A Polyvinyl Alcohol–Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance
<p>Diagram showing preparation of PVA–TA gel (third row, from left to right: PVA solution, freeze–thawed PVA gel, and PVA–TA gel).</p> "> Figure 2
<p>(<b>a</b>) FTIR spectra of pure PVA hydrogel and 15.0 wt% PVA–TA gel. (<b>b</b>) TG curves of pure 15.0 wt% PVA hydrogel and 15.0 wt% PVA–TA gel.</p> "> Figure 3
<p>(<b>a</b>) XRD patterns of pure 15.0 wt% PVA gel and 15.0 wt% PVA–TA gel; (<b>b</b>,<b>c</b>) SEM image of 15.0 wt% PVA–TA24 gel.</p> "> Figure 4
<p>Images of 20.0 wt% PVA–TA24 gel mechanical properties: (<b>a</b>) bending, (<b>b</b>) stretching, and (<b>c</b>,<b>d</b>) holding a weight of 200 g and 4.80 kg.</p> "> Figure 5
<p>For 10.0 wt% PVA–TA gel: stress–strain curves (<b>a</b>), corresponding rupture stress–strain (<b>b</b>) and toughness values (<b>c</b>). For 15.0 wt% PVA–TA gel: stress–strain curves (<b>d</b>), corresponding rupture stress–strain (<b>e</b>) and toughness values (<b>f</b>). For 20.0 wt% PVA–TA gel: stress–strain curves (<b>g</b>), corresponding rupture stress/strain (<b>h</b>) and toughness values (<b>i</b>).</p> "> Figure 6
<p>UV-radiation shielding of 15.0 wt% PVA–TA gel: (<b>a</b>) pure PVA gel under natural light (two images on the left) and ultraviolet light (two images on the right; wavelength of ultraviolet lamps was 365 nm). (<b>b</b>) Samples of 15.0 wt% PVA–TA24 gel (thickness: 0.12 cm) under natural light (two images on the left) and ultraviolet light (two images on the right). (<b>c</b>) Schematics illustrating the UV filtration process of gel derived from TA molecules. (<b>d</b>) Transmittance spectra of 15.0 wt% PVA–TA24 gel in the visible wavelength range (during 200–800 nm).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
4.1. Materials
4.2. Preparation of PVA–TA Gel
4.3. Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, H.; Wang, J.; Jin, Z. Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer-tannic acid multiple hydrogen bonds. Macromolecules 2018, 51, 1696–1705. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, J.; Lu, G.; Sun, J.; Tang, L. Highly stretchable, transparent, and self-adhesive ionic conductor for high-performance flexible sensors. ACS Appl. Polym. Mater. 2021, 3, 1610–1617. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Y.; Zhang, B.; Zhang, C.; Liu, T. Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Compos. Commun. 2021, 24, 100677. [Google Scholar] [CrossRef]
- Lee, J.N.; Lee, S.Y.; Park, W.H. Bioinspired Self-Healable Polyallylamine-Based Hydrogels for Wet Adhesion: Synergistic Contributions of Catechol-Amino Functionalities and Nanosilicate. ACS Appl. Mater. Interfaces 2021, 13, 18324–18337. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Yu, H.; Lin, S.; Liu, X.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–4372. [Google Scholar] [CrossRef]
- Mokoena, T.E.; Magagula, S.I.; Mochane, M.J.; Mokhena, T.C. Mechanical properties, thermal conductivity, and modeling of boron nitride-based polymer composites: A review. Extreme Mech. Lett. 2021, 15, 1148–1173. [Google Scholar] [CrossRef]
- Shejkar, S.K.; Agrawal, B.; Agrawal, A.; Gupta, G. Physical, mechanical, and sliding wear behavior of epoxy composites filled with surface modified walnut shell particulate. Polym. Composite. 2022, 43, 7526–7537. [Google Scholar] [CrossRef]
- Zhou, Q.; Lyu, J.; Wang, G.; Robertson, M.; Qiang, Z.; Sun, B.; Ye, C.; Zhu, M. Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 2021, 31, 2104536. [Google Scholar] [CrossRef]
- Hu, R.; Ji, G.; Zhao, J.; Gu, X.; Zhou, L.; Zheng, J. The preparation of dual cross-linked high strain composite gel with manifold excellent properties and its application as a strain sensor. Compos. Sci. Technol. 2022, 217, 109110. [Google Scholar] [CrossRef]
- Norioka, C.; Inamoto, Y.; Hajime, C.; Kawamura, A.; Miyata, T. A universal method to easily design tough and stretchable hydrogels. NPG Asia Mater. 2021, 13, 34. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, G.; Shi, M.; Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021, 374, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Regitsky, A.U.; Song, J.; Ilavsky, J.; McKinley, G.H.; Holten-Andersen, N. In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization. Nat. Comm. 2021, 12, 667. [Google Scholar] [CrossRef] [PubMed]
- Steck, J.; Kim, J.; Yang, J.; Hassan, S.; Suo, Z. Topological adhesion. I. Rapid and strong topohesives. Extreme Mech. Lett. 2020, 39, 100803. [Google Scholar] [CrossRef]
- Vlad-Bubulac, T.; Hamciuc, C.; Rimbu, C.M.; Aflori, M.; Butnaru, M.; Enache, A.A.; Serbezeanu, D. Fabrication of Poly(vinyl alcohol)/Chitosan Composite Films Strengthened with Titanium Dioxide and Polyphosphonate Additives for Packaging Applications. Gels 2022, 8, 8. [Google Scholar] [CrossRef]
- Gong, M.; Wan, P. Bioinspired stiff yet tough healable nanocomposites: From molecular design to structural processing. Matter 2021, 4, 2108–2111. [Google Scholar] [CrossRef]
- Li, M.-X.; Rong, M.-Z.; Zhang, M.-Q. Reversible mechanochemistry enabled autonomous sustaining of robustness of polymers-an example of next generation self-healing strategy. Chin. J. Polym. Sci. 2021, 39, 545–553. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Li, Y.; Hu, R.; Zheng, J. Preparation of a self-healing polyaniline-based gel and its application as a healable all-in-one capacitor. Chem. Eng. J. 2021, 420, 129790. [Google Scholar] [CrossRef]
- Brassinne, J.; Zhuge, F.; Fustin, C.-A.; Gohy, J.-F. Precise Control over the Rheological Behavior of Associating Stimuli-Responsive Block Copolymer Gels. Gels 2015, 1, 235–255. [Google Scholar] [CrossRef] [Green Version]
- Sciortino, F.; Mir, S.H.; Pakdel, A.; Oruganti, A.; Abe, H.; Witecka, A.; Awang Shri, D.N.; Rydzek, G.; Ariga, K. Saloplastics as multiresponsive ion exchange reservoirs and catalyst supports. J. Mater. Chem. A 2020, 8, 17713–17724. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Guo, J.; Liu, L.; Fu, H.; Yao, J.; Krucińska, I.; Draczyński, Z. Highly strong, tough, and stretchable conductive hydrogels based on silk sericin-mediated multiple physical interactions for flexible sensors. ACS Appl. Polym. Mater. 2021, 4, 618–626. [Google Scholar] [CrossRef]
- Ouyang, K.; Zhuang, J.; Chen, C.; Wang, X.; Xu, M.; Xu, Z. Gradient diffusion anisotropic carboxymethyl cellulose hydrogels for strain sensors. Biomacromolecules 2021, 22, 5033–5041. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Sun, J. Degradable poly(vinyl alcohol)-based supramolecular plastics with high mechanical strength in a watery environment. Adv. Mater. 2021, 33, e2007371. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhu, M.; Xu, X.; Li, X.; Ma, Z.; Jiang, Z.; Pich, A.; Wang, H.; Song, P. Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Adv. Mater. 2021, 33, e2105829. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Wu, S.; Ma, Y.; Zhao, Y.; Chen, Z.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X.; He, X. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Feng, X.; Pei, J.; Cui, Q.; Li, Y.; Liu, H.; Zhang, X. Biobased Reversible Cross-Linking Enables Self-Healing and Reprocessing of Epoxy Resins. ACS Sustain. Chem. Eng. 2022, 10, 3604–3613. [Google Scholar] [CrossRef]
- Heidarian, P.; Gharaie, S.; Yousefi, H.; Paulino, M.; Kaynak, A.; Varley, R.; Kouzani, A.Z. A 3D printable dynamic nanocellulose/nanochitin self-healing hydrogel and soft strain sensor. Carbohyd. Polym. 2022, 291, 119545. [Google Scholar] [CrossRef]
- Hu, R.; Ji, G.; Wang, Y.; Zhao, J.; Zheng, J. Rational design of multiple hydrogen bonds to improve the mechanical property of rigid PANI. Extreme Mech. Lett. 2021, 42, 101136. [Google Scholar] [CrossRef]
- Xue, S.; Wu, Y.; Liu, G.; Guo, M.; Liu, Y.; Zhang, T.; Wang, Z. Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior. J. Mater. Chem. A 2021, 9, 5730–5739. [Google Scholar] [CrossRef]
- Ji, Y.; Liang, N.; Xu, J.; Zuo, D.; Chen, D.; Zhang, H. Cellulose and poly(vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors. Cellulose 2018, 26, 1055–1065. [Google Scholar] [CrossRef]
- Oral, I.; Ekrem, M. Measurement of the elastic properties of epoxy resin/polyvinyl alcohol nanocomposites by ultrasonic wave velocities. Extreme Mech. Lett. 2022, 16, 591–606. [Google Scholar] [CrossRef]
- Jalageri, M.B.; Mohan Kumar, G.C. Hydroxyapatite Reinforced Polyvinyl Alcohol/Polyvinyl Pyrrolidone Based Hydrogel for Cartilage Replacement. Gels 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Jia, K.; Liu, C.; Wang, L.; Lin, G.; Huang, Y.; Liu, S.; Liu, X. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv. Funct. Mater. 2021, 31, 2104701. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Zeng, Q.; Wang, H.; Yu, J.; Ren, K.; Dai, Z.; Zhang, H.; Zheng, J.; Hu, R. A chewing gum residue-based gel with superior mechanical properties and self-healability for flexible wearable sensor. Macromol. Rapid Commun. 2022, 43, e2200234. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Ji, Y.; Zuo, D.; Zhang, H.; Xu, J. Improved performance of carbon-based supercapacitors with sulfonated poly(ether ether ketone)/poly(vinyl alcohol) composite membranes as separators. Polym. Int. 2019, 68, 120–124. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz, L.G.; Abt, T.; Leon, N.; Wang, L.; Sanchez-Soto, M. Ice-Template Crosslinked PVA Aerogels Modified with Tannic Acid and Sodium Alginate. Gels 2022, 8, 419. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zeng, Y.; Liu, G.; Tian, Y.; Wei, Y.; Zhao, L.; Yang, L.; Tao, L. Magnetic self-healing hydrogel from difunctional polymers prepared via the kabachnik-fields reaction. ACS Macro Lett. 2022, 11, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zhao, J.; Wang, Y.; Li, Z.; Zheng, J. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chem. Eng. J. 2019, 360, 334–341. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Tao, F.; Pan, Q. Rationally designed self-healing hydrogel electrolyte toward a smart and sustainable supercapacitor. ACS Appl. Mater. Interfaces 2017, 9, 27745–27753. [Google Scholar] [CrossRef]
- Luo, C.; Huang, M.; Sun, X.; Wei, N.; Shi, H.; Li, H.; Lin, M.; Sun, J. Super-strong, nonswellable, and biocompatible hydrogels inspired by human tendons. ACS Appl. Mater. Interfaces 2022, 14, 2638–2649. [Google Scholar] [CrossRef]
- Chen, Y.N.; Peng, L.; Liu, T.; Wang, Y.; Shi, S.; Wang, H. Poly(vinyl alcohol)-tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl. Mater. Interfaces 2016, 8, 27199–27206. [Google Scholar] [CrossRef]
- Cencha, L.G.; Allasia, M.; Passeggi, M.C.G.; Gugliotta, L.M.; Minari, R.J. Formulation of self-crosslinkable hybrid acrylic/casein latex by tannic acid. Prog. Org. Coat. 2021, 159, 106413. [Google Scholar] [CrossRef]
- Pantoja-Castro, M.A.; González-Rodríguez, H. Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev. Latinoam. Quim. 2011, 39, 107–112. [Google Scholar]
- Lei, H.; Zhao, J.; Ma, X.; Li, H.; Fan, D. Antibacterial dual network hydrogels for sensing and human health monitoring. Adv. Health. Mater. 2021, 10, e2101089. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, Y.; Li, J.; Li, Y.; Li, N.; Niu, S. A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability. Ultrason. Sonochem. 2018, 42, 18–25. [Google Scholar] [CrossRef]
- Peng, M.; Xiao, G.; Tang, X.; Zhou, Y. Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules 2014, 47, 8411–8419. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, T.; Zheng, X.; Huang, Y.; Chen, Y.; Dan, W. High strength and bioactivity polyvinyl alcohol/collagen composite hydrogel with tannic acid as cross-linker. Polym. Eng. Sci. 2020, 61, 278–287. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Wang, G.; Wang, Y.; Ren, X.; Gao, G. Muscle-inspired anisotropic hydrogel strain sensors. ACS Appl. Mater. Interfaces 2022, 14, 1921–1928. [Google Scholar] [CrossRef]
- Wei, Y.; Xiang, L.; Zhu, P.; Qian, Y.; Zhao, B.; Chen, G. Multifunctional organohydrogel-based ionic skin for capacitance and temperature sensing toward intelligent skin-like devices. Chem. Mater. 2021, 33, 8623–8634. [Google Scholar] [CrossRef]
Time (h) | 0 h | 0.5 h | 1 h | 7 h | 12 h | 24 h |
---|---|---|---|---|---|---|
10.0 wt% Gel | 10.0 wt% PVA | 10.0 wt% PVA–TA0.5 | 10.0 wt% PVA–TA1 | 10.0 wt% PVA–TA7 | 10.0 wt% PVA–TA12 | 10.0 wt% PVA–TA24 |
15.0 wt% Gel | 15.0 wt% PVA | 15.0 wt% PVA–TA0.5 | 15.0 wt% PVA–TA1 | 15.0 wt% PVA–TA7 | 15.0 wt% PVA–TA12 | 15.0 wt% PVA–TA24 |
20.0 wt% Gel | 20.0 wt% PVA | 20.0 wt% PVA–TA0.5 | 20.0 wt% PVA–TA1 | 20.0 wt% PVA–TA7 | 20.0 wt% PVA–TA12 | 20.0 wt% PVA–TA24 |
Gel | Stress MPa | Elongation at Break % | Toughness MJ/m3 | Reference |
---|---|---|---|---|
PVA–tannic acid | 9.5 | 1000 | / | [1] |
Silk sericin/PVA/sodium citrate | 4.42 ± 1.05 | 585 ± 34.0 | 13.73 ± 1.05 | [20] |
PVA/HCPE nanocomposites | 98 | 550 | 425 | [23] |
PVA–tannic acid@SiO2 hydrogel | 15.7 | 487 | / | [32] |
PVA–tannic acid hydrogel | 19.3 | Around 300 | 32.1 | [39] |
PVA–tannic acid hydrogel | 2.88 | 1100 | / | [40] |
PVA/NaCl hydrogel | 1.5 | 550 | 4.7 | [47] |
This study | 5.97 | 1450 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, C.; Tian, X.; Wang, Y.; Wang, Z.; Wang, X.; Lv, D.; Wang, A.; Wang, F.; Geng, L.; Zhao, J.; et al. A Polyvinyl Alcohol–Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance. Gels 2022, 8, 751. https://doi.org/10.3390/gels8110751
Si C, Tian X, Wang Y, Wang Z, Wang X, Lv D, Wang A, Wang F, Geng L, Zhao J, et al. A Polyvinyl Alcohol–Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance. Gels. 2022; 8(11):751. https://doi.org/10.3390/gels8110751
Chicago/Turabian StyleSi, Chunqing, Xintong Tian, Yan Wang, Zhigang Wang, Xinfang Wang, Dongjun Lv, Aili Wang, Fang Wang, Longlong Geng, Jing Zhao, and et al. 2022. "A Polyvinyl Alcohol–Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance" Gels 8, no. 11: 751. https://doi.org/10.3390/gels8110751
APA StyleSi, C., Tian, X., Wang, Y., Wang, Z., Wang, X., Lv, D., Wang, A., Wang, F., Geng, L., Zhao, J., Hu, R., & Zhu, Q. (2022). A Polyvinyl Alcohol–Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance. Gels, 8(11), 751. https://doi.org/10.3390/gels8110751