Numerical Simulation of Swept-Wing Laminar–Turbulent Flow in the Presence of Two-Dimensional Surface Reliefs
<p>Computational domain with the swept wing and the structured hexahedral computational grid (each 27th cell shown) on the boundaries.</p> "> Figure 2
<p>Schematic representation of the computational grid (each 27th cell shown) and the swept wing with surface reliefs of a rectangular cross-section placed parallel to the leading edge.</p> "> Figure 3
<p>Results for the single-strip relief at 10% of the chord, Case 1 (red solid line): (<b>a</b>) selected (numbered) and unused (unnumbered) streamlines; (<b>b</b>) <span class="html-italic">N</span>-factor envelopes for the stationary CFVs along the 4th, 5th, and 6th streamlines; (<b>c</b>) contours of constant <span class="html-italic">N</span> factors (white line stands for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> for the smooth surface).</p> "> Figure 4
<p><span class="html-italic">N</span>-factor envelopes for the stationary CFVs along 4th, 5th, and 6th streamlines for (<b>a</b>) Case 2 and (<b>b</b>) Case 3.</p> "> Figure 5
<p>The main flow characteristics in the wing center plane in the vicinity of Case 1 relief: (<b>a</b>) the field of the span-wise velocity component <span class="html-italic">W</span> with the boundary-layer edge <math display="inline"><semantics> <mi>δ</mi> </semantics></math> indicated by a dashed line and <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> by the black solid line; (<b>b</b>) the distribution of <span class="html-italic">W</span> (another color scheme) with streamlines (white).</p> "> Figure 6
<p>Cross-flow velocity <math display="inline"><semantics> <msup> <mi>W</mi> <mo>*</mo> </msup> </semantics></math> profiles downstream of Case 1 relief: (<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>/</mo> <mi>C</mi> <mo>=</mo> <mn>0.12</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>/</mo> <mi>C</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>/</mo> <mi>C</mi> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>/</mo> <mi>C</mi> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Problem Formulation and Solution Procedure
3. Results
4. Discussion
5. Conclusions
- The effectiveness of surface-structured relief in the region of the linear amplification of the cross-flow vortices as a passive method for delaying the flow stochastization was demonstrated; changing the distance of a strip from the leading edge was found to significantly affect the value of the delay; and the sequential installation of several relief elements led to better delay than the separate application of the strips.
- The mechanism of the delay is illustrated: extended zones of modified, weakened cross-flow appear downstream the strips, thus contributing to the reduced instability responsible for the flow stochastization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFV | cross-flow vortex |
LTT | laminar–turbulent transition |
TSW | Tollmin–Schlichting wave |
References
- Joslin, R.D. Overview of Laminar Flow Control; NASA/TP 1998-208705; NASA Langley Research Center: Hampton, VA, USA, 1998. [Google Scholar]
- Boiko, A.V.; Kornilov, V.I. On the vertical large eddy breakup device capability to decrease the turbulent drag. Thermophys. Aeromech. 2009, 16, 549–560. [Google Scholar] [CrossRef]
- Chernyshev, S.L.; Kiselev, A.P.; Kuryachii, A.P. Laminar flow control research at TsAGI: Past and present. Progress Aerosp. Sci. 2011, 47, 169–185. [Google Scholar] [CrossRef]
- Bulat, P.; Chernyshov, P.; Prodan, N.; Volkov, K. Control of Aerodynamic Characteristics of Thick Airfoils at Low Reynolds Numbers Using Methods of Boundary Layer Control. Fluids 2024, 9, 26. [Google Scholar] [CrossRef]
- Boiko, A.V.; Kirilovskiy, S.V.; Maslov, A.A.; Poplavskaya, T.V. Engineering modeling of the laminar–turbulent transition: Achievements and problems (Review). J. Appl. Mech. Tech. Phys. 2015, 56, 761–776. [Google Scholar] [CrossRef]
- Dmitrenko, A. Determination of critical Reynolds number for the flow near a rotating disk on the basis of the theory of stochastic equations and equivalence of measures. Fluids 2020, 6, 5. [Google Scholar] [CrossRef]
- Ustinov, M.V. Statistical description of intermittency in the transition region at the low degree of flow turbulence. Fluid Dyn. 2020, 55, 441–453. [Google Scholar] [CrossRef]
- Chernyshev, S.L.; Kuryachii, A.P.; Manuilovich, S.V.; Rusyanov, D.A.; Skvortsov, V.V. On the possibility of laminar flow control on a swept wing by means of plasma actuators. In Progress in Flight Physics; Knight, D., Lipatov, I., Reijasse, P., Eds.; EDP Sciences: Les Ulis, France, 2015; Volume 7, pp. 169–190. [Google Scholar] [CrossRef]
- Duan, L.; Choudhari, M.M. Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets; Paper 2014-0934; AIAA: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Tufts, M.W.; Reed, H.L.; Crawford, B.K.; Duncan, G.T.; Saric, W.S. Computational investigation of step excrescence sensitivity in a swept-wing boundary layer. J. Aircr. 2017, 54, 602–626. [Google Scholar] [CrossRef]
- Salomone, T.; Piomelli, U.; De Stefano, G. Wall-Modeled and Hybrid Large-Eddy Simulations of the Flow over Roughness Strips. Fluids 2022, 8, 10. [Google Scholar] [CrossRef]
- Saric, W.S.; Carrillo, R.B., Jr.; Reibert, M.S. Nonlinear stability and transition in 3-D Boundary layers. Meccanica 1998, 33, 469–487. [Google Scholar] [CrossRef]
- Saric, W.S.; West, D.E.; Tufts, M.W.; Reed, H.L. Experiments on discrete roughness element technology for swept-wing laminar flow control. AIAA J. 2019, 57, 641–654. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Mischenko, D.A.; Ustinov, M.V. Experimental investigation of laminar-turbulent transition control on swept-wing with help of oblique surface non-uniformities. AIP Conf. Proc. 2018, 2027, 030152.1–030152.9. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Mischenko, D.A. Delay of laminar-turbulent transition on swept-wing with help of sweeping surface relief. AIP Conf. Proc. 2019, 2125, 030041.1–030041.6. [Google Scholar] [CrossRef]
- Rius-Vidales, A.F.; Kotsonis, M. Impact of a forward-facing step on the development of crossflow instability. J. Fluid Mech. 2021, 924, A34. [Google Scholar] [CrossRef]
- Rius-Vidales, A.F.; Kotsonis, M. Unsteady interaction of crossflow instability with a forward-facing step. J. Fluid Mech. 2022, 939, A19. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Tempelmann, D.; Hanifi, A.; Henningson, D.S. Stabilization of a swept-wing boundary layer by distributed roughness elements. J. Fluid Mech. 2013, 718, R1.1–R1.11. [Google Scholar] [CrossRef]
- Kurz, H.B.E.; Kloker, M.J. Receptivity of a swept-wing boundary layer to micron-sized discrete roughness elements. J. Fluid Mech. 2014, 775, 62–82. [Google Scholar] [CrossRef]
- Gaponov, S.A.; Smorodsky, B.V. Stability of a supersonic boundary layer over a surface with sublimation. Thermophys. Aeromech. 2020, 27, 205–217. [Google Scholar] [CrossRef]
- Smith, A.M.O.; Gamberoni, N. Transition, Pressure Gradient and Stability Theory; Report ES 26388; Douglas Aircraft Co.: El Segundo, CA, USA, 1956. [Google Scholar]
- Van Ingen, J.L. A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region; VTH 74; Delft University of Technology, Department of Aerospace Engineering: Delft, The Netherlands, 1956. [Google Scholar]
- Mack, L.M. A numerical method for the prediction of high-speed boundary-layer transition using linear theory. In Proceedings of the Aerodynamic Analyses Requiring Advanced Computers, Hampton, VA, USA, 4–6 March 1975; Part I. pp. 101–123. [Google Scholar]
- Van Ingen, J.L. Transition, pressure gradient, suction, separation and stability theory. In Proceedings of the AGARD-CP-224 Laminar–Turbulent Transition, Lyngby, Denmark, 2–4 May 1977; pp. 20.1–20.15. [Google Scholar]
- Krimmelbein, N.; Radespiel, R. Transition prediction for three-dimensional flows using parallel computation. Comput. Fluids 2009, 38, 121–136. [Google Scholar] [CrossRef]
- Grabe, C.; Nie, S.; Krumbein, A. Transport modeling for the prediction of crossflow transition. AIAA J. 2018, 56, 3167–3178. [Google Scholar] [CrossRef]
- Boiko, A.V.; Demyanko, K.V.; Kirilovskiy, S.V.; Nechepurenko, Y.M.; Poplavskaya, T.V. Modeling of transonic transitional three-dimensional flows for aerodynamic applications. AIAA J. 2021, 59, 3598–3610. [Google Scholar] [CrossRef]
- Walker, G.J. Transitional flow on axial turbomachine blading. AIAA J. 1989, 27, 595–602. [Google Scholar] [CrossRef]
- Boiko, A.V.; Ivanov, A.V.; Borodulin, V.I.; Mischenko, D.A. Quantification technique of transition to turbulence in boundary layers using infrared thermography. Int. J. Heat Mass Transf. 2022, 183, 122065.1–122065.11. [Google Scholar] [CrossRef]
- Mack, L.M. Three-dimensional effects in boundary layer stability. In Naval Hydrodynamics: Boundary Layer Stability and Transition, Ship Boundary Layers and Propeller Hull Interaction, Cavitation, Geophysical Fluid Dynamics. Twelfth Symposium; Carrier, G.F., Ed.; National Academy of Sciences: Washington, DC, USA, 1979; pp. 63–76. [Google Scholar]
- Cebeci, T.; Stewartson, K. On stability and transition in three-dimensional flows. AIAA J. 1980, 18, 398–405. [Google Scholar] [CrossRef]
- Boiko, A.; Dovgal, A.; Hein, S.; Henning, A. Particle image velocimetry of a low-Reynolds-number separation bubble. Exp. Fluids 2011, 50, 13–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boiko, A.V.; Kirilovskiy, S.V.; Poplavskaya, T.V. Numerical Simulation of Swept-Wing Laminar–Turbulent Flow in the Presence of Two-Dimensional Surface Reliefs. Fluids 2024, 9, 95. https://doi.org/10.3390/fluids9040095
Boiko AV, Kirilovskiy SV, Poplavskaya TV. Numerical Simulation of Swept-Wing Laminar–Turbulent Flow in the Presence of Two-Dimensional Surface Reliefs. Fluids. 2024; 9(4):95. https://doi.org/10.3390/fluids9040095
Chicago/Turabian StyleBoiko, Andrey V., Stanislav V. Kirilovskiy, and Tatiana V. Poplavskaya. 2024. "Numerical Simulation of Swept-Wing Laminar–Turbulent Flow in the Presence of Two-Dimensional Surface Reliefs" Fluids 9, no. 4: 95. https://doi.org/10.3390/fluids9040095
APA StyleBoiko, A. V., Kirilovskiy, S. V., & Poplavskaya, T. V. (2024). Numerical Simulation of Swept-Wing Laminar–Turbulent Flow in the Presence of Two-Dimensional Surface Reliefs. Fluids, 9(4), 95. https://doi.org/10.3390/fluids9040095