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Abstract: Enzymes play a vital role in various industrial sectors and are essential com-
ponents of many products. Hybrid enzyme-polymeric capsules were developed using
polysulfone-activated carbon capsules as scaffolds. The polysulfone-activated carbon cap-
sules with an average diameter of 2.55 mm were fabricated by applying a phase inversion
precipitation method. An increase in the amount of immobilized enzymes was observed
with growth of activated carbon amount in polysulfone matrix. Enzyme immobilization
was confirmed by the Bradford method, while Viscozyme® L activity in carboxymethyl
cellulose hydrolysis to glucose was measured by the Reducing Sugar DNS method. The
recycling of the hybrid Viscozyme® L-polysulfone/activated carbon capsules, and their
reuse for subsequent cellulose hydrolysis was investigated and demonstrated repeatability
of results.

Keywords: enzyme immobilization; polysulfone-activated carbon capsules; phase inversion
precipitation; polisulfone; Viscozyme® L

1. Introduction
Enzymes are crucial in various industrial sectors and are key components of many

products. In 2019, the global enzyme market was valued at USD 9.087 billion. It is projected
to grow to USD 13.815 billion by 2027, with a compound annual growth rate (CAGR)
of 6.4% from 2020 to 2027 [1]. The term “enzyme” was proposed by Wilhelm Kuhne in
1877 [2], which in Greek means “leavened” or “in yeast”; however, enzymology began
in the 19th century with the gradual understanding of the mechanisms of digestion and
fermentation [3]. The use of natural enzymes for food processing and preservation dates
back to ancient times, including bread-making in Egypt and fermentation practices across
Eastern cultures [4]. Over time, enzyme applications transitioned from traditional practices
to systematic scientific research, revealing their chemical properties and establishing the
theoretical basis of enzyme engineering. Enzyme engineering flourished in the late 20th
century with advances in molecular biology and genetic engineering. However, large-
scale production faces challenges as harsh solvent systems and mechanical stress often
reduce enzymes’ thermal stability and catalytic activity, limiting industrial applications.
Furthermore, as researchers deepen their understanding of enzyme structure and function,
they increasingly recognize the importance of optimizing enzyme performance to enhance
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catalytic efficiency and meet specific industrial demands. Consequently, various optimiza-
tion techniques have emerged, including genetic engineering, chemical modification (such
as covalent modification, cross-linking, and immobilization), directed evolution, natural
enzyme screening and modification, and artificial enzyme development [1,5,6].

Immobilized enzymes offer greater resistance to environmental changes and can be
easily recovered and recycled compared to their free counterparts. The main advantage of
immobilization is that it protects enzymes from harsh conditions, such as high temperatures
and extreme pH levels. Furthermore, enzyme immobilization reduces the dissolution
of enzyme subunits, preventing deactivation and enhancing process performance and
stability [7]. Moreover, immobilization facilitates their reuse, allows their easy separation
from the product, and increases adaptability to changing conditions [8]. Historically, the
immobilization of enzymes has been essential to the commercial viability of many large-
scale biocatalytic processes [9,10]. Besides immobilized enzymes have been used in other
numerous large-scale industries. Examples include glucose isomerase for the production
of high fructose corn syrup, penicillin G amidase for the production of semisynthetic
antibiotics, the use of lipases for the production of cocoa butter analogs, and the production
of chiral amines in organic solvents, all at scales ranging from multi-thousand to multi-
hundred thousand tons per annum. The glucose isomerase process involves the conversion
of 107 tons of glucose per annum. However, it is worth noting that glucose production
involves the conversion of 109 tons of corn starch per annum using soluble amylases [11,12].
Other examples include; detergent, paper, and textile sectors [13,14]. In addition, in
biotechnology, the search for biocompatible and efficient enzyme immobilization methods
has gained significant attention, especially for applications in biosensors development [15]
and biodiesel production [16].

There are many different methods used for enzyme immobilization; however, the
industry perpetually chooses simple and cost-effective methods. Thus, the most used
approaches are based on physical immobilization (adsorption or physical entrapment) and
chemical immobilization [17]. Enzyme immobilization can be achieved using a variety of
matrices. These matrices are categorized based on their origin into three types: organic
supports (both natural and synthetic), inorganic supports (both natural and synthetic), and
hybrid supports (comprising materials of both organic and inorganic origin) [18].

On the one hand, among these various supports, natural organic matrices have
been widely utilized because of their low synthesis and application costs. Activated
carbon/biochar has been identified as a great support due to its high surface area, good
chemical, and thermal stability, hydrophilicity, and insolubility, which are important char-
acteristics for application in an industrial scale. Antanasković et al. [19] investigated the
laccase immobilization on biochar gained from sour cherry stones and evaluates its appli-
cation for brilliant green degradation. The authors reported that biochar can effectively be
used as an enzyme carrier and be further utilized for the removal of emerging pollutants,
positioning it as a sustainable solution for wastewater treatment. De Almeida et al. [20]
studied the process of immobilization of lipase from Burkholderia cepacia by physical
adsorption on graphene oxide derived (GO) from grape seed biochar. The authors demon-
strated a high potential of graphene oxide obtained from biochar in immobilization lipase,
especially in the application of nanobiocatalysts on an industrial scale.

On the other hand, in recent decades, different enzyme–polymer immobilization
methodologies have arisen, including adsorption or entrapment on/into solid polymeric
particles, metal–organic frameworks, fibers, hydrogels, and polymeric capsules [21–23]. It
has been demonstrated that embedding enzymes into macroscopic polymeric structures
offers several benefits. Generally, the larger the enzyme-polymeric hybrid, the greater its
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recycling potential, which significantly enhances the overall economy of the biocatalytic
process [24].

The aim of this work was to develop porous polymeric/activated carbon capsules
as scaffolds for enzyme immobilization. Polysulfone was selected as the polymeric ma-
trix to fabricate the capsule due to its thermal stability, strong mechanical strength, and
good chemical resistance [25,26]. Polysulfone is a semihydrophobic material, containing
sequential aromatic and aliphatic units that repulse water and hydrophilic compounds.
The occasional hydrophilic character of its product surface is provided by the oxygen (aryl-
O-alkyl) and sulfur dioxide (aryl-SO2-alkyl) moieties that are able to form hydrogen bonds.
This polymer was launched in 1965 as BAKELITE® Polysulfone [27]. In the literature
its biocompatibility has also been proven [28], as well as its application in encapsulation
technology development [29–31].

The capsules were prepared by a phase inversion precipitation method which is the
most widely used membrane preparation method [32,33]. Phase inversion is a demixing
process in which an initially homogeneous polymer solution is transformed from a liquid
state to a solid state in a controlled manner during which the membrane structure, prop-
erties, and chemical interaction depend on the choice of polymer, as does the choice of
additives used in the casting solution [34]. In case of encapsulation technology, a polymeric
mixture of solvent and active materials plus solvent is propped in a coagulation bath
containing nonsolvent. Due to the solvent and nonsolvent exchange, precipitation takes
place and the formation of capsule structures with entrapped active materials occurs [35].

2. Materials and Methods
2.1. Materials

Activated carbon Norit (Norit® CA1, chemically activated, powder prepared from
wood, ref: 97876), polysulfone (average Mw ~35,000, average Mn ~16,000), carboxymethyl
cellulose (medium viscosity, ref. 21902) and Viscozyme® L (Cell Wall Degrading Enzyme
Complex from Aspergillus sp., Lysing Enzyme from Aspergillus sp., ref: V2010), sodium
acetate (99.995% trace metals basis, ref. 229873), dinitrosalicylic acid reagent (used in colori-
metric determination of reducing sugars, ref. D0550), sodium hydroxide (puriss. p.a., ACS
reagent, reag. Ph. Eur., K ≤ 0.02%, ≥98%, pellets, ref. 30620), and D-(+)-glucose (≥99.5%,
ref. G8270) were provided by Sigma-Aldrich (Madrid, Spain). N,N-Dimethylformamide
(DMF, extra Pure, ref: D/3840/17) was purchased from Fisher Scientific (Madrid, Spain),
while Quick Start Bradford protein assay was provided by Bio-Rad (Madrid, Spain). All
reagents were used as received, without any further modification and/or purification.

2.2. Capsules Preparation

Investigated capsules were prepared by a phase inversion precipitation method [36]
from a polymeric mixture composed of 20% of polysulfone with or without the activated
carbon in DMF as a solvent. The polymeric solution was prepared by dissolving 20% w/w
of polysulfone and mixing it with different amounts of activated carbon (0–5 wt%) as it is
described in Table 1. Then, the mixture was stirred at 500 rpm for 24 h at room temperature.
Afterwards, the capsules were obtained by dosing 3 mL of the polymeric solution into a
coagulation bath containing 100 mL of distilled water as a non-solvent. The dosing rate
of polymeric solution was optimized at 0.4 mL/min using a syringe pump (KDS-410-CE,
kdScientific, Holliston, MA, USA). The prepared capsules were filtered and left for one
hour in a clean water bath under stirring, in order to extract the rest of DMF. Finally, the
capsules were filtrated and in order to remove any potentially reminded solvent they were
subsequently dried using a rotary evaporator.
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Table 1. Composition of different polymeric solutions.

Sample Polysulfone (wt%) Carbon (wt%) DMF (wt%)

C1 20 0 80
C2 20 0.5 79.5
C3 20 1 79
C4 20 2 78
C5 20 5 75

2.3. Capsules Characterization

Both the external and internal morphology of prepared capsules were analyzed by
means of Environmental Scanning Electron Microscope (ESEM, FEI Quanta 600) in high
vacuum mode, using a secondary electron detector and an accelerating voltage of 20 kV.
To analyze the internal morphology, micrographs of the cross-section of capsules were
taken. In order to obtain a cross-section without modifying the polymeric structure, the
capsules were cryogenically cut. To carry out it first, the capsules were mixed with an
embedding medium (OCT Compound) and frozen at −25 ◦C on an aluminum support
inside the machine. Once frozen, they were cut into slices of thickness 20 µm and then
they were deposited on a microscopic slide. All the cross-section images were analyzed
with the ImageJ software (version 1.52, publicly available from the National Institutes of
Health, Bethesda, MD, USA) in order to quantify the mean pore size and the macrovoid
size of the capsules. External morphology of the capsules was also observed by optical
microscopy (TE2000-E, NIKON, Melville, NY, USA) in order to visualize carbon particles in
their surface. During this analysis, the capsules were not covered with any external layer
as in case of ESEM. They were put on the sample holder and studied. The pictures were
captured with a camera integrated with the microscope.

Additionally, the capsule weight and diameter were measured using an analytical
balance (ED224S, Sartorius, Göttingen, Germany) and a digital caliper (D-42387, Forum,
Wuppertal, Germany), respectively. The average capsule weight was determined based
on 10 measurements. Weight compositions of dried capsules were calculated based on the
mass balance of the materials used for their preparation.

Moreover, the overall capsule porosity, ε, defined as the volume of the pores divided
by the total volume of the capsule, was calculated using a method based on density
measurements. The overall capsule porosity was determined from bulk and polysulfone
densities by using the following Equation (1):

ε =

(
1 − ρc

ρps f

)
× 100% (1)

where ρc and ρps f (1.24 g/cm3) correspond to capsule and polysulfone density, respectively.
For the capsules with activated carbon the equation is slightly different [37]:

ε =

(
1 − ρc

ρps f+ac

)
× 100% (2)

where ρc is a capsule density and ρps f+ac is a weighted average of the material density,
considering that density of activated carbon is 0.4 g/cm3.

Furthermore, activated carbon, polysulfone, polysulfone capsule (C1), and polysulfone
capsules with activated carbon (C5) were investigated by means of Fourier Transform
Infrared Spectroscopy (FT-IR), using Jasco FT/IR-6700 Infrared Spectrometer at 4 cm−1

resolution and 32 scans. The wavelength range was from 400 to 4000 cm−1.
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2.4. Enzyme Immobilization on Capsule Surface

The immobilization of enzymes from the aqueous solution onto the capsule surface
was performed in batch experiments using a 50 mL Erlenmeyer flask. 1 g of capsules was
added to 25 milliliters of enzyme solution (1 g/L) and slightly stirred using a magnetic
stirrer for 24 h at room temperature.

The immobilized amount of the enzymes was indirectly determined by analyzing
the remaining amount of enzymes in the solutions by the standard Bradford method
using UV–Vis spectrophotometer at 595 nm (UV-1800, Shimadzu, Duisburg, Germany).
Quick Start Bradford protein assay kit with bovine γ-globulin at 2 mg/mL, 1.5 mg/mL,
1 mg/mL, 0.75 mg/mL, 0.5 mg/mL, 0.25 mg/mL and 0.125 mg/mL and were used to plot
a calibration curve.

2.5. Efficiency of Sugar Hydrolysis by Immobilized Enzyme

The amount of glucose liberates during cellulose hydrolysis in the presence of im-
mobilized Viscozyme® L was determined according to slightly modified Reducing Sugar
DNS method developed by Miller [38]. First, acetate buffer 0.05 M (pH 5) was prepared
by dissolving 2.886 g of sodium acetate and 0.889 g (0.847 mL) of acetic acid in 1 L of
milliQ water (pH of this solution was around 4.5). Its pH was adjusted to the value 5 using
10 M NaOH. Next, 25 mL of 1 g/L of carboxymethyl cellulose in the acetate buffer (25 mL)
was prepared and pre-heated to 50 ◦C. Then, 10 g of capsules with immobilized enzyme
were added, and the mixture was heated at 50 ◦C for 24 h. After incubation, the reaction
was terminated by adding 3 mL of 3,5-dinitrosalicylic acid reagent to 1 mL of the reaction
mixture. Reducing sugars were estimated colorimetrically with 3,5-dinitrosalicylic acid
using glucose as standard using UV–Vis spectrophotometer at 540 nm (UV-1800, Shimadzu,
Duisburg, Germany).

3. Results and Discussion
Using a phase inversion precipitation method, five types of capsules, named C1–

C5, were prepared. Their characteristics are provided in Table 2. Phase inversion is a
controlled process that transforms a polymer from a solution state to a solid state. In our
case, to form PSF-based capsules, activated carbon was first dispersed in DMF solutions
containing 20 wt% of PSF. The resulting PSF-AC mixtures were then dropped into a
coagulation bath containing water as a non-solvent. As shown in Table 2, C1 capsules
were prepared without AC, while C2–C5 capsules included 2.4, 4.8, 9.1, and 20 wt% of
AC in PSF structures, respectively. Sharma et al. [39] and Hosseini et al. [40] fabricated
polyethersulfone membranes with activated carbon at concentrations ranging from 0 to
1 wt.%. In order to investigate the effect of AC on capsule morphologies we decided to
extend its content up to 5 wt%. Obtained results demonstrated that the diameters of
the capsules ranged from 2.5 to 2.6 ± 0.1 mm and were not affected by the increase in
carbon content within the PSF matrix. However, their weights increased with rising carbon
content, with approximately a 21% increase in weight observed when comparing capsules
C1 and C5.

Table 2. Capsules characterization.

Sample Carbon Content in
Dried Capsule (%)

Capsule Diameter
(mm)

Capsule
Weight (mg)

Porosity
(%)

Pore Diameter
(µm)

Average Macrovoids Size
(µm)

C1 0 2.5 ± 0.1 2.8 ± 0.1 73.4 4.9 ± 0.5 893.1 ± 439.8
C2 2.4 2.5 ± 0.1 2.9 ± 0.2 72.5 5.2 ± 0.7 412.4 ± 114.7
C3 4.8 2.6 ± 0.1 3.0 ± 0.1 72.4 4.7 ± 0.2 487.3 ± 137.8
C4 9.1 2.6 ± 0.1 3.2 ± 0.3 70.2 4.4 ± 0.5 415.3 ± 261.6
C5 20 2.6 ± 0.1 3.4 ± 0.2 65.7 5.1 ± 0.3 506.9 ± 253.0

Values are means ± SD, n = 10.
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The influence of AC on the polymeric capsule structures was also analyzed in terms
of internal and external morphologies by optical microscope and ESEM. The optical mi-
croscope was used in order to visualize the carbon particles in the polymeric capsule
surface which were not possible to be observed in ESEM micrographs. As shown in
Figure 1, the carbon modified capsule is darker due to the black carbon particles, which are
clearly observed.
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Figure 1. Optical micrographs of C1 and C5 capsules.

Figures 2 and 3 show the ESEM micrographs of surface and cross-section morphologies
of C1–C5 capsules, respectively. The ESEM cross-section images demonstrate that prepared
capsules are matrix type spheres. All of them possess similar porous outer morphology
and spongy/finder-like internal matrix structure with macrovoids. Captured morphologies
are similar to those reported by Tan and Rodrigue who used polysulfone for membrane
preparation [41]. The results of capsule porosity, provided in Table 2, show a dependence
on the carbon content: the higher the carbon content, the lower the porosity of the capsules.
The pore sizes do not change significantly, and their value range is between 4.7 ± 0.2
and 5.2 ± 0.7 µm. However, the macrovoids are smaller in carbon capsules compared
to pure polysulfone C1 capsules. As the macrovoids have different dimensions within a
single capsule cross-section, the corresponding standard deviation values are very high.
A similar tendency was also observed by Torras et al. [42,43] concerning the preparation
of a polysulfone-activated carbon membrane with different amounts of activated carbon.
Moreover, Priscila et al. [44] investigated the influence of addition of the activated carbon
in the system polysulfone/NMP/water in terms of membrane morphology, hydrophilicity,
thermal and mechanical resistance. The authors reported that membrane surface became
denser with the addition of higher activated carbon contents.

Figure 4 provides FT-IR spectra of pure polysulfone (PFS), activated carbon, C1 and
C5 capsules. The spectrum contains some important characteristics band which are visible
at specific wave number. In case of pure polysulfone, C1 and C5 capsules, the C6H6 ring
stretch is located at 1584 cm−1 and 1485 cm−1. The asymmetric stretching vibration of C-O
appears at 1235 cm−1. Symmetric stretching vibration of S=O is located at 1146 cm−1 and
1292 cm−1. The bands located at 831 cm−1 is due to para-disubstituted ring, i.e., C-H, out of
plane bending vibration. Bands appearing in region of 721 cm−1 to 662 cm−1 results from
C=C out of plane bending vibration [45]. It can be observed that spectra of polysulfone, C1
and C5 samples are the same, which confirm the original structure of pure polymer. In the
case of activated carbon, the interpretation of the spectra is complicated by the fact that
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each functional group generates several bands at different wavenumbers, meaning each
band may contain contributions from multiple groups, as it was reported by Figueiredo
et al. [46], who also noted that for carbon which is not highly oxidized, the intensity of the
absorption bands in infrared spectroscopic methods is insufficient. Following the literature,
the infrared bands associated with different oxygen functional groups on the activated
carbon (Figure 4) were assigned. The broad band at 3600–3200 cm−1 can be assigned to
OH from the COOH groups. This band clearly demonstrates the presence of OH groups on
the surface. The bands at 1700–1500 cm−1 as well as 1400–900 cm−1 could be assigned to
the following oxygen functional groups such as: carboxyl-carbonates, quinones, lactones,
ethers, phenols, and carboxylic anhydrides [46,47]. The commercially available carbon used
for C2–C5 capsules preparation was chemically activated by the supplier, as it is described
in Section 2.1. Material. As shown in Figure 4, the presence of absorption bands in the
FT-IR spectrum of carbon, associated with different oxygen functional groups, confirms
its activation.
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During the next step of our investigation, prepared C1–C5 capsules were used as
support platforms for enzyme immobilization. In our studies, Viscozyme® L, which is a
multi-enzyme complex containing a wide range of carbohydrases, including arabanase,
cellulase, β-glucanase, hemicellulase, and xylanase enzymes, was immobilized on C1–C5
capsules by a physical adsorption (physisorption) process which is characterized by weak
interactions between the enzyme and the capsule scaffolds. As it is given in Table 3
and Figure 5, with the higher carbon content in capsule structures, the higher amount of
immobilized enzymes was achieved.
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Table 3. Enzyme Immobilization results.

Sample Carbon Content in Dried Capsule
(%) Immobilized Amount (mg/gcapsules) Concentration on Capsule (mg/dm2)

C1 0 0.57 ± 0.16 0.79 ± 0.24
C2 2.4 0.80 ± 0.18 1.13 ± 0.23
C3 4.8 0.88 ± 0.09 1.26 ± 0.12
C4 9.1 1.03 ± 0.17 1.56 ± 0.13
C5 20 1.36 ± 0.19 1.83 ± 0.21

Figure 6, as an example, provides ESEM micrographs of surface and cross-section
morphologies of the C5 capsule before and after enzyme immobilization. From the images,
it can be observed that the internal morphology after enzyme immobilization seems to be
more compacted while the external capsules surface became dense. These results suggest
that the enzyme penetrated the capsule wall (membrane) morphology [48], and they are
filled in the porous structure [49], closing the surface pores [50], making the capsule surface
dense and homogeneous.
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Finally, activity of immobilized enzymes on the C5 capsules was determined by
cellulose hydrolysis to glucose (Scheme 1) following the Reducing Sugar DNS method.
As it is illustrated in the Scheme 1, enzymatic hydrolysis involves the cleavage of β-1,4-
glycosidic bonds of cellulose and generates glucose [51]. Our results demonstrated that
10 g of C5 enzyme immobilized capsules were able to hydrolyze 1 g/L of carboxymethyl
cellulose sodium salt (during a 24 h reaction carried out at 50 ◦C), producing 107 mg/L of
glucose. In order to check if the recycled capsules maintain their activity, the capsules were
reused in three additional, independent hydrolase tests, producing 78, 76, and 79 mg/L
of glucose in each reaction batch. Generally, cellulolytic enzymes tend to have optimal
activity in the acidic to neutral pH range. For example, free cellulase enzymes typically
show optimal activity around pH 4.4 to 5.01, while immobilized cellulase enzymes exhibit
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optimal activity around pH 5.0. Thus, following the literature [12,52], we selected this pH 5
value to carry out the cellulose hydrolysis experiments.
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Scheme 1. A scheme of cellulose hydrolysis by enzyme.

Figure 7 shows that the activity of non-immobilized enzyme is approximately five
times higher than the immobilized one on C5 capsules. A quantum and molecular me-
chanics study, performed by Petrosino et al. [53] on enzyme adsorption on polysulfone
surface, suggests that the binding site of the immobilized enzyme can be less accessible,
with respect to the pristine enzyme, due to the steric hindrance of the polymer surface; thus,
a reduction in the enzyme efficiency can be expected. On the other hand, it is important to
highlight that the immobilized enzyme can be recovered from the reactor by separation
methods and it can be reused. Considering that current processes employed in the paper
industry do not involve pure enzyme recovery from the production (they are considered
bio-waste), the easy and cheap separation method of capsules with immobilized enzymes
could have a significant impact on the decrease in paper production cost as well as on
environmental aspect of bio-waste reduction. Moreover, the results presented in Figure 6
suggest that the immobilized enzyme are stable, and they were not significantly washed
out from the capsule structure during their application in cellulose hydrolysis.
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4. Conclusions
Five types of polysulfone-based capsules were successfully prepared by phase inver-

sion precipitation method. Four of them (C2–C5) contain activated carbon nanoparticles
into their matrix, in a concentration range between 2.4 and 20 wt%. Capsules morphologies
change with the increase in activated carbon content growth, leading to porous diameter
decrease. Higer content of activated carbon in polymeric capsule matrix significantly
influences on physical immobilization of enzyme. Hydrolysis of carboxymethyl cellulose
to glucose in the presence of immobilized enzymes in the polysulfone-activated carbon
capsule, monitored Reducing Sugar DNS test, confirmed the immobilized enzyme activity.
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