Prunus Movement Across the Silk Road: An Integrated Evolutionary and Breeding Analysis
<p>Map of Silk Road and other related trade routes in the Middle Ages indicating the geographic origin of the most cultivated <span class="html-italic">Prunus</span> species, including peaches and nectarines, plums and prunes, apricots, almonds and cherries (<b>A</b>), and the taxonomy of theses cultivated species inside the genus <span class="html-italic">Prunus</span> (<b>B</b>).</p> "> Figure 2
<p><span class="html-italic">Prunus</span> origin (A), diversification (B), and cultivation (C) areas across the world. <span class="html-italic">Prunus</span> fruits are located in the first diversification areas. The year of the dissemination to main countries is also indicated.</p> "> Figure 3
<p><span class="html-italic">Prunus</span> production around the world, including peach and nectarine, plum and prune, apricot, almond, and sour and sweet cherry, and evolution during the last thirty years [<a href="#B13-horticulturae-10-01381" class="html-bibr">13</a>].</p> ">
Abstract
:1. Introduction
2. Evolutionary History, Domestication, and Diversity
2.1. Tracing Early Centers of Prunus
2.1.1. Plums and Prunes
2.1.2. Peaches
2.1.3. Apricots
2.1.4. Almonds
2.1.5. Cherries
2.2. Domestication of Prunus
2.3. Dispersion and Cultivation of Prunus
2.4. Cultivation of Prunus Around the World
3. Breeding and Impact of Climate Change on Genetic Patterns of Prunus
3.1. Genetic Diversity and Structure of Prunus Germplasm
3.2. Interspecific Prunus Hybridization to Develop New Cultivars
Hybrid | Origin | Characters | Pollination | References |
---|---|---|---|---|
Plumcots | It was named by Luther Burbank. This hybrid occurred naturally. | Combining plum and apricot [hybrids of P. salicina or P. cerasifera with apricots (P. armeniaca or P. mume)]. | Partially self-fertile | [93,94] |
Pluots | It was named by Floyd Zaiger and is the second hybrid generation of Plum-apricot. | If Plumcot is crossed again with the plum parent, the latter will have a 75% share in the new hybrid, and the apricot parent will have 25%. Hybrids of [(Prunus domestica × P. armeniaca) × P. domestica or (P. salicina × P. armeniaca) × P. salicina]. | Self-incompatibility | [94,95] |
Aprium | It was named by Floyd Zaiger and is the second hybrid generation of Plumcot with apricot. | The share of genetic contribution of apricot and plum parent is 75 and 25%, respectively [(Prunus aremeniaca × P. domestica) × P. aremeniaca or P. armeniaca × (P. salicina × P. armeniaca)]. | It is usually self-fertilizing, but planting another compatible plum or apricot tree can promote fruit set. | [96] |
3.3. Interspecific Prunus Hybridization to Develop New Roostock
Prunus Rootstock | Origin | Characters | Used Scions | References |
---|---|---|---|---|
Prunus rootstock, ‘Cornerstone’ | It was named by John K. Slaughter and Timothy J. Gerdts. | The present invention relates to a novel and distinct variety of Prunus rootstock (P. dulcis × P. persica), with a lower incidence and expression of crown gall (agrobacterium tuberfaciens). | ‘Cornerstone’ is a new and distinct variety of rootstock that appears to be quite useful for almond, peach, nectarine, plum, and some apricot varieties. | [100] |
Prunus rootstock, ‘Warootone’ | It was named by John Keith Slaughter and Kaylan M. Roberts. | A new and distinct variety of Prunus rootstock tree ([Prunus dulcis × Prunus persica] × [Prunus davidiana × Prunus persica]), which is denominated varietally as ‘Warootone’. When utilized as a rootstock, it reduces the growth and height of fruiting cultivars | Peach, nectarine, plum, almond, and apricot | [101] |
Prunus rootstock, ‘Purplepac’ | It was named by Jorge Pinochet. | The present invention comprises a new and distinct cultivar of peach–almond hybrid [(Prunus dulcis × P. persica) × (P. persica × P. davidiana)] used as a rootstock and known by the varietal name ‘Purplepac’. It exhibits root-knot nematode resistance (Meloidogyne spp.) | Peach, nectarine, almond, and plum | [102] |
Prunus rootstock, ‘Tempropac’ | It was named by Jorge Pinochet. | (Prunus dulcis × P. persica) × P. persica. It exhibits root-knot nematode resistance (Meloidogyne spp.). | Peach, nectarine, and almond varieties | [103] |
Prunus rootstock, ‘Myrocot’ | It was named by Gennadiy Eremin. | Prunus cerasifera × armeniaca. It is resistant to root and leaf diseases, with high temperature and frost tolerance. | Plum and apricot | [104] |
Peach rootstock, MP-29 | It was named by Thomas G. Beckman, Jose X. Chaparro, and Wayne B. Sherman. | Prunus species hybrid × Prunus persica [inter-specific hybrid, ‘Edible Sloe’ plum (Prunus species hybrid) × ‘SL0014’ (Prunus persica)]. It is distinguished by its resistance to peach tree short life/bacterial canker complex, Armillaria root rot, and several species of root-knot nematodes. | Peach | [105] |
3.4. Genomic Markers and Evaluation of Genetic Diversity
3.5. Genomic Markers and Assisted Selection
3.6. Gene Expression Analysis
3.7. Global Changes in the Genomes of the Prunus Genus and Future Prespectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christian, D. The Silk Road: A Very Short Introduction. Cent. Asian Surv. 2014, 33, 119–120. [Google Scholar] [CrossRef]
- Spengler, R.N.; Maksudov, F.; Bullion, E.; Merkle, A.; Hermes, T.; Frachetti, M. Arboreal Crops on the Medieval Silk Road: Archaeobotanical Studies at Tashbulak. PLoS ONE 2018, 13, e0201409. [Google Scholar] [CrossRef]
- Frachetti, M.D.; Smith, C.E.; Traub, C.M.; Williams, T. Nomadic Ecology Shaped the Highland Geography of Asia’s Silk Roads. Nature 2017, 543, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, Q.; Yang, Y.; Duan, Y.; Yang, Y. Exchanges of Economic Plants along the Land Silk Road. BMC Plant Biol. 2022, 22, 619. [Google Scholar] [CrossRef]
- Ercisli, S. Biodiversity among Wild Edible Fruits on Silk Road Countries: Situation in Turkey. Acta Hortic. 2024, 1401, 9–16. [Google Scholar] [CrossRef]
- Faḍlān, A.I. Ibn Fadlan and the Land of Darkness: Arab Travellers in the Far North; Penguin Publishing Group: New York, NY, USA, 2012; ISBN 978-0-14-045507-6. [Google Scholar]
- Pellat, C. Gahiziana, I: Le “Kitab al-Tabassur Bi-l-Tigara” Attribué à Gahiz. Arab. J. Arab. Islam. Stud. 1954, 1, 153–165. [Google Scholar]
- Mir, M.; Waida, U.I.; Mir, S. Production Technology of Stone Fruits; Springer: Berli, Germany, 2021; ISBN 9789811589195. [Google Scholar]
- Janick, J. The Origin of Fruits, Fruit Growing and Fruit Breeding. Plant Breed. Rev. 2005, 25, 255–320. [Google Scholar]
- Zhang, Q.; Chen, W.; Sun, L.; Zhao, F.; Huang, B.; Yang, W.; Tao, Y.; Wang, J.; Yuan, Z.; Fan, G.; et al. The Genome of Prunus Mume. Nat. Commun. 2012, 3, 1318. [Google Scholar] [CrossRef]
- Sturtevant, E.L.; Sturtevant, E.L.; Hedrick, U.P. Sturtevant’s Notes on Edible Plants; J.B. Lyon: Albany, NY, USA, 1919; ISBN 978-0-486-20459-8. [Google Scholar]
- Faust, M.; Timon, B. Origin and Dissemination of Peach; Origin and Dissemination of Peach. In Horticultural Reviews; Wiley-Blackwell: Oxford, UK, 2010; Volume 16, pp. 331–379. ISBN 978-0-470-65058-5. [Google Scholar]
- FAO. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 August 2024).
- Zhengyi, W. Flora of China; Science Press: Alexandria, WV, USA, 1999; ISBN 978-0-915279-34-0. [Google Scholar]
- Chin, S.-W.; Shaw, J.; Haberle, R.; Wen, J.; Potter, D. Diversification of Almonds, Peaches, Plums and Cherries—Molecular Systematics and Biogeographic History of Prunus (Rosaceae). Mol. Phylogenet. Evol. 2014, 76, 34–48. [Google Scholar] [CrossRef]
- Bortiri, E.; Oh, S.-H.; Jiang, J.; Baggett, S.; Granger, A.; Weeks, C.; Buckingham, M.; Potter, D.; Parfitt, D.E. Phylogeny and Systematics of Prunus (Rosaceae) as Determined by Sequence Analysis of ITS and the Chloroplast trnL-trnF Spacer DNA. Syst. Bot. 2001, 26, 797–807. [Google Scholar]
- Jun, S.T.; Berggren, L.; Chung-Hee, S.; ICKERT-BOND, Y.; Ting-Shuang, Y.; Ki-Oug, X.; Lei, S.; Joey, D. Potter, Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences. J. Syst. Evol. 2008, 46, 322. [Google Scholar]
- Zhao, L.; Jiang, X.-W.; Zuo, Y.-J.; Liu, X.-L.; Chin, S.-W.; Haberle, R.; Potter, D.; Chang, Z.-Y.; Wen, J. Multiple Events of Allopolyploidy in the Evolution of the Racemose Lineages in Prunus (Rosaceae) Based on Integrated Evidence from Nuclear and Plastid Data. PLoS ONE 2016, 11, e0157123. [Google Scholar] [CrossRef] [PubMed]
- Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America: Exclusive of the Subtropical and Warmer Temperate Regions, 2nd ed.; The Macmillan Company: New York, NY, USA, 1956. [Google Scholar]
- Hodel, R.; Zimmer, E.; Wen, J. A Phylogenomic Approach Resolves the Backbone of Prunus (Rosaceae) and Identifies Signals of Hybridization and Allopolyploidy. Mol. Phylogenet. Evol. 2021, 160, 107118. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wen, J. A Phylogenetic Analysis of Prunus and the Amygdaloideae (Rosaceae) Using ITS Sequences of Nuclear Ribosomal DNA. Am. J. Bot. 2001, 88, 150–160. [Google Scholar] [CrossRef]
- Potter, D.; Eriksson, T.; Evans, R.C.; Oh, S.; Smedmark, J.E.E.; Morgan, D.R.; Kerr, M.; Robertson, K.R.; Arsenault, M.; Dickinson, T.A.; et al. Phylogeny and Classification of Rosaceae. Plant Syst. Evol. 2007, 266, 5–43. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Naik, P.M.; Jain, S.M.; Johnson, D.V. Advances in Plant Breeding Strategies: Fruits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 727–771. [Google Scholar]
- Gerber, D.E. Greek Iambic Poetry: From the Seventh to the Fifth Centuries BC; Harvard University Press: New York, NY, USA, 1999; ISBN 978-0-674-99581-9. [Google Scholar]
- Watkins, R. Cherry, Plum, Peach, Apricot and Almond: Prunus spp. (Rosaceae); ASHS: New York, NY, USA, 1976. [Google Scholar]
- Das, B.; Ahmed, N.; Singh, P. Prunus Diversity- Early and Present Development: A Review. Int. J. Biodivers. Conserv. 2011, 3, 721–734. [Google Scholar]
- Faust, M.; Surányi, D. Origin and Dissemination of Plums; Janick, J., Ed.; Wiley: Hoboken, NJ, USA, 1998; pp. 179–231. [Google Scholar]
- Crane, M.B.; Lawrence, W.J.C. The Genetics of Garden Plants, 4th ed.; Macmillan: London, UK, 1952. [Google Scholar]
- THE GENETICS OF GARDEN PLANTS by Crane, M.B. and W. J. C. Lawrence: VG | Xerxes Fine and Rare Books and Documents. 1938. Available online: https://www.abebooks.co.uk/GENETICS-GARDEN-PLANTS-Crane-Lawrence/221965948/bd (accessed on 12 November 2024).
- Mackenzie, D.N. A Concise Pahlavi Dictionary; Routledge: London, UK, 2014; ISBN 978-1-136-61395-1. [Google Scholar]
- Dal Martello, R.; von Baeyer, M.; Hudson, M.; Bjorn, R.G.; Leipe, C.; Zach, B.; Mir-Makhamad, B.; Billings, T.N.; Muñoz Fernández, I.M.; Huber, B.; et al. The Domestication and Dispersal of Large-Fruiting Prunus spp.: A Metadata Analysis of Archaeobotanical Material. Agronomy 2023, 13, 1027. [Google Scholar] [CrossRef]
- Hancock, J. Temperate Fruit Crop Breeding: Germplasm to Genomics; Springer: Dordrecht, The Netherlands, 2008; p. 455. ISBN 978-1-4020-6906-2. [Google Scholar]
- Monika, H.; Daniela, G. Phenotypic Characterization and Evaluation of European Cherry Collections: A Survey to Determine the Most Commonly Used Descriptors. J. Hortic. Sci. Res. 2017, 1, 7–12. [Google Scholar] [CrossRef]
- Körber-Grohne, U. Pflaumen, Kirschpflaumen, Schlehen: Heutige Pflanzen und ihre Geschichte seit der Frühzeit; Theiss: Stuttgart, Germany, 1996; ISBN 978-3-8062-1212-9. [Google Scholar]
- Janick, J. Origin and Dissemination of Prunus Crops: Peach, Cherry, Apricot, Plum, Almond; ISHS: Brussels, Belgium, 2011; ISBN 978-90-6605-436-3. [Google Scholar]
- Bassi, D.; Monet, R. Botany and Taxonomy. Peach Bot. Prod. Uses 2008, 1–36. [Google Scholar] [CrossRef]
- Columella, L.I.M.; Ash, H.B. On Agriculture; Harvard University Press: Cambridge, MA, USA, 1941; Volume I, ISBN 978-0-674-99398-3. [Google Scholar]
- Nazarbos, D. Dioscorides, de Materia Medica: A New Indexed Version in Modern English; Ibidis Press: London, UK, 2000. [Google Scholar]
- Zheng, Y.; Crawford, G.W.; Chen, X. Archaeological Evidence for Peach (Prunus persica) Cultivation and Domestication in China. PLoS ONE 2014, 9, e106595. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Wang, Y.; Zhang, Q.; Fan, G.; Zhang, S.; Wang, Y.; Liao, K. Genetic Diversity, Population Structure, and Relationships of Apricot (Prunus) Based on Restriction Site-Associated DNA Sequencing. Hortic. Res. 2020, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J. PLINY, Natural History, Volume IX: Books 33–35. Available online: https://www.loebclassics.com/view/LCL394/1952/pb_LCL394.iii.xml (accessed on 11 November 2024).
- Blanchet, H. Abécédaire illustré des mots voyageurs: Flâneries étymologiques; Ateliers Perrousseaux: Paris, France, 2021; ISBN 978-2-36765-028-9. [Google Scholar]
- Groppi, A.; Liu, S.; Cornille, A.; Decroocq, S.; Bui, Q.T.; Tricon, D.; Cruaud, C.; Arribat, S.; Belser, C.; Marande, W.; et al. Population Genomics of Apricots Unravels Domestication History and Adaptive Events. Nat. Commun. 2021, 12, 3956. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Decroocq, S.; Harte, E.; Tricon, D.; Chague, A.; Balakishiyeva, G.; Kostritsyna, T.; Turdiev, T.; Saux, M.F.-L.; Dallot, S.; et al. Genetic Diversity and Population Structure Analyses in the Alpine Plum (Prunus brigantina Vill.) Confirm Its Affiliation to the Armeniaca Section. Tree Genet. Genomes 2021, 17, 2. [Google Scholar] [CrossRef]
- Zeinalabedini, M.; Khayam-Nekoui, M.; Grigorian, V.; Gradziel, T.M.; Martinez-Gomez, P. The Origin and Dissemination of the Cultivated Almond as Determined by Nuclear and Chloroplast SSR Marker Analysis. Sci. Hortic. 2010, 125, 593–601. [Google Scholar] [CrossRef]
- Martínez-García, P.J.; Ossama, K.; Gouta, H.; Rahimi, S.; Prudencio, A.; Rubio, M.; Martinez-Gomez, P. Genomic Designing for Drought Tolerant Almond Varieties. In Genomic Designing for Abiotic Stress Resistant Fruit Crops; Springer: Berlin/Heidelberg, 2022; pp. 161–175. ISBN 978-3-031-09874-1. [Google Scholar]
- Gradziel, T.; Martinez-Gomez, P. Almond Breeding. Plant Breeding Reviews; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2013; Volume 37, pp. 207–258. ISBN 978-1-118-49785-2. [Google Scholar]
- Dvin, S.R.; Gharaghani, A.; Pourkhaloee, A. Genetic Diversity, Population Structure, and Relationships among Wild and Domesticated Almond (Prunus Spp.) Germplasms Revealed by ISSR Markers. Adv. Hortic. Sci. 2020, 34, 287–300. [Google Scholar] [CrossRef]
- Ladizinsky, G. On the Origin of Almond. Genet. Resour. Crop Evol. 1999, 46, 143–147. [Google Scholar] [CrossRef]
- Delplancke, M.; Alvarez, N.; Benoit, L.; Espíndola, A.; I Joly, H.; Neuenschwander, S.; Arrigo, N. Evolutionary History of Almond Tree Domestication in the Mediterranean Basin. Mol. Ecol. 2013, 22, 1092–1104. [Google Scholar] [CrossRef]
- de Candolle, A. Origin of Cultivated Plants; D. Appleton: New York, NY, USA, 1885. [Google Scholar]
- Reim, S.; Schiffler, J.; Braun-Lüllemann, A.; Schuster, M.; Flachowsky, H.; Höfer, M. Genetic and Pomological Determination of the Trueness-to-Type of Sweet Cherry Cultivars in the German National Fruit Genebank. Plants Basel Switz. 2023, 12, 205. [Google Scholar] [CrossRef]
- Self, B. Cherries: Crop Physiology, Production and Uses; Webster, A., Looney, N., Eds.; CABI: Wallingford, UK, 1995. [Google Scholar]
- Mitra, S. Temperate Fruits Vol 1: Pome and Stone Fruits; ISHS: Brussel, Belgium, 1998; ISBN 978-93-89605-32-7. [Google Scholar]
- Mete, A. Determination of Performances of Some Cherry Cultivars Grafted on SL 64 Rootstock on Amasya. Master’s Thesis, Abant Izzet Baysal University Graduate School of Natural And Applied Sciences Institute of Science Departament of Horticultural Crop., Bolu Merkez/Bolu, Turkey, 2017. [Google Scholar]
- Bedő, J.; Tóth-Lencsés, A.K.; Kovács, Z.; Pápai, B.; Szőke, A.; Kiss, E.; Veres, A. Microsatellite-Based Molecular Diversity in Sour Cherry Genotypes (Prunus cerasus L.) Cultivated in Hungary. Horticulturae 2023, 9, 892. [Google Scholar] [CrossRef]
- Badenes, M.L.; Byrne, D.H. Fruit Breeding; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-1-4419-0762-2. [Google Scholar]
- Ecer, Z. A Research on Producer Behaviors in Sour Cherry Growing: The Example of Aksehir. Master’s Thesis, The Graduate School of Natural and Applied Science of Siirt University, Institute of Science Department of Horticultural Crop., Siirt, Turkey, 2023. [Google Scholar]
- Wöhner, T.W.; Emeriewen, O.F.; Wittenberg, A.H.J.; Nijbroek, K.; Wang, R.P.; Blom, E.-J.; Schneiders, H.; Keilwagen, J.; Berner, T.; Hoff, K.J.; et al. The Structure of the Tetraploid Sour Cherry ‘Schattenmorelle’ (Prunus cerasus L.) Genome Reveals Insights into Its Segmental Allopolyploid Nature. Front. Plant Sci. 2023, 14, 1284478. [Google Scholar] [CrossRef]
- Pinosio, S.; Marroni, F.; Zuccolo, A.; Vitulo, N.; Mariette, S.; Sonnante, G.; Aravanopoulos, F.A.; Ganopoulos, I.; Palasciano, M.; Vidotto, M.; et al. A Draft Genome of Sweet Cherry (Prunus avium L.) Reveals Genome-Wide and Local Effects of Domestication. Plant J. Cell Mol. Biol. 2020, 103, 1420–1432. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Zheng, Z.; Wang, L.; Liu, X.; Zhu, G.; Fang, W.; Cheng, S.; Zeng, P.; Chen, C.; Wang, X.; et al. Comparative Population Genomics Reveals the Domestication History of the Peach, Prunus Persica, and Human Influences on Perennial Fruit Crops. Genome Biol. 2014, 15, 415. [Google Scholar] [CrossRef] [PubMed]
- Zohary, D.; Spiegel-Roy, P. Beginnings of Fruit Growing in the Old World. Science 1975, 187, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Abbo, S.; Pinhasi van-Oss, R.; Gopher, A.; Saranga, Y.; Ofner, I.; Peleg, Z. Plant Domestication versus Crop Evolution: A Conceptual Framework for Cereals and Grain Legumes. Trends Plant Sci. 2014, 19, 351–360. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Yao, J.; Li, Q.; Liu, F.; Yotsukura, N.; Krupnova, T.N.; Duan, D. Effect of Domestication on the Genetic Diversity and Structure of Saccharina Japonica Populations in China. Sci. Rep. 2017, 7, 42158. [Google Scholar] [CrossRef]
- Gharaghani, A.; Eshghi, S. Prunus Scoparia, a Potentially Multi-Purpose Wild Almond Species in Iran. Acta Hortic. 2015, 1074, 67–72. [Google Scholar] [CrossRef]
- Miller, A.J.; Gross, B.L. From Forest to Field: Perennial Fruit Crop Domestication. Am. J. Bot. 2011, 98, 1389–1414. [Google Scholar] [CrossRef]
- Petit, R.; Hampe, A. Some Evolutionary Consequences of Being a Tree. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 187–214. [Google Scholar] [CrossRef]
- Gradziel, T. Horticultural Reviews; Publisher: Wiley-Blackwell: Oxford, UK, 2011; Volume 38, pp. 23–81. ISBN 978-0-470-64470-6. [Google Scholar]
- Burbank, L.; Burbank, L.; Whitson, J.; John, R.; Williams, H.S.; Society, L.B. Luther Burbank, His Methods and Discoveries and Their Practical Application; Luther Burbank Press: London, UK, 1914. [Google Scholar]
- Crosby, A.W. The Columbian Exchange: Biological and Cultural Consequences of 1492, 30th Anniversary ed.; Bloomsbury Academic: New York, NY, USA, 2003; ISBN 978-0-275-98073-3. [Google Scholar]
- Cortinovis, G.; Di Vittori, V.; Bellucci, E.; Bitocchi, E.; Papa, R. Adaptation to Novel Environments during Crop Diversification. Curr. Opin. Plant Biol. 2020, 56, 203–217. [Google Scholar] [CrossRef]
- Fuller, D.Q.; Stevens, C.J. Between Domestication and Civilization: The Role of Agriculture and Arboriculture in the Emergence of the First Urban Societies. Veg. Hist. Archaeobot. 2019, 28, 263–282. [Google Scholar] [CrossRef]
- Martínez-Gomez, P.; Sozzi, G.O.; Sánchez-Pérez, R.; Rubio, M.; Gradziel, M. New Approaches to Prunus Tree Crop Breeding. J. Food Agric. Environ. 2003, 1, 52–63. [Google Scholar]
- Bourguiba, H.; Scotti, I.; Sauvage, C.; Zhebentyayeva, T.; Ledbetter, C.; Krška, B.; Remay, A.; D’Onofrio, C.; Iketani, H.; Christen, D.; et al. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming From the Species’ Center of Origin. Front. Plant Sci. 2020, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Zohary, D.; Hopf, M. Domestication of Plants in the Old World—The Origin and Spread of Domesticated Plants in South-West Asia, Europe, and the Mediterranean Basin; Oxford Publisher Press: Oxford, UK, 2012; ISBN 978-0-19-954906-1. [Google Scholar]
- Gaut, B.S.; Seymour, D.K.; Liu, Q.; Zhou, Y. Demography and Its Effects on Genomic Variation in Crop Domestication. Nat. Plants 2018, 4, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef] [PubMed]
- Teskey, B.J.E.; Shoemaker, J.S. Tree Fruit Production; Springer: Boston, MA, USA, 1978; ISBN 978-1-4684-6869-4. [Google Scholar]
- Cornille, A.; Gladieux, P.; Giraud, T. Crop-to-wild Gene Flow and Spatial Genetic Structure in the Closest Wild Relatives of the Cultivated Apple. Evol. Appl. 2013, 6, 737. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Luikart, G.H.; Aitken, S.N. Conservation and the Genetics of Populations; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-40857-5. [Google Scholar]
- Li, D.-Z.; Pritchard, H.W. The Science and Economics of Ex Situ Plant Conservation. Trends Plant Sci. 2009, 14, 614–621. [Google Scholar] [CrossRef]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef]
- Escribano, M.P.; Viruel, M.Á.; Hormaza Urroz, J.I. Comparison of Different Methods to Construct a Core Germplasm Collection in Woody Perennial Species with SSR Markers. A Case Study in Cherimoya (Annona Cherimola Mill., Annonaceae), an Underutilized Subtropical Fruit Tree Species. Ann. Appl. Biol. 2008, 153, 25–32. [Google Scholar] [CrossRef]
- Cao, K.; Peng, Z.; Zhao, X.; Li, Y.; Liu, K.; Arus, P.; Fang, W.; Chen, C.; Wang, X.; Wu, J.; et al. Chromosome-level genome assemblies of four wild peach species provide insights into genome evolution and genetic basis of stress resistance. BMC Biol. 2022, 20, 139. [Google Scholar] [CrossRef]
- Jung, S.; Jiwan, D.; Cho, I.; Lee, T.; Abbott, A.; Sosinski, B.; Main, D. Synteny of Prunus and Other Model Plant Species. BMC Genom. 2009, 10, 76. [Google Scholar] [CrossRef]
- Martinez-Gomez, P.; Crisosto, C.; Bonghi, C.; Rubio, M. New Approaches to Prunus Transcriptome Analysis. Genetica 2011, 139, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Velasco, D.; Hough, J.; Aradhya, M.; Ross-Ibarra, J. Evolutionary Genomics of Peach and Almond Domestication. G3 Bethesda Md. 2016, 6, 3985–3993. [Google Scholar] [CrossRef] [PubMed]
- Quero Garcia, J.; Schuster, M.; Ortega, G.; Charlot, G. Sweet Cherry Varieties and Improvement. In Cherries: Botany, Production and Uses; Springer: Berlin, Germany, 2017; pp. 60–94. ISBN 978-1-78064-837-8. [Google Scholar]
- Predieri, S. Mutation Induction and Tissue Culture in Improving Fruits. Plant Cell Tissue Organ Cult. 2001, 64, 185–210. [Google Scholar] [CrossRef]
- Darwin, C.; Darwin, C. The Variation of Animals and Plants under Domestication; John Murray: London, UK, 1868. [Google Scholar]
- Harlan, J.R.; de Wet, J.M.J. Toward a Rational Classification of Cultivated Plants. Taxon 1971, 20, 509–517. [Google Scholar] [CrossRef]
- Mayr, E. Speciation Phenomena in Birds. Am. Nat. 1940, 74, 249–278. [Google Scholar] [CrossRef]
- Okie, W.R. 057 A New Plumcot Adapted to the Southeastern United States. HortScience 1999, 34, 451A-451. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Ruiz, D.; Valero, D.; Rivera, D.; Obón, C.; Sánchez-Roca, C.; Gil, M. Bioactives in Fruit: Health Benefits and Functional Foods; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Halász, J.; Hegedűs, A.; Szabó, Z.; Nyéki, J.; Pedryc, A. DNA-Based S-Genotyping of Japanese Plum and Pluot Cultivars to Clarify Incompatibility Relationships. HortScience 2007, 42, 46–50. [Google Scholar] [CrossRef]
- Frecon, J.L.; Ward, D.L. Testing and Evaluation of Plum and Plum Hybrid Cultivars. Fruit Notes 2012, 77, 12–22. [Google Scholar]
- Roberto, S.R.; Novello, V.; Fazio, G. Editorial: New Rootstocks for Fruit Crops: Breeding Programs, Current Use, Future Potential, Challenges and Alternative Strategies. Front. Plant Sci. 2022, 13, 878863. [Google Scholar] [CrossRef]
- Bowman, K.D.; McCollum, G. Five New Citrus Rootstocks with Improved Tolerance to Huanglongbing. HortScience 2015, 50, 1731–1734. [Google Scholar] [CrossRef]
- Domingues, A.R.; Marcolini, C.D.M.; Gonçalves, C.H.d.S.; Resende, J.T.V.d.; Roberto, S.R.; Carlos, E.F. Rootstocks Genotypes Impact on Tree Development and Industrial Properties of ‘Valencia’ Sweet Orange Juice. Horticulturae 2021, 7, 141. [Google Scholar] [CrossRef]
- Slaughter, J.K.; Gerdts, T.J. Prunus Rootstock, ‘Cornerstone’. USPP21248P2, 1 December 2009. [Google Scholar]
- Slaughter, J.K.; Roberts, K.M. Prunus Rootstock, ‘Warootone’. USPP32029P2, 1 January 2019. [Google Scholar]
- Pinochet, J. Variety of Prunus Rootstock Named ‘Purplepac’. USPP21432P2, 1 February 2009. [Google Scholar]
- Pinochet, J. Variety of Prunus Rootstock Named ‘Tempropac’. USPP21533P3, 1 March 2009. [Google Scholar]
- Eremin, G. Prunus Rootstock Named ‘Myrocot’. USPP20847P3, 1 October 2008. [Google Scholar]
- Beckman, T.G.; Chaparro, J.X.; Sherman, W.B. Peach Rootstock Named MP-29. USPP23583P2, 1 December 2011. [Google Scholar]
- Company, R.; Ossama, K.; Fernandez i Marti, A.; Alonso Segura, J. Mutations Conferring Self-Compatibility in Prunus Species: From Deletions and Insertions to Epigenetic Alterations. Sci. Hortic. 2015, 192, 125–131. [Google Scholar] [CrossRef]
- Socias i Company, R.; Fernández i Martí, A.V.; Kodad, O.; Alonso Segura, J.M. Self-Compatibility in Prunus Species: Diversity of Mutations. In Proceedings of the 19th General Congress: Plant Breeding for Future Generations, Budapest, Hungary, 21–24 May 2012; pp. 196–199. [Google Scholar]
- Gómez, E.M.; Prudencio, Á.S.; Ortega, E. Protein Profiling of Pollen–Pistil Interactions in Almond (Prunus dulcis) and Identification of a Transcription Regulator Presumably Involved in Self-Incompatibility. Agronomy 2022, 12, 345. [Google Scholar] [CrossRef]
- Kao, T.; Tsukamoto, T. The Molecular and Genetic Bases of S-RNase-Based Self-Incompatibility. Plant Cell 2004, 16 (Suppl. S1), S72–S83. [Google Scholar] [CrossRef]
- Tao, R.; Yamane, H.; Sassa, H.; Mori, H.; Gradziel, T.M.; Dandekar, A.M.; Sugiura, A. Identification of Stylar RNases Associated with Gametophytic Self-Incompatibility in Almond (Prunus dulcis). Plant Cell Physiol. 1997, 38, 304–311. [Google Scholar] [CrossRef]
- Ikeda, K.; Ushijima, K.; Yamane, H.; Tao, R.; Hauck, N.R.; Sebolt, A.M.; Iezzoni, A.F. Linkage and Physical Distances between the S-Haplotype S-RNase and SFB Genes in Sweet Cherry. Sex. Plant Reprod. 2005, 17, 289–296. [Google Scholar] [CrossRef]
- Halasz, J.; Pedryc, A.; Ercisli, S.; Yilmaz, K.U.; Hegedus, A. S-Genotyping Supports the Genetic Relationships between Turkish and Hungarian Apricot Germplasm. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 2010, 135, 410–417. [Google Scholar] [CrossRef]
- Scorza, R. Progress in Tree Fruit Improvement Through Molecular Genetics. HortScience 2001, 36, 5855. [Google Scholar] [CrossRef]
- Tan, Q.; Li, S.; Zhang, Y.; Chen, M.; Wen, B.; Jiang, S.; Chen, X.; Fu, X.; Li, D.; Wu, H.; et al. Chromosome-Level Genome Assemblies of Five Prunus Species and Genome-Wide Association Studies for Key Agronomic Traits in Peach. Hortic. Res. 2021, 8, 213. [Google Scholar] [CrossRef]
- Brachi, B.; Morris, G.P.; Borevitz, J.O. Genome-Wide Association Studies in Plants: The Missing Heritability Is in the Field. Genome Biol. 2011, 12, 232. [Google Scholar] [CrossRef]
- Iwata, H.; Minamikawa, M.F.; Kajiya-Kanegae, H.; Ishimori, M.; Hayashi, T. Genomics-Assisted Breeding in Fruit Trees. Breed. Sci. 2016, 66, 100. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-Wide Genetic Marker Discovery and Genotyping Using next-Generation Sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.-X.; Liu, H.; Li, Z. Genotyping-by-Sequencing (GBS), an Ultimate Marker-Assisted Selection (MAS) Tool to Accelerate Plant Breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef]
- Limera, C.; Sabbadini, S.; Sweet, J.B.; Mezzetti, B. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. Front. Plant Sci. 2017, 8, 1418. [Google Scholar] [CrossRef]
- Dalla Costa, L.; Malnoy, M.; Gribaudo, I. Breeding next Generation Tree Fruits: Technical and Legal Challenges. Hortic. Res. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Byrne, D.H. Trends in Fruit Breeding. In Fruit Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer: Boston, MA, USA, 2012; pp. 3–36. ISBN 978-1-4419-0763-9. [Google Scholar]
- Zhang, H.; Lian, X.; Gao, F.; Song, C.; Feng, B.; Zheng, X.; Wang, X.; Hou, N.; Cheng, J.; Wang, W.; et al. A Gap-Free Genome of Pillar Peach (Prunus Persica L.) Provides New Insights into Branch Angle and Double Flower Traits. Plant Biotechnol. J. 2024, (in press). [Google Scholar] [CrossRef]
- Allan, A.C.; Chagné, D. Plant Biology: Environmental Extremes Induce a Jump in Peach Fitness. Curr. Biol. 2021, 31, R1046–R1048. [Google Scholar] [CrossRef]
- Lipan, L.; Cano-Lamadrid, M.; Vázquez-Araújo, L.; Sendra, E.; Hernández, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, Á.A. How Does Water Stress and Roasting Temperature Affect the Physicochemical Parameters of Almonds? LWT 2021, 150, 112073. [Google Scholar] [CrossRef]
- Serra, S.; Anthony, B.; Masia, A.; Giovannini, D.; Musacchi, S. Determination of Biochemical Composition in Peach (Prunus Persica L. Batsch) Accessions Characterized by Different Flesh Color and Textural Typologies. Foods 2020, 9, 1452. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, D.; Gartung, J. Influence of Irrigation Scheduling Using Thermometry on Peach Tree Water Status and Yield under Different Irrigation Systems. Agronomy 2017, 7, 12. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Kim, D.; Han, S.-H.; Kim, S.-H.; Piao, W.; Yanagisawa, S.; An, G.; Paek, N.-C. Multilayered Regulation of Membrane-Bound ONAC054 Is Essential for Abscisic Acid-Induced Leaf Senescence in Rice. Plant Cell 2020, 32, 630–649. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, N.; Ji, D.; Zhang, W.; Wang, Y.; Yu, Y.; Zhao, S.; Lyu, M.; You, J.; Zhang, Y.; et al. A GmSIN1/GmNCED3s/GmRbohBs Feed-Forward Loop Acts as a Signal Amplifier That Regulates Root Growth in Soybean Exposed to Salt Stress. Plant Cell 2019, 31, 2107–2130. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, N.R.; Lodeyro, A.F.; Carrillo, N.J.; Gomez, R.L. Meta-Analysis Reveals Key Features of the Improved Drought Tolerance of Plants Overexpressing NAC Transcription Factors. Environ. Exp. Bot. 2021, 186, 104449. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Zuo, H.; Zheng, W.; Zhang, S.; Huang, Y.; Pingcuo, G.; Ying, H.; Zhao, F.; Li, Y.; et al. Genomic Basis of High-Altitude Adaptation in Tibetan Prunus Fruit Trees. Curr. Biol. 2021, 31, 3848–3860.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, H.; Yang, L.; Jiang, F.; Zhang, M.; Wang, Y. Construction of a High-Density Linkage Map and QTL Analysis for Pistil Abortion in Apricot (Prunus armeniaca L.). Can. J. Plant Sci. 2019, 99, 599–610. [Google Scholar] [CrossRef]
- Thakur, M.; Luharch, R.; Sharma, V.; Sharma, D. Molecular Markers Based Genetic Relatedness Studies in Tissue Culture Propagated Japanese Plum Cultivars Santa Rosa and Frontier. Genet. Resour. Crop Evol. 2022, 69, 567–575. [Google Scholar] [CrossRef]
- Bus, V.G.M.; Esmenjaud, D.; Buck, E.; Laurens, F. Application of Genetic Markers in Rosaceous Crops. In Genetics and Genomics of Rosaceae; Folta, K.M., Gardiner, S.E., Eds.; Springer: New York, NY, USA, 2009; pp. 563–599. ISBN 978-0-387-77491-6. [Google Scholar]
- Keul, A.; Coste, A.; Postolache, D.; Laslo, V.; Halmagyi, A.; Cristea, V.; Farkas, A. Molecular Characterization of Prunus Cultivars from Romania by Microsatellite Markers. Horticulturae 2022, 8, 291. [Google Scholar] [CrossRef]
- Jung, S.; Ficklin, S.P.; Lee, T.; Cheng, C.-H.; Blenda, A.; Zheng, P.; Yu, J.; Bombarely, A.; Cho, I.; Ru, S.; et al. The Genome Database for Rosaceae (GDR): Year 10 Update. Nucleic Acids Res. 2014, 42, D1237–D1244. [Google Scholar] [CrossRef]
- Zhang, G.; Sebolt, A.M.; Sooriyapathirana, S.S.; Wang, D.; Bink, M.C.a.M.; Olmstead, J.W.; Iezzoni, A.F. Fruit Size QTL Analysis of an F1 Population Derived from a Cross between a Domesticated Sweet Cherry Cultivar and a Wild Forest Sweet Cherry. Tree Genet. Genomes 2010, 6, 25–36. [Google Scholar] [CrossRef]
- Luby, J.; Shaw, D. Does Marker-Assisted Selection Make Dollars and Sense in a Fruit Breeding Program? HortScience 2001, 36, 872–879. [Google Scholar] [CrossRef]
- Shulaev, V.; Korban, S.S.; Sosinski, B.; Abbott, A.G.; Aldwinckle, H.S.; Folta, K.M.; Iezzoni, A.; Main, D.; Arús, P.; Dandekar, A.M.; et al. Multiple Models for Rosaceae Genomics. Plant Physiol. 2008, 147, 985–1003. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, M.; Tan, B.; Jiang, Y.; Zheng, X.; Ye, X.; Guo, Z.; Xiong, T.; Wang, W.; Li, J.; et al. A Single Nucleotide Mutation in 1c Disrupts Its Interaction with DELLA1 and Causes a GA-Insensitive Dwarf Phenotype in Peach. Plant Biotechnol. J. 2019, 17, 1723–1735. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Zhang, H.; Jiang, C.; Gao, F.; Yan, L.; Zheng, X.; Cheng, J.; Wang, W.; Wang, X.; Ye, X.; et al. De Novo Chromosome-Level Genome of a Semi-Dwarf Cultivar of Prunus persica Identifies the Aquaporin PpTIP2 as Responsible for Temperature-Sensitive Semi-Dwarf Trait and PpB3-1 for Flower Type and Size. Plant Biotechnol. J. 2022, 20, 886–902. [Google Scholar] [CrossRef] [PubMed]
- Guajardo, V.; Hinrichsen, P.; Muñoz, C. Breeding Rootstocks for Prunus Species: Advances in Genetic and Genomics of Peach and Cherry as a Model. Chil. J. Agric. Res. 2015, 75, 17–27. [Google Scholar] [CrossRef]
- International Peach Genome Initiative; Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; et al. The High-Quality Draft Genome of Peach (Prunus persica) Identifies Unique Patterns of Genetic Diversity, Domestication and Genome Evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef]
- Laurens, F.; Aranzana, M.J.; Arus, P.; Bassi, D.; Bink, M.; Bonany, J.; Caprera, A.; Corelli-Grappadelli, L.; Costes, E.; Durel, C.-E.; et al. An Integrated Approach for Increasing Breeding Efficiency in Apple and Peach in Europe. Hortic. Res. 2018, 5, 1–14. [Google Scholar] [CrossRef]
- Genome. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/ (accessed on 12 November 2024).
- Martinez-Gomez, P.; Sánchez-Pérez, R.; Rubio, M. Clarifying Omics Concepts, Challenges, and Opportunities for Prunus Breeding in the Postgenomic Era. Omics J. Integr. Biol. 2012, 16, 268–283. [Google Scholar] [CrossRef]
- Martínez-Gómez, P. Editorial for Special Issue “Plant Genetics and Molecular Breeding”. Int. J. Mol. Sci. 2019, 20, 2659. [Google Scholar] [CrossRef]
- Pina, A.; Cookson, S.J.; Calatayud, A.; Trinchera, A.; Errea, P. Physiological and Molecular Mechanisms Underlying Graft Compatibility. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CABI: Croydon, London UK, 2017; pp. 132–154. [Google Scholar]
- Liu, Y.; Liu, H.; Zhang, T.; Liu, J.; Sun, X.; Sun, X.; Wang, W.; Zheng, C. Interactions between Rootstock and Scion during Grafting and Their Molecular Regulation Mechanism. Sci. Hortic. 2023, 308, 111554. [Google Scholar] [CrossRef]
- Lalli, D.A.; Decroocq, V.; Blenda, A.V.; Schurdi-Levraud, V.; Garay, L.; Le Gall, O.; Damsteegt, V.; Reighard, G.L.; Abbott, A.G. Identification and mapping of resistance gene analogs (RGAs) in Prunus: A resistance map for Prunus. Theor. Appl. Genet. 2005, 111, 1504–1513. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Crosse, J.E.; Hingorani, M.K. A Method for Isolating Pseudomonas Mors-Prunorum Phages from the Soil. Nature 1958, 181, 60–61. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Y.; Li, Z.; Zhang, H.; Ye, J.; Li, G. Gene Expression Changes during the Gummosis Development of Peach Shoots in Response to Lasiodiplodia Theobromae Infection Using RNA-Seq. Front. Physiol. 2016, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Thieme, C.; Rojas-Triana, M.; Stecyk, E.; Schudoma, C.; Wenna, Z.; Yang, L.; Miñambres, M.; Walther, D.; Schulze, W.; Paz-Ares, J.; et al. Endogenous Arabidopsis Messenger RNAs Transported to Distant Tissues. Nat. Plants 2015, 1, 15025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. Plant microRNA: A Small Regulatory Molecule with Big Impact. Dev. Biol. 2006, 289, 3–16. [Google Scholar] [CrossRef]
- Yang, G.; Wei, Q.; Huang, H.; Xia, J. Amino Acid Transporters in Plant Cells: A Brief Review. Plants 2020, 9, 967. [Google Scholar] [CrossRef]
- Berger, M.; Gallusci, P.; Teyssier, E. Roles of Epigenetic Mechanisms in Grafting and Possible Applications. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-815403-8. [Google Scholar]
- Zhao, D.; Zhong, G.-Y.; Song, G.-Q. Transfer of Endogenous Small RNAs between Branches of Scions and Rootstocks in Grafted Sweet Cherry Trees. PLoS ONE 2020, 15, e0236376. [Google Scholar] [CrossRef]
- Thomas, H.R.; Frank, M.H. Connecting the Pieces: Uncovering the Molecular Basis for Long-Distance Communication through Plant Grafting. New Phytol. 2019, 223, 582–589. [Google Scholar] [CrossRef]
- Perrin, A.; Daccord, N.; Roquis, D.; Celton, J.-M.; Vergne, E.; Bucher, E. Divergent DNA Methylation Signatures of Juvenile Seedlings, Grafts and Adult Apple Trees. Epigenomes 2020, 4, 4. [Google Scholar] [CrossRef]
- Uthup, T.K.; Karumamkandathil, R.; Ravindran, M.; Saha, T. Heterografting Induced DNA Methylation Polymorphisms in Hevea Brasiliensis. Planta 2018, 248, 579–589. [Google Scholar] [CrossRef]
- Kapazoglou, A.; Tani, E.; Avramidou, E.V.; Abraham, E.M.; Gerakari, M.; Megariti, S.; Doupis, G.; Doulis, A.G. Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment. Front. Plant Sci. 2020, 11, 613004. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and Processes in Crop Domestication: An Historical Review and Quantitative Analysis of 203 Global Food Crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E. A History of Grafting. Hortic. Rev. Am. Soc. Hortic. Sci. 2009, 35, 437–493. [Google Scholar] [CrossRef]
- Casson, N.J.; Contosta, A.R.; Burakowski, E.A.; Campbell, J.L.; Crandall, M.S.; Creed, I.F.; Eimers, M.C.; Garlick, S.; Lutz, D.A.; Morison, M.Q.; et al. Winter Weather Whiplash: Impacts of Meteorological Events Misaligned With Natural and Human Systems in Seasonally Snow-Covered Regions. Earths Future 2019, 7, 1434–1450. [Google Scholar] [CrossRef]
- Prudencio, A.S.; Devin, S.R.; Mahdavi, S.M.E.; Martínez-García, P.J.; Salazar, J.A.; Martínez-Gómez, P. Spontaneous, Artificial, and Genome Editing-Mediated Mutations in Prunus. Int. J. Mol. Sci. 2022, 23, 13273. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Robles, L.; Devin, S.R.; Ye, X.; Sagbas, H.I.; Mahdavi, S.M.E.; Wettberg, E.B.-v.; Feng, J.; Rubio, M.; Martínez-Gómez, P. Prunus Movement Across the Silk Road: An Integrated Evolutionary and Breeding Analysis. Horticulturae 2024, 10, 1381. https://doi.org/10.3390/horticulturae10121381
Rodríguez-Robles L, Devin SR, Ye X, Sagbas HI, Mahdavi SME, Wettberg EB-v, Feng J, Rubio M, Martínez-Gómez P. Prunus Movement Across the Silk Road: An Integrated Evolutionary and Breeding Analysis. Horticulturae. 2024; 10(12):1381. https://doi.org/10.3390/horticulturae10121381
Chicago/Turabian StyleRodríguez-Robles, Lucía, Sama Rahimi Devin, Xia Ye, Halil Ibrahim Sagbas, Sayyed Mohammad Ehsan Mahdavi, Eric Bishop-von Wettberg, Jiancan Feng, Manuel Rubio, and Pedro Martínez-Gómez. 2024. "Prunus Movement Across the Silk Road: An Integrated Evolutionary and Breeding Analysis" Horticulturae 10, no. 12: 1381. https://doi.org/10.3390/horticulturae10121381
APA StyleRodríguez-Robles, L., Devin, S. R., Ye, X., Sagbas, H. I., Mahdavi, S. M. E., Wettberg, E. B. -v., Feng, J., Rubio, M., & Martínez-Gómez, P. (2024). Prunus Movement Across the Silk Road: An Integrated Evolutionary and Breeding Analysis. Horticulturae, 10(12), 1381. https://doi.org/10.3390/horticulturae10121381