant molecules (anthocyanins and total polyphenols)
in drought-stressed plants.

An increase in phenolic, proline, and flavonoid content was also shown in ornamental
plants (Spiraea nipponica and Pittosporum eugenioides) subjected to mild drought stress
condition [139]. Citrus sinensis L. drought-stressed improved water use efficiency when
treated with extracts of A. nodosum (Spann et al., 2011) [140].

Some other examples are summarized in Table 5.
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Table 5. Drought stress physiological and biochemical changes in agriculture crops treated with seaweed extracts.

Seaweed Extracts
Description Crop Growing Conditions Drought Stress

Treatment
Plant Growth Stage at
the Stress Treatment

Application

Effects of Protein
Hydrolysates on
Stressed Crops

References

Ascophyllum nodosum/
Foliar spray

Solanum lycopersicum
(cv. Moneymaker)

Growth into pots placed
in a growth room and

filled with
vermiculite/perlite and
slow releaser fertilizer

Interruption of
watering for 7 days

35-day-old
tomato plants

Increase in: RWC, plant
growth, foliar area,

chlorophyll, proline,
soluble sugars

Decrease in lipid peroxidation

[133]

Ascophyllum
nodosum/aminoacidic

Soil application/
foliar spray

Brassica oleracea
var. italica

Growth into pots placed
in a growth chamber and

filled with peat and
complex fertilizers

Interruption of
watering for 2 days

Seven weeks
after planting

Increase in photosynthesis,
stomatal conductance, and

chlorophyll content
[141]

Ascophyllum nodosum/
foliar and drench

Spinach
(cv. Bloomsdale)

Growth into pots filled
with sand and topsoil,

placed in a
growth chamber

100% (full irrigation)
and 50%

(drought stress)
evapotranspiration

3 weeks after sowing

Increase in plant growth, leaf
relative water content, area,

fresh weight, dry weight, and
specific leaf area,

improvement of gas
exchange parameters

Decrease in ferrous ion
chelating ability

[132]

Ascophyllum nodosum/
Foliar application Saccharum spp. Field driest period of

the year late-harvest sugarcane

Increase in biomass
production and stalk yield,

sugar yield, antioxidant
enzyme activity, and cellular

redox balance
Decrease in malondialdehyde

content

[136]
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Table 5. Cont.

Seaweed Extracts
Description Crop Growing Conditions Drought Stress

Treatment
Plant Growth Stage at
the Stress Treatment

Application

Effects of Protein
Hydrolysates on
Stressed Crops

References

Extracts from Fucus
spiralis, Ulva lactuca,
Laminaria ochroleuca,

and Ascophyllum
nodosum/soil drench

and foliar spray

Vicia faba
(cv. Super Aguadulce)

Growth into pots filled
with natural soil
and placed in a
covered shelter

Water withholding
for 10 days 40 days after sowing

Increase in plant biomass,
relative water content, proline

content, and soluble sugars
content

Decrease in malondialdehyde
content

[142]

Ascophyllum nodosum Soybean

Growth into pots
irrigated with nutrient
solution and placed in

a growth chamber

75 h of water
interruption

14 days after
transplanting

Increase in relative water
content, stomatal conductance,

and antioxidant activity
[143]

Ecklonia maxima Chicorium intybus
Growth into pots filled

with peat and placed in a
greenhouse

Moderate
(60–70% of water
holding capacity)

and severe
(30–40% water holding

capacity) stress

7 days after
transplanting

Increase in fresh biomass,
relative water content, water
use efficiency, nitrogen use
efficiency, P, K, Ca and Mg

content, chlorophyll content,
proline and total polyphenols

content
Decrease in plant growth traits

and yield and N content

[140,144]
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4.3. Genes Involved in Drought Tolerance in Agriculture Crops Treated with Seaweed Extracts

Seaweed extracts have been found to increase chalcone isomerase, the plant phenyl-
propanoid precursor enzyme involved in plant defense against stress [102].

A. nodosum extract was found to increase the gene expression encoding the nitrate and
auxin transporter NRT1.1. in Arabidopsis thaliana. In this way, the extract caused an increase
in the growth of lateral roots and the assimilation of nitrate [145]. Furthermore, commercial
A. nodosum extract was found to increase the expression of the NodC rhizobial bacterial
gene. This gene is involved in the rhizobia-plant interaction and the induction of root
nodule formation. Therefore, in the presence of the extract, leguminous plants had a greater
number of nodules and fixed more nitrogen [146]. Extracts from a commercial brown
algae extract increased the expression of genes encoding enzymes regulating nitrogen
metabolism, antioxidant activity, and glycine betaine synthesis in treated spinach plants.
The increase in these enzymes was associated with an increase in phenolic compounds,
total soluble proteins, and the antioxidant capacity of plants [127].

According to Goñi et al. [133], changes in the expression of tas14 dehydrin gene were
responsible for the increased tolerance of tomato plants subjected to drought. This gene
encodes phosphorylated proteins that accumulate during drought stress. Shukla et al. [143]
attributed the increased drought tolerance of soybean plants to the increased activity of
the genes GmCYP707A1a, GmCYP707A3b, GmRD22, GmRD20, GmDREB1B, GmERD1,
GmNFYA3, FIB1a, GmPIP1b, GmGST, GmBIP and GmTp55. These genes are involved in
the synthesis and regulation of abscisic acid levels, photoprotection against photoinhibition,
and the synthesis of aquaporins.

Biostimulant Super Fifty obtained from Ascophyllum nodosum repressed the stress-
responsive negative growth regulator (RD26) in Arabidopsis thaliana plants subjected to
drought stress. In this way, the plants had an active cell cycle during stress. Furthermore,
stressed plants treated with the biostimulant increased the expression of CYCP2;1, a gene
that promotes meristem cell division [147].

5. Silicon
5.1. Origin and Effectiveness of Silicon as Biostimulants in Agriculture

Silicon (Si) is a pervasive constituent of soil fractions, encompassing both solid and
liquid phases, where its interactions play pivotal roles in soil physicochemical dynamics.
Within the liquid phase, Si exists predominantly in dissolved form, comprising monosilicic
and polysilicic acids, alongside an array of complexes formed with inorganic, organic,
and organosilicon compounds. The presence of Si in soil solution underscores its intricate
involvement in soil biogeochemical processes and highlights the importance of elucidating
its behavior and fate within soil matrices. Such understanding is fundamental to advancing
our comprehension of soil Si cycling and its implications for ecosystem functioning and
agricultural productivity [148–151].

Silicon (Si), which is the second most abundant element in the Earth’s crust, is consid-
ered nonessential for plant growth and development. In any case, its importance lies in its
multifaceted role in promoting various physiological processes in plant organisms. The
concentration of Si in soils in complex forms such as aluminum and crystalline silicates
exhibits considerable variability, ranging from 1% to 45%, depending on the type of soil.
In addition, the classification of Si as a macro- or micronutrient in plant tissues depends
on its concentration relative to dry weight. In this regard, silicon is considered a macroele-
ment when it is present in amounts above 0.1 percent of dry weight, while it assumes the
classification of micronutrients when concentrations fall below 0.05 percent of dry weight.
This categorization underscores the contextual significance of silicon in crop physiology,
the importance of which varies depending on plant species and environmental contexts
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and their mutual interaction [151–155]. Silicon-based products represent a spectrum of
formulations, encompassing both solid and liquid states. Solid silicon products are derived
from a variety of sources, including geological formations such as rocks and sediments,
by-products originating from plant materials, as well as recycled materials. Consequently,
the silicon content and properties of these solid formulations exhibit significant variability,
contingent upon the compositional attributes of the respective raw materials employed.
This diversity underscores the nuanced interplay between raw material characteristics
and the resultant attributes of solid silicon products, thereby influencing their efficacy and
suitability for facilitating plant uptake [156]. Liquid formulations encompass a spectrum of
compositions, including monosilicic or polysilicic acid solutions. The silicon concentration
within liquid formulations directly dictates the available silicon content accessible to plants.
Notably, products with elevated silicon concentrations tend to exhibit alkaline pH levels,
typically around 9, necessitating dilution to preempt potential soil pH perturbations upon
application. Furthermore, colloidal gels comprising silicic acid offer an additional modality
for silicon formulation, presenting opportunities for nuanced delivery strategies within
agricultural paradigms [153,157].

Silicon products offer versatile application methods, mainly through soil incorpora-
tion or foliar application. Among these methods, soil application stands out as the most
effective strategy for increasing silicon concentration in plant tissues due to its effectiveness
in facilitating silicon uptake. At the time of application, silicon is mainly absorbed in the
form of silicic acid at the root level. Subsequently, facilitated by xylem vessels, silicon is
transported throughout the plant via the transpiration stream. At transpiration sites, Si
tends to accumulate predominantly in the form of amorphous silica, showing a characteris-
tic pattern of localization near anatomical elements such as stomatal openings, trichomes,
lumens, and intercellular voids. This spatial distribution reflects a preferential deposition
of Si in regions intricately involved in water regulation and gas exchange, indicating a
functional correlation between Si localization and the physiological processes occurring
at these sites [156,158]. Foliar application, although less efficient than soil incorporation,
remains a viable strategy for increasing the concentration of Si in plant tissues [157,159]. Ef-
fective foliar application generally requires the use of high concentration sprayed solutions,
reaching levels as high as 1500 ppm. Despite its lower efficiency, foliar application offers
significant advantages, particularly in circumventing potential problems associated with
immobilization of Si in soil. As a result, it is often favored in scenarios that require repeated
sprays targeting specific plant organs. In the context of foliar uptake, silicon can be ab-
sorbed directly through the cuticular layer or through various openings on the leaf surface,
including clefts adjacent to trichomes, stomata, pores and hydathodes. This mode of uptake
underscores the versatility of foliar application in facilitating Si uptake, highlighting its
utility in strategies for targeted Si incorporation into agricultural systems [157,159].

5.2. Morphological, Physiological, and Biochemical Changes Induced from Silicon to Mitigate
Drought Stress in Agriculture Crops

In addition to its established function as a vital plant mineral nutrient, Si has gained
attention as a biostimulant due to its ability to modulate a plethora of plant biochemical
and physiological processes. Beyond its conventional role in nutrient uptake, silicon
demonstrates multifaceted effects that result in pronounced improvements in plant growth,
photosynthetic efficiency, and resilience to environmental stressors. These effects may result
from mechanical and/or metabolic alterations that occur in Si-treated plants [160,161].
Mechanical changes are commonly attributed to the deposition of silica, leading to the
formation of phytoliths within the cell walls of epidermal cells [162]. Phytolith deposition
leads to an augmentation in cell wall thickness and mechanical strength, yielding several
advantageous outcomes for plant physiology and resilience. Specifically, the enhanced
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structural integrity afforded by phytoliths positively impacts leaf orientation, thereby
promoting optimal positioning for photosynthetic efficiency. Furthermore, the reinforced
cell walls bolster overall plant sturdiness, providing robust defense mechanisms against
diverse environmental threats, whether biotic or abiotic in nature [163,164].

Metabolic alterations induced by Si applications are critical in mitigating ROS-induced
oxidative damage in plants facing various stresses. Si has been shown to enhance the
antioxidant activity of specific enzymes, particularly superoxide dismutase (SOD), cata-
lase (CAT), and ascorbate peroxidase (APX). This increase in antioxidant enzyme activity
serves to safeguard plant cells from the damaging effects of ROS, thereby preventing the
degradation of essential biomolecules such as proteins, lipids, carbohydrates, and DNA. By
strengthening antioxidant defenses, silicon confers resilience to oxidative stress, thereby
supporting plant vigor and adaptability under adverse environmental conditions [165,166].

In addition to its role in mitigating oxidative damage, Si has been observed to increase
water use efficiency (WUE) under drought conditions by attenuating cuticular and stomatal
water losses associated with transpiration. This effect is mediated by Si-induced changes
in the structural and physiological attributes of plant surfaces. Specifically, Si treatments
lead to alterations in cuticular properties and stomatal behavior, resulting in reduced
rates of water loss by transpiration. By reducing transpiration water loss through these
mechanisms, silicon supplementation contributes to WUE optimization, thereby enhancing
plant resilience to drought stress [151]. The most common Si formulation tested in these
experiments was sodium metasilicate (Na2SiO3) and monosilicic acid (H4SiO4), applied
via foliar in field or under greenhouse conditions. The dosage was dependent on the
experimental design tested in each trial (Table 6).

Rahimi et al. [167] investigated the ameliorative effects of the application of selenium
in Calendula officinalis subjected to drought stress conditions. Drought stress was simulated
using Polyethylene glycol (PEG) at different levels, including 0 (control), −0.5 (mild),
−1 (moderate), and −1.5 MPa (severe stress). Drought stress was applied two weeks
after germination. The silicon treatments involved the application of silicon nanoparticles
(SiNPs) at concentrations of 0, 100, 200, 500 mg L−1), as well as silicate at concentrations
of 0, 1, 1.5, 2 mg L−1) supplied via seed priming. The results revealed that the treatments
significantly enhanced the germination rate and index in seedlings subjected to drought
stress. Ning et al. [168] examined the effect of drought stress on Zea mays cultivated in
pots. Drought stress was applied at the 6-leaf (D-V6), 12-leaf (D-V12), and blister (D-R2)
growth stages, consisting of moderate drought stress (50% field capacity) for a duration of
7 days. To ameliorate the damage caused by drought stress, silicon fertilizer was supplied
as Na2SiO3.9H2O at two levels: 0 (-Si) and 0.06 mg Si kg−1 dry soil (+Si). The findings
obtained revealed that silicon application enhanced leaf area, photosynthetic rate and SOD,
POD and CAT activities in maize plants.

Additional results are summarized in Table 6.
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Table 6. Drought stress physiological and biochemical changes in agriculture crops treated with silicon.

Silicon Description Crop Growing Conditions Drought Stress
Treatment

Plant Growth Stage
at the Stress

Treatment Application
Effects of Silicon on

Stressed Crops References

Monosilicic acid (H4SiO4)
with 20% Si. A total of
0, 0.75, 1.5 and 3 g SA

(corresponding to 0, 100,
200 and 400 kg SA ha−1,

respectively) was applied
in each pot at an interval of

2 weeks

Cucumis melo L.
cv. Cantaloupe

Potted plants under
polyhouse conditions

Three soil moisture
regimes (100%, 75%

and 50% FC)

From vegetative until
fruit maturity

Increased fruit yield and
total soluble
solids (◦Brix)

[169]

Foliar application of
K2Si2O5 at rates of

1, 2 and 3%
Triticum aestivum L. Field conditions

Irrigation regimes:
control, irrigation

stopped at 30 days after
sowing (DAS)

(vegetative stage),
and irrigation stopped at

75 DAS
(reproductive stage)

From vegetative
to harvesting

Increased number of
spikes per plant,

1000-grain weight
and grain yield

[170]

Sodium metasilicate
(Na2SiO3) (2 mM)

drenched in the soil of the
pots (500 mL kg−1)

Lens culinaris Potted plants

Control (C) with
100% field capacity (FC),

moderate stress (MD),
50% FC, and severe stress

(SD), 20% FC.

Onset of flowering
period for 28 days

Increased APX, GPX,
CAT, SOD, GR,

DHAR and nitrate
reductase activities

[171]

Foliar application of
monosilicic acid (H4SiO4)
at 0, 2000 and 4000 ppm

Cucurbita pepo L. Field conditions

Two levels of water
irrigation at 80% of water
holding capacity (WHC)

as control and 50% of
WHC as

drought treatment

Sprayed at three times
with 10 days intervals
starting at the 10th day

from transplanting until
40 days from

transplanting (DAT)

Increased chlorophylls
concentration, SOD, CAT,

POD and polyphenol
oxidase (PPO) activities

[172]
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Table 6. Cont.

Silicon Description Crop Growing Conditions Drought Stress
Treatment

Plant Growth Stage
at the Stress

Treatment Application
Effects of Silicon on

Stressed Crops References

Calcium metasilicate
(CaO.SiO2) at levels of

0, 20, 40, 60, 80 and 100 g
CaO.SiO2 pot−1

Saccharum spp. Potted plants under
greenhouse conditions

Drought stress
[mild −75 ± 5,

moderate—50 ± 5 and
severe −25 ± 5% of
soil water content
capacity (SWCC)]

During the drying cycle
(up to 122 days).

Enhanced plant growth
and photosynthetic

pigments as well as SOD,
CAT and GPX activities

[173]

Foliar spray
(K2SiO3) (Sifol®)

Vigna unguiculata L. Field conditions

100% evapotranspiration
replacement (W100) and
50% evapotranspiration

replacement (W50)

Cowpea phenological
(stages V5 and V9)

Increased leaf proline
concentration and APX

and CAT activities
[174]

Silica sol and
choline-stabilized

orthosilicic acid (ch-OSA)
directly applied in the

nutrient solution

Tagetes patula L. Hydroponic under
greenhouse conditions Drought stress for 55 h

Application of silica
soillevel I (23.25),

level II (31.0); ch-OSA
(mg dm−3 of nutrient

solution NS)

Increased net
photosynthesis activity

(PN), stomatal
conductance (gs), and
transpiration rate (E)

[175]

Foliar application Si
1.5 mM (10 mL per pot) Oryza sativa L. Puddled earthen pots

Two moisture regimes
(100% and 40% water

holding capacity) from
15th day of

transplantation to 30th
day of transplantation

Interval of ten days
during the

drought period

Enhanced plant growth
and development, yield

and quality traits
[176]

Foliar application of 0, 0.5,
1, and 1.5 mM nano-SiO2

Vicia faba L. Field Two moisture regimes
(100% and 65% ETc)

From flowering
to maturity

Enhanced leaf gas
exchange, water relations

and nutrient uptake
[177]
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5.3. Genes Involved in Drought Tolerance in Agriculture Crops Treated with Silicon

The use of Si in agricultural practices has been shown to cause changes in gene expres-
sion in crop species. These alterations in gene expression induce a myriad of physiological
and biochemical changes, collectively increasing plant growth, enhancing stress resistance
and overall yield potential [178,179]. Although extensive literature elucidates systemic
physiological and metabolic changes in drought stress-exposed and Si-treated crops, a
significant gap in transcriptomic investigations persists. This dearth underscores the im-
perative for expanded research initiatives aimed at elucidating the regulatory roles of
genes in orchestrating plant responses to stressors. By leveraging transcriptomic analyses,
researchers can unravel the intricate molecular pathways underpinning stress tolerance
mechanisms, thus advancing our comprehension of plant stress physiology at the genetic
level. This concerted effort holds a significant promise for informing targeted strategies
to enhance crop resilience and mitigate yield losses under challenging environmental
conditions. In this exhaustive review, we have meticulously synthesized findings from
the existing literature, collating a comprehensive array of references pertaining to genes
intricately involved in fundamental physiological processes. Specifically, our review en-
compasses genes associated with photosynthesis, amino acid synthesis, photorespiration,
and membrane proteins. A concise presentation of these referenced genes is provided
in Table 7.

Table 7. Drought stress responsive genes in agriculture crops treated with silicon.

Biostimulant Crop Growing
Conditions

Drought Stress
Treatment

Genes Activated by
Drought Stress References

Addition of
potassium silicate

(K2SiO3·nH2O)
2.5 mM in the

nutrient solution

Tomato Hydroponic 10% PEG-6000 from
7 days

Downregulation of
PetE, PetF, PsbP, PsbQ,
PsbW, and Psb28 under

water stress

[180]

Addition of
monosilicic acid
(0.75 mM) in the
nutrient solution

Tomato Hydroponic
1% PEG-6000 in the

nutrient solution
for 21 days

Increased relative
expression of

argininosuccinate lyase
(SlASL)

[181]

Addition of
0.6 mM Si in the
form of Na2SiO3
in the nutrient

solution

Tomato Hydroponic

1% PEG-6000 from
the emergence of
two true leaves

until the emergence
of four true leaves

Reduced leaf
expression levels of
Aox1a, Aox1b, and

Aox1c under
water scarcity

[182]

Addition of
potassium silicate

(K2SiO3·nH2O)
2 mM in the

nutrient solution

Sorghum Greenhouse
in soil

Water field capacity
(−18 KPa) until
water deficiency
(−138 KPa) for

17 days

Increased root
expression levels of

TIP4;2 and PIP1;3/1;4
and reduced root

expression level of
PIP1;6 under
water stress

[183]
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6. Conclusions
The biostimulants ability to enhance soil health, promote nutrient uptake, and mitigate

drought stress renders them highly attractive in the pursuit of sustainable, climate-resilient
agriculture. The scientific community has placed significant emphasis on biostimulants
due to their potential to enhance plant growth and resilience, particularly under stressful
conditions such as drought.

Several promising areas warrant further investigation in future research on the role of
biostimulants as alleviators of drought stress in plants. For instance, conducting long-term,
multi-season field trials is crucial to assess the sustained efficacy of biostimulants and to
address the poor lab-to-field translation, as well as the lack of robustness across varying
climatic conditions. Moreover, the optimization of biostimulant formulations, alongside
precise tailoring of their timing and dosage, should be adapted to specific crops, soil types,
and environmental conditions to maximize drought-mitigation potential. Emphasizing
the agroecological perspective of these products through a range of field experiments,
particularly in the contexts of organic farming, agroforestry, and regenerative agriculture
practices is essential. Such studies are key to developing resilient agricultural systems
in drought-prone regions, ensuring that biostimulants align with sustainable farming
principles and contribute to long-term environmental and agricultural sustainability.

In any case, it should be made clear that the application of biostimulants, regardless of
their origin, will not be able to replace synthetic fertilizers but could help reduce their use
by improving the sustainability of agricultural production.
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