Electroless Deposition of Cu-SWCNT Composites
"> Figure 1
<p>Plot of copper mass (mg) in the resulting Cu-SWCNT composites grown by electroless deposition as a function of reaction time (s) (<span class="html-italic">R</span><sup>2</sup> = 0.99).</p> "> Figure 2
<p>Representative SEM images of electroless Cu-SWCNT composites deposited (at a bath temperature of ~90 °C) at different reaction times with resulting SWCNT composition: (<b>a</b>–<b>c</b>) 5 min, 10.6 wt.% SWCNTs; (<b>d</b>–<b>f</b>) 15 min, 8.33 wt.% SWCNTs; (<b>g</b>–<b>i</b>) 30 min, 7.2 wt.% SWCNTs; (<b>j</b>–<b>l</b>) 45 min, 6.5 wt.% SWCNTs. Scale bar = 100 μm (a, d, g, j), 10 μm (b, e, h, k), and 3 μm (c, f, i, l).</p> "> Figure 3
<p>Plot of the abundance of cubic crystal morphology per unit area (25 μm<sup>2</sup>) as determined by SEM) in the Cu-SWCNT composites prepared by electroless deposition as a function of reaction time (<span class="html-italic">R</span><sup>2</sup> = 0.992).</p> "> Figure 4
<p>Elemental composition as a function of added SWCNT content (error bars in standard error of mean, <span class="html-italic">n</span> = 3).</p> "> Figure 5
<p>Carbon content (wt.%) as determined by EDX as a function of the calculated ideal values of SWCNTs (wt.%) based on the mass of SWCNT added to the electroless reaction mixtures, as a function of the final mass of the air-dried products from the reactions. The dashed line represents an ideal relationship assuming both a homogeneous material and that all the SWCNTs are incorporated into the composite.</p> "> Figure 6
<p>Example of the XRD of a Cu-SWCNT composite prepared by electroless deposition after a reaction of 15 min, showing the presence of Cu (ICDD #04-009-2090) and Cu<sub>2</sub>O (ICDD #04-002-3214).</p> "> Figure 7
<p>Plot of composition of Cu-SWCNT composites prepared by electroless deposition as determined by XRD.</p> "> Figure 8
<p>Raman spectra (514 nm) of the Cu-SWCNT composites prepared by electroless deposition after a reaction time of 30 min.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SEM Analysis
3.2. EDX Analysis
3.3. XPS Analysis
3.4. XRD Analysis
3.5. Raman Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hjortstam, O.; Isberg, P.; Soderholm, S.; Dai, H. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? Appl. Phys. A 2004, 78, 1175–1179. [Google Scholar] [CrossRef]
- Li, Y.; Fahrenthold, E. Quantum conductance of copper–carbon nanotube composites. J. Eng. Mater. Technol. 2018, 140, 031007. [Google Scholar] [CrossRef]
- Han, B.; Guo, E.; Xue, X.; Zhao, Z.; Li, T.; Xu, Y.; Luo, L.; Hou, H. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity. Appl. Surf. Sci. 2018, 441, 984–992. [Google Scholar] [CrossRef]
- Wang, X.; Behabtu, N.; Young, C.C.; Tsentalovich, D.E.; Pasquali, M.; Kono, J. High-ampacity power cables of tightly-packed and aligned carbon nanotubes. Adv. Funct. Mater. 2014, 24, 3241–3249. [Google Scholar] [CrossRef]
- Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174. [Google Scholar] [CrossRef]
- Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D.N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 2013, 4, 2202. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, C.; Sekiguchi, A.; Yamada, T.; Futaba, D.N.; Hata, K. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube–copper composite with high conductivity, ampacity and stability. Nanoscale 2016, 8, 3888–3894. [Google Scholar] [CrossRef]
- Chinnappan, A.; Baskar, C.; Kim, H.; Ramakrishna, S. Carbon nanotube hybrid nanostructures: Future generation conducting materials. J. Mater. Chem. A 2016, 4, 9347–9361. [Google Scholar] [CrossRef]
- Chai, G.; Sun, Y.; Sun, J.J.; Chen, Q. Mechanical properties of carbon nanotube-copper nanocomposites. J. Micromech. Microeng. 2008, 18, 035013. [Google Scholar] [CrossRef]
- Daoush, W.M.; Lim, B.K.; Mo, C.B.; Nam, D.H.; Hong, S.H. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Mater. Sci. Eng. A 2009, 513–514, 247–253. [Google Scholar] [CrossRef]
- Uddin, S.M.; Mahmud, T.; Wolf, C.; Glanz, C.; Kolaric, I.; Volkmer, C.; Höller, H.; Wienecke, U.; Roth, S.; Fecht, H.-J. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Technol. 2010, 70, 2253–2257. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.D.; Gowenlock, C.E.; Bear, J.C.; Barron, A.R. Understanding the effect of functional groups on the seeded growth of copper on carbon nanotubes for optimizing electrical transmission. ACS Appl. Mater. Interfaces 2017, 9, 27202–27212. [Google Scholar] [CrossRef] [PubMed]
- Firkowska, I.; Boden, A.; Vogt, A.-M.; Reich, S. Effect of carbon nanotube surface modification on thermal properties of copper–CNT composites. J. Mater. Chem. 2011, 21, 17541–17546. [Google Scholar] [CrossRef]
- Milowska, K.Z.; Burda, M.; Wolanicka, L.; Bristowe, P.D.; Koziol, K.K.K. Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu-CNT composites. Nanoscale 2019, 11, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Hannula, P.-M.; Aromaa, J.; Wilson, B.P.; Janas, D.; Koziol, K.; Forsén, O.; Lundström, M. Observations of copper deposition on functionalized carbon nanotube films. Electrochim. Acta 2017, 232, 495–504. [Google Scholar] [CrossRef]
- Xu, C.; Wu, G.; Liu, Z.; Wu, D.; Meek, T.T.; Han, Q. Preparation of copper nanoparticles on carbon nanotubes by electroless plating method. Mater. Res. Bull. 2004, 39, 1499–1505. [Google Scholar] [CrossRef]
- Dingsheng, Y.; Yingliang, L. Electroless deposition of Cu on multiwalled carbon nanotubes. Rare Metals 2006, 25, 237–240. [Google Scholar]
- Song, J.L.; Chen, W.G.; Dong, L.L.; Wang, J.J.; Deng, N. An electroless plating and planetary ball milling process for mechanical properties enhancement of bulk CNTs/Cu composites. J. Alloys Compd. 2017, 720, 54–62. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Joo, S.-J.; Kim, H.-S. Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering. ACS Appl. Mater. Interfaces 2015, 7, 25413–25423. [Google Scholar] [CrossRef]
- Arai, S.; Osaki, T. Fabrication of copper/multiwalled carbon nanotube composites containing different sized nanotubes by electroless deposition. J. Electrochem. Soc. 2015, 162, D68–D73. [Google Scholar] [CrossRef]
- Arnaud, C.; Lecouturier, F.; Mesguich, D.; Ferreira, N.; Chevallier, G.; Estournès, C.; Weibel, A.; Laurent, C. High strength-high conductivity double-walled carbon nanotube-copper composite wires. Carbon 2016, 96, 212–215. [Google Scholar] [CrossRef]
- Raja, P.M.V.; Esquenazi, G.L.; Wright, K.D.; Gowenlock, C.E.; Brinson, B.E.; Alexander, S.; Jones, D.R.; Gangoli, V.S.; Barron, A.R. Aqueous electromigration of single-walled carbon nanotubes and co-electromigration with copper ions. Nanoscale 2018, 10, 19628–19637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, P.M.V.; Esquenazi, G.L.; Gowenlock, C.E.; Jones, D.R.; Li, J.; Brinson, B.E.; Barron, A.R. Electrodeposition of Cu-SWCNT composites. C 2019, 5, 38. [Google Scholar] [CrossRef]
- Gangoli, V.S.; Raja, P.M.V.; Esquenazi, G.L.; Barron, A.R. The safe handling of bulk low-density nanomaterials. SN Appl. Sci. 2019, 1, 644. [Google Scholar] [Green Version]
- Gowenlock, C.E.; Gomez, V.; McGettrick, J.D.; Andreoli, E.; Barron, A.R. Surface-initiated growth of copper using isonicotinic acid-functionalized aluminum oxide surfaces. J. Coat. Technol. Res. 2017, 14, 195–205. [Google Scholar] [CrossRef]
- Caturla, F.; Molina, F.; Molina-Sabio, M.; Rodríguez-Reinoso, F.; Esteban, A. Electroless plating of graphite with copper and nickel. J. Electrochem. Soc. 1995, 142, 4084–4090. [Google Scholar] [CrossRef]
- Baker, E.M. Method of nickel plating. U.S. Patent 2,312,517, 2 March 1943. [Google Scholar]
- Brenner, A.; Riddell, G.E. Nickel plating by chemical reduction. U.S. Patent 2,312,517, 5 December 1950. [Google Scholar]
- Zaitoun, M.A.; Lin, C.T. Chelating behavior between metal ions and EDTA in sol-gel matrix. J. Phys. Chem. B 1997, 101, 1857–1860. [Google Scholar] [CrossRef]
- Lee, S.M.; Raja, P.M.V.; Esquenazi, G.L.; Barron, A.R. Effect of raw and purified carbon nanotubes and iron oxide nanoparticles on the growth of wheatgrass prepared from the cotyledons of common wheat (triticum aestivum). Environ. Sci. Nano 2018, 5, 103–114. [Google Scholar] [CrossRef]
- Zhang, K.S.; Pham, D.; Lawal, O.; Ghosh, S.; Gangoli, V.S.; Smalley, P.; Kennedy, K.; Brinson, B.; Billups, W.E.; Hauge, R.; et al. Overcoming catalyst residue inhibition of the functionalization of single-walled carbon nanotubes via the Billups-Birch reduction. ACS Appl. Mater. Interfaces 2017, 9, 37972–37980. [Google Scholar] [CrossRef]
- Gomez, V.; Irusta, S.; Adams, W.W.; Hauge, R.H.; Dunnill, C.W.; Barron, A.R. Enhanced carbon nanotubes purification by physic-chemical treatment with microwave and Cl2. RSC Adv. 2016, 6, 11895–11902. [Google Scholar] [CrossRef]
- Gangoli, V.S.; Kazimierska, E.; Barnett, C.J.; Barron, A.R. Method for the improved purification and increased electrical conductivity of carbon nanomaterials. U.S. Patent Application 62,882,752, 16 July 2019. [Google Scholar]
- Plana, D.; Campbell, A.I.; Patole, S.N.; Shul, G.; Dryfe, R.A.W. Kinetics of electroless deposition: The copper−dimethylamine borane system. Langmuir 2010, 26, 10334–10340. [Google Scholar] [CrossRef] [PubMed]
- Loscutova, R.; Barron, A.R. Coating single-walled carbon nanotubes with cadmium chalcogenides. J. Mater. Chem. 2005, 15, 4346–4353. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwala, R.C.; Agarwala, V. Development of copper coatings on ceramic powder by electroless technique. Appl. Surf. Sci. 2006, 252, 8487–8493. [Google Scholar] [CrossRef]
- Ogrin, D.; Chattopadhyay, J.; Sadana, A.K.; Billups, E.; Barron, A.R. Epoxidation and deoxygenation of single-walled carbon nanotubes: Quantification of epoxide defects. J. Am. Chem. Soc. 2006, 128, 11322–11323. [Google Scholar] [CrossRef] [PubMed]
- Rudd, J.A.; Gowenlock, C.E.; Gomez, V.; Kazimierska, E.; Al-Enizi, A.M.; Andreoli, E.; Barron, A.R. Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes as precursors for ultra-conductive wire. J. Mater. Sci. Technol. 2019, 35, 1121–1127. [Google Scholar] [CrossRef]
- Hussain, S.; Pal, A.K. Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique. AIP Conf. Proc. 2008, 1063, 98–104. [Google Scholar]
- Dresselhaus, M.S.; Pimenta, M.A.; Ecklund, P.C.; Dresselhaus, G. Raman Scattering in Materials Science; Springer: Berlin, Germany, 2000. [Google Scholar]
Reaction Volume (mL) | SWCNT (mg) | Reaction Time (min) | Air-Dried Product (mg) | SWCNT (wt%) 1 |
---|---|---|---|---|
140 | 8 | 5 | 75.2 | 10.6 |
140 | 8 | 15 | 95.5 | 8.3 |
140 | 8 | 30 | 111.0 | 7.2 |
140 | 8 | 45 | 123.2 | 6.5 |
Reaction Time (min) | SWCNT (wt%) 1 | Granular Particle Size (nm) 2 | Abundance of Cubic Structures 3 | Size of Cubic Crystal (nm) 2 |
---|---|---|---|---|
5 | 10.6 | ~70 | 8 | 150–600 |
15 | 8.3 | 70–130 | 19 | 290–550 |
30 | 7.2 | 70–130 | 43–52 | 350–570 |
45 | 6.5 | 70–130 | >200 | 160–490 |
Reaction Time (min) | SWCNT (wt%) 2 | C | O | Fe | Cu | ||||
---|---|---|---|---|---|---|---|---|---|
Atm.% | Wt.% | Atm.% | Wt.% | Atm.% | Wt.% | Atm.% | Wt.% | ||
5 | 10.6 | 5.03 ± 1.53 | 19.79 ± 5.38 | 2.30 ± 0.22 | 7.09 ± 0.86 | 5.37 ± 0.50 | 4.67 ± 0.26 | 86.41 ± 2.47 | 66.88 ± 5.90 |
15 | 8.3 | 1.76 ± 1.70 | 7.03 ± 6.71 | 2.23 ± 0.77 | 7.46 ± 2.14 | 3.12 ± 0.66 | 3.03 ± 0.38 | 92.88 ± 3.04 | 82.48 ± 8.78 |
30 | 7.2 | 0.99 ± 0.63 | 4.67 ± 2.83 | 0.99 ± 0.35 | 3.57 ± 1.11 | 2.94 ± 0.11 | 3.12 ± 0.20 | 95.08 ± 0.90 | 88.63 ± 3.76 |
45 | 6.5 | 1.38 ± 0.49 | 6.50 ± 2.16 | 1.60 ± 0.10 | 5.7 ± 0.29 | 2.62 ± 0.17 | 2.69 ± 0.20 | 94.40 ± 0.55 | 85.12 ± 2.19 |
Reaction Time (min) | SWCNT (wt%) 1 | C (at%) | O (at%) | Cu (at%) |
---|---|---|---|---|
5 | 10.6 | 68.20 | 22.78 | 9.01 |
15 | 8.3 | 62.82 | 25.37 | 11.79 |
30 | 7.2 | 71.64 | 21.80 | 6.54 |
45 | 6.5 | 60.59 | 27.97 | 11.42 |
Reaction Time (min) | SWCNT (wt%) 2 | Cu and Cu2O (at%) | Cu(OH)2 (at%) |
---|---|---|---|
5 | 10.6 | 64.26 | 35.73 |
15 | 8.3 | 64.32 | 35.67 |
30 | 7.2 | 58.16 | 41.83 |
45 | 6.5 | 61.67 | 38.32 |
Reaction Time (min) | SWCNT (wt%) 2 | Composition | Crystal Grain Size | ||
---|---|---|---|---|---|
Cu (wt%) | Cu2O (wt%) | Cu (Å) | Cu2O (Å) | ||
5 | 10.6 | 56.5 ± 0.3 | 43.5 ± 0.3 | 185 ± 7 | 102.6 ± 0.5 |
15 | 8.3 | 59.7 ± 0.3 | 40.3 ± 0.3 | 192 ± 5 | 103.5 ± 1.3 |
30 | 7.2 | 71.6 ± 0.4 | 28.4 ± 0.4 | 339 ± 21 | 90 ± 2 |
45 | 6.5 | 69.2 ± 0.3 | 30.8 ± 0.3 | 247 ± 11 | 119.9 ± 1.0 |
Reaction Time (min) | SWCNT (wt%) 2 | IG:ID |
---|---|---|
5 | 10.6 | 4.69 (1.65) |
15 | 8.3 | 4.14 (1.16) |
30 | 7.2 | 4.13 (1.49) |
45 | 6.5 | 3.44 (0.95) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raja, P.M.V.; Esquenazi, G.L.; Jones, D.R.; Li, J.; Brinson, B.E.; Wright, K.; Gowenlock, C.E.; Barron, A.R. Electroless Deposition of Cu-SWCNT Composites. C 2019, 5, 61. https://doi.org/10.3390/c5040061
Raja PMV, Esquenazi GL, Jones DR, Li J, Brinson BE, Wright K, Gowenlock CE, Barron AR. Electroless Deposition of Cu-SWCNT Composites. C. 2019; 5(4):61. https://doi.org/10.3390/c5040061
Chicago/Turabian StyleRaja, Pavan M. V., Gibran L. Esquenazi, Daniel R. Jones, Jianhua Li, Bruce E. Brinson, Kourtney Wright, Cathren E. Gowenlock, and Andrew R. Barron. 2019. "Electroless Deposition of Cu-SWCNT Composites" C 5, no. 4: 61. https://doi.org/10.3390/c5040061
APA StyleRaja, P. M. V., Esquenazi, G. L., Jones, D. R., Li, J., Brinson, B. E., Wright, K., Gowenlock, C. E., & Barron, A. R. (2019). Electroless Deposition of Cu-SWCNT Composites. C, 5(4), 61. https://doi.org/10.3390/c5040061