Towards Environmentally Friendly Buildings: An Assessment of the Mechanical Properties of Soil Mixtures with Graphene
<p>Additive used: (<b>a</b>) GUP ADMIXTURE (GUP); (<b>b</b>) Graphene paste (GSL).</p> "> Figure 2
<p>Experimental setup for Proctor compaction test. (<b>a</b>) Proctor machine; (<b>b</b>) The mold positioned on the machine; (<b>c</b>) The rammer compacting the soil inside the mold; (<b>d</b>) The sample is leveled inside the mold; (<b>e</b>) Extraction of the sample; (<b>f</b>) The final sample extracted from the mold.</p> "> Figure 3
<p>Experimental setup for unconfined compressive strength (UCS) test. (<b>a</b>) TRITECH Load Frame for UCS test; (<b>b</b>) Sample during the test; (<b>c</b>) Sample after failure.</p> "> Figure 4
<p>Samples preparation for unconfined compressive strength (UCS) test. (<b>a</b>) Proctor cylinder on hand-driven load frame; (<b>b</b>) Coring procedure; (<b>c</b>) UCS samples in the curing chamber.</p> "> Figure 5
<p>Verified water content (%) of ABS Mix and GSL series with respect to the reference optimum water content (OWC) of the ABS Mix (7.10%). Two distinct portions of the sample were tested for water content. The name of the sample consists of the soil name, followed by the percentage and the abbreviation of the additive (e.g., ABS 0.005% GSL).</p> "> Figure 6
<p>Proctor compaction test results for ABS mixtures. (<b>a</b>) ABS Mix; (<b>b</b>) ABS 0.001% GUP; (<b>c</b>) ABS 0.005% GUP; (<b>d</b>) ABS 0.01% GUP; (<b>e</b>) ABS 0.05% GUP; (<b>f</b>) ABS 0.1% GUP. The soil saturation curves (Sr) are reported, indicating different degrees of saturation from 0.5 to 1.</p> "> Figure 7
<p>Proctor compaction test results for T2 mixtures. (<b>a</b>) T2 Mix; (<b>b</b>) T2 0.01% GUP; (<b>c</b>) T2 0.05% GUP; (<b>d</b>) T2 0.1% GUP. The soil saturation curves (Sr) are reported, indicating different degrees of saturation from 0.5 to 1.</p> "> Figure 8
<p>Unconfined compressive strength (UCS) results. (<b>a</b>) ABS mixtures with GUP additive; (<b>b</b>) ABS mixtures with GSL additive; (<b>c</b>) T2 mixtures with GUP additive. The name of the sample consists of the soil name, followed by the percentage and the abbreviation of the additive (e.g., ABS 0.001% GUP).</p> "> Figure 8 Cont.
<p>Unconfined compressive strength (UCS) results. (<b>a</b>) ABS mixtures with GUP additive; (<b>b</b>) ABS mixtures with GSL additive; (<b>c</b>) T2 mixtures with GUP additive. The name of the sample consists of the soil name, followed by the percentage and the abbreviation of the additive (e.g., ABS 0.001% GUP).</p> "> Figure 9
<p>Results from the unconfined compressive strength (UCS) test. (<b>a</b>) Maximum stress, q<sub>u</sub>, with varying graphene concentration; (<b>b</b>) Stiffness modulus, E, with varying graphene concentration.</p> "> Figure 9 Cont.
<p>Results from the unconfined compressive strength (UCS) test. (<b>a</b>) Maximum stress, q<sub>u</sub>, with varying graphene concentration; (<b>b</b>) Stiffness modulus, E, with varying graphene concentration.</p> "> Figure 10
<p>Comparison between the two graphene-based additives of unconfined compressive strength results in ABS and T2. The name of the sample consists of the soil name, followed by the percentage and the abbreviation of the additive (e.g., ABS 0.001% GUP).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Soils
2.1.2. Admixtures
2.2. Methods
2.2.1. Modified Proctor Compaction Test
2.2.2. Unconfined Compressive Strength Test (UCS)
3. Results
3.1. Proctor Compaction Test
3.2. Unconfined Compressive Strength (UCS) Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme and Yale Center for Ecosystems + Architecture. Building Materials and the Climate: Constructing a New Future. Available online: https://wedocs.unep.org/20.500.11822/43293 (accessed on 5 December 2024).
- Gallipoli, D.; Bruno, A.W.; Perlot, C.; Mendes, J. A geotechnical perspective of raw earth building. Acta Geotech. 2017, 12, 463–478. [Google Scholar] [CrossRef]
- UNESCO. World Heritage List. Available online: https://whc.unesco.org/en/list/ (accessed on 19 November 2023).
- Smithsonian Magazine. 40 Things You Need to Know About the Next 40 Year. Available online: https://www.smithsonianmag.com/issue/smithsonian/august-2010/ (accessed on 7 December 2024).
- Gallipoli, D.; Bruno, A.W.; Perlot, C.; Salmon, N. Raw earth construction: Is there a role for unsaturated soil mechanics? In Unsaturated Soils: Research & Applications; Khalili, N., Russell, A., Khoshghalb, A., Eds.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Al-Gharbawi, A.S.A.; Najemalden, A.M.; Fattah, M.Y. Expansive Soil Stabilization with Lime, Cement, and Silica Fume. Appl. Sci. 2022, 13, 436. [Google Scholar] [CrossRef]
- Medina-Martinez, C.J.; Sandoval-Herazo, L.C.; Zamora-Castro, S.A.; Vivar-Ocampo, R.; Reyes-Gonzalez, D. Natural Fibers: An Alternative for the Reinforcement of Expansive Soils. Sustainability 2022, 14, 9275. [Google Scholar] [CrossRef]
- Losini, A.E.; Lavrik, L.; Caruso, M.; Woloszyn, M.; Grillet, A.C.; Dotelli, G.; Stampino, P.G. Mechanical Properties of Rammed Earth Stabilized with Local Waste and Recycled Materials. In Proceedings of the 4th International Conference on Bio-Based Building Materials, Barcelona, Spain, 16–18 June 2021; pp. 113–123. [Google Scholar]
- Losini, A.; Grillet, A.; Bellotto, M.; Woloszyn, M.; Dotelli, G. Natural additives and biopolymers for raw earth construction stabilization—A review. Constr. Build. Mater. 2021, 304, 124507. [Google Scholar] [CrossRef]
- Losini, A.E.; Grillet, A.-C.; Woloszyn, M.; Lavrik, L.; Moletti, C.; Dotelli, G.; Caruso, M. Mechanical and Microstructural Characterization of Rammed Earth Stabilized with Five Biopolymers. Materials 2022, 15, 3136. [Google Scholar] [CrossRef] [PubMed]
- Mustafayeva, A.; Moon, S.-W.; Satyanaga, A.; Kim, J. Enhancing Mechanical Properties of Expansive Soil Through BOF Slag Stabilization: A Sustainable Alternative to Conventional Methods. Minerals 2024, 14, 1145. [Google Scholar] [CrossRef]
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 2018, 98, 163–180. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Panesar, D.K. Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets. Compos. Part B Eng. 2020, 197, 108063. [Google Scholar] [CrossRef]
- Bokobza, L.; Bruneel, J.-L.; Couzi, M. Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. C J. Carbon Res. 2015, 1, 77–94. [Google Scholar] [CrossRef]
- Farivar, F.; Yap, P.L.; Karunagaran, R.U.; Losic, D. Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. C 2021, 7, 41. [Google Scholar] [CrossRef]
- Babak, F.; Abolfazl, H.; Alimorad, R.; Parviz, G. Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites. Sci. World J. 2014, 2014, 276323. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Ouyang, X.; Fu, J.; Niu, Y.; Ma, Y. The role of graphene/graphene oxide in cement hydration. Nanotechnol. Rev. 2021, 10, 768–778. [Google Scholar] [CrossRef]
- Schulte, J.; Jiang, Z.; Sevim, O.; Ozbulut, O.E. Chapter 4—Graphene-reinforced cement composites for smart infrastructure systems. In The Rise of Smart Cities [Internet]; Alavi, A.H., Feng, M.Q., Jiao, P., Sharif-Khodaei, Z., Eds.; Butterworth-Heinemann: Oxford, UK, 2022; pp. 79–114. [Google Scholar] [CrossRef]
- Farcas, C.; Galao, O.; Navarro, R.; Zornoza, E.; Baeza, F.J.; DEL Moral, B.; Pla, R.; Garces, P. Heating and de-icing function in conductive concrete and cement paste with the hybrid addition of carbon nanotubes and graphite products. Smart Mater. Struct. 2021, 30, 045010. [Google Scholar] [CrossRef]
- Ngo, T.P.; Bui, Q.B.; Nguyen, N.T.; Le, T.; Phan, V.T.-A. Application of nanotechnology for earth materials: An exploratory study with graphene-based nanosheets. Constr. Build. Mater. 2022, 324, 126677. [Google Scholar] [CrossRef]
- Li, D.; Lei, P.; Zhang, H.; Liu, J.; Lu, W. Co-Effects of Graphene Oxide and Cement on Geotechnical Properties of Loess. Adv. Mater. Sci. Eng. 2021, 2021, 7429310. [Google Scholar] [CrossRef]
- Stampino, P.G.; Ceccarelli, L.; Caruso, M.; Mascheretti, L.; Dotelli, G.; Sabbadini, S. Performance of Earth Plasters with Graphene-Based Additive. Materials 2024, 17, 2356. [Google Scholar] [CrossRef] [PubMed]
- ASTM D2487-17; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- GrapheneUP. GUP® ADMIXTURE. Available online: https://www.grapheneup.com/shop/gup-admixture/ (accessed on 3 December 2024).
- ASTM D1557-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM D2166-06; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2006. [CrossRef]
- Rodríguez-Mariscal, J.; Solís, M.; Cifuentes, H. Methodological issues for the mechanical characterization of unfired earth bricks. Constr. Build. Mater. 2018, 175, 804–814. [Google Scholar] [CrossRef]
- Bui, Q.-B.; Morel, J.-C.; Hans, S.; Walker, P. Effect of moisture content on the mechanical characteristics of rammed earth. Constr. Build. Mater. 2014, 54, 163–169. [Google Scholar] [CrossRef]
- Davidson, D.T.; Pitre, G.L.; Mateos, M.; George, K.P. Moisture-Density, Moisture-Strength and Compaction Characteristics of Cement-Treated Soil Mixtures. In Proceedings of the 41st Annual Meeting of the Highway Research Board, Washington, DC, USA, 8–12 January 1962; Volume HR Board Bulletin, no. 353, pp. 42–63. [Google Scholar]
- Zhang, X.; Liu, X.; Xu, Y.; Wang, G.; Wang, F. Swelling–shrinkage mechanisms of diatomaceous soil and its geohazard implication. Eng. Geol. 2023, 314, 107009. [Google Scholar] [CrossRef]
- Majeed, Z.; Taha, M. A Review of Stabilization of Soils by using Nanomaterials. Aust. J. Basic. Appl. Sci. 2013, 7, 576–581. [Google Scholar]
Soil | Ratio to Sand | Additive | Additive (wt.%) | Mixture Name |
---|---|---|---|---|
ABS | 1:3 | - | - | ABS Mix |
GUP | 0.001 | ABS 0.001% GUP | ||
GUP | 0.005 | ABS 0.005% GUP | ||
GUP | 0.01 | ABS 0.01% GUP | ||
GUP | 0.05 | ABS 0.05% GUP | ||
GUP | 0.1 | ABS 0.1% GUP | ||
GSL | 0.005 | ABS 0.005% GSL | ||
GSL | 0.01 | ABS 0.01% GSL | ||
GSL | 0.05 | ABS 0.05% GSL | ||
T2 | 1:4 | - | - | T2 Mix |
GUP | 0.01 | T2 0.01% GUP | ||
GUP | 0.05 | T2 0.05% GUP | ||
GUP | 0.1 | T2 0.1% GUP |
Soil | Specific Gravity | Granulometric Parameters | Atterberg Limits | ||||
---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | LL 1 (%) | PL 2 (%) | PI 3 (%) | ||
ABS | 2.78 | 36 | 44 | 20 | 45 | 30 | 15 |
T2 | 2.77 | 21 | 70 | 9 | 54 | 15 | 39 |
Mixture | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|
ABS Mix | 10 | 11 | 79 |
T2 Mix | 4 | 16 | 80 |
Sample | ABS | T2 | ||
---|---|---|---|---|
OWC (%) | MDD (g/cm3) | OWC (%) | MDD (g/cm3) | |
Mix | 7.10 | 2.15 | 7.80 | 2.17 |
0.001% GUP | 7.50 | 2.17 | - | - |
0.005% GUP | 7.89 | 2.16 | - | - |
0.01% GUP | 8.50 | 2.14 | 7.50 | 2.18 |
0.05% GUP | 9.00 | 2.11 | 7.30 | 2.16 |
0.1% GUP | 9.50 | 2.03 | 6.50 | 2.17 |
ABS Mix | T2 Mix | |
---|---|---|
Swelling Clays (%) | 5.72 | 7.80 |
Non-Swelling Clays (%) | 8.69 | 9.39 |
Total (%) | 14.41 | 17.19 |
Mixture | Dry Density (g/cm3) | Average Maximum Compressive Strength, qu (MPa) | Average Stiffness Modulus, E (MPa) |
---|---|---|---|
ABS Mix [10] | 2.08 ± 0.03 | 2.51 ± 0.17 | 285 ± 17 |
ABS 0.001% GUP | 2.34 ± 0.04 | 2.26 ± 0.26 | 162 ± 68 |
ABS 0.005% GUP | 2.32 ± 0.03 | 2.15 ± 0.34 | 128 ± 59 |
ABS 0.01% GUP | 2.11 ± 0.02 | 2.08 ± 0.02 | 166 ± 25 |
ABS 0.05% GUP | 2.08 ± 0.05 | 1.48 ± 0.41 | 111 ± 36 |
ABS 0.1% GUP | 2.02 ± 0.01 | 1.16 ± 0.17 | 110 ± 19 |
ABS 0.005% GSL | 2.25 ± 0.03 | 2.27 ± 0.34 | 145 ± 86 |
ABS 0.01% GSL | 2.27 ± 0.03 | 2.31 ± 0.48 | 161 ± 80 |
ABS 0.05% GSL | 2.33 ± 0.05 | 2.08 ± 0.34 | 88 ± 17 |
T2 Mix | 2.08 ± 0.03 | 0.76 ± 0.03 | 93 ± 49 |
T2 0.01% GUP | 2.03 ± 0.04 | 0.46 ± 0.02 | 23 ± 9 |
T2 0.05% GUP | 2.05 ± 0.02 | 0.32 ± 0.04 | 25 ± 7 |
T2 0.1% GUP | 2.06 ± 0.06 | 0.25 ± 0.01 | 18 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio Esposito, F.; Gallo Stampino, P.; Ceccarelli, L.; Caruso, M.; Dotelli, G.; Sabbadini, S. Towards Environmentally Friendly Buildings: An Assessment of the Mechanical Properties of Soil Mixtures with Graphene. C 2025, 11, 16. https://doi.org/10.3390/c11010016
Iorio Esposito F, Gallo Stampino P, Ceccarelli L, Caruso M, Dotelli G, Sabbadini S. Towards Environmentally Friendly Buildings: An Assessment of the Mechanical Properties of Soil Mixtures with Graphene. C. 2025; 11(1):16. https://doi.org/10.3390/c11010016
Chicago/Turabian StyleIorio Esposito, Federico, Paola Gallo Stampino, Letizia Ceccarelli, Marco Caruso, Giovanni Dotelli, and Sergio Sabbadini. 2025. "Towards Environmentally Friendly Buildings: An Assessment of the Mechanical Properties of Soil Mixtures with Graphene" C 11, no. 1: 16. https://doi.org/10.3390/c11010016
APA StyleIorio Esposito, F., Gallo Stampino, P., Ceccarelli, L., Caruso, M., Dotelli, G., & Sabbadini, S. (2025). Towards Environmentally Friendly Buildings: An Assessment of the Mechanical Properties of Soil Mixtures with Graphene. C, 11(1), 16. https://doi.org/10.3390/c11010016