Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation
<p>Fabrication of anisotropic micropatterns using a magnetostatic field. (<b>a</b>) Schematic illustration of the preparation process for creating oriented micropatterns. (<b>b</b>) TEM image of Fe<sub>3</sub>O<sub>4</sub> NPs. (<b>c</b>) EDS elemental mapping demonstrating the crystalline structure of Fe<sub>3</sub>O<sub>4</sub> NPs, with oxygen and iron as the predominant elements. (<b>d</b>,<b>e</b>) The size distribution (<b>d</b>) and zeta potential (<b>e</b>) of the Fe<sub>3</sub>O<sub>4</sub> NPs characterized by using the zetasizer nano analyzer. (<b>f</b>) XRD pattern of the magnetic Fe<sub>3</sub>O<sub>4</sub> NPs. (<b>g</b>) Assembly process of Fe<sub>3</sub>O<sub>4</sub> NPs observed using an optical microscope. (<b>h</b>) Optical microscopy images of Fe<sub>3</sub>O<sub>4</sub> micropatterns. (<b>i</b>,<b>j</b>) SEM morphology images showing the morphology of Fe<sub>3</sub>O<sub>4</sub> micropatterns. (<b>k</b>) Statistical analysis of the diameter distribution of Fe<sub>3</sub>O<sub>4</sub> NPs using SEM. (<b>l</b>) AFM images and (<b>m</b>) quantitative analysis on the height and width of the oriented Fe<sub>3</sub>O<sub>4</sub> micropatterns.</p> "> Figure 2
<p>Parameter optimization for the fabrication of anisotropic micropatterns. (<b>a</b>) Distribution of Fe<sub>3</sub>O<sub>4</sub> droplets at varying positions on the magnet. (<b>b</b>) The uniform micropatterns stabilized at the magnet positions within a 4 mm diameter. (<b>c</b>) SEM images of magnetically induced anisotropic Fe<sub>3</sub>O<sub>4</sub> micropatterns at different concentrations. (<b>d</b>,<b>e</b>) Statistical analysis of the width (<b>d</b>) and height (<b>e</b>) of the anisotropic Fe<sub>3</sub>O<sub>4</sub> micropatterns.</p> "> Figure 3
<p>The morphology of Fe<sub>3</sub>O<sub>4</sub> micropatterns on substrates with varying wettability. (<b>a</b>) Contact angles measured on five different supporting substrates. (<b>b</b>) Anisotropic Fe<sub>3</sub>O<sub>4</sub> micropatterns formed on substrates with different wettability. (<b>c</b>,<b>d</b>) The height (<b>c</b>) and width (<b>d</b>) of Fe<sub>3</sub>O<sub>4</sub> micropatterns on these various substrates.</p> "> Figure 4
<p>Fabrication of multilayer cross patterns. (<b>a</b>) SEM images of multilayer parallel structures, consisting of one to four layers, on PEG surfaces. (<b>b</b>,<b>c</b>) The height (<b>b</b>) and width (<b>c</b>) of multilayer Fe<sub>3</sub>O<sub>4</sub> micropatterns. (<b>d</b>) SEM images of Fe<sub>3</sub>O<sub>4</sub> micropatterns created at angles of 45°, 90° 120° and 150° direction. (<b>e</b>) SEM image of three-layer Fe<sub>3</sub>O<sub>4</sub> cross structures.</p> "> Figure 5
<p>Cellular orientation and differentiation on micropatterned substrates. (<b>a</b>) Cellular orientation on anisotropic Fe<sub>3</sub>O<sub>4</sub> micropatterns and multilayer patterns. (<b>b</b>) Cellular orientation on single-layer linear patterns formed by the assembly of varying concentrations of Fe<sub>3</sub>O<sub>4</sub> NPs. (<b>b</b>) Representative fluorescent images showing nuclear (blue), Collagen I (red), and OPN (green) immunostaining of BMSCs differentiated on the micropatterned Fe<sub>3</sub>O<sub>4</sub> hydrogels.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication of Anisotropic Magnetic Architectures
2.2. Optimization of Highly Oriented Architectures
2.3. Fabrication of Multilayer Cross Patterns
2.4. Cellular Alignment and Osteogenic Differentiation on Patterned Hydrogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Fe3O4 Nanoparticles
4.3. Preparation of Different Wettability Substrates
4.4. Fabrication of Anisotropic Fe3O4 Micropatterns
4.5. Micropattern Characterization
4.6. Cellular Orientation on Micropatterned Substrates
4.7. In Vitro Osteogenic Differentiation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, N.; Xu, X.; Lv, D.; Lu, Y.; Li, J.; Cui, P.; Ma, R.; Luo, X.; Tang, Y.; Zheng, Y. Tissue-engineered esophagus: Recellular esophageal extracellular matrix based on perfusion-decellularized technique and mesenchymal stem cells. Biomed. Mater. 2021, 16, 055017. [Google Scholar] [CrossRef]
- Furusawa, K.; Kawahana, Y.; Miyashita, R. Construction of Engineered Muscle Tissue Consisting of Myotube Bundles in a Collagen Gel Matrix. Gels 2023, 9, 141. [Google Scholar] [CrossRef]
- Chen, Z.; Khuu, N.; Xu, F.; Kheiri, S.; Yakavets, I.; Rakhshani, F.; Morozova, S.; Kumacheva, E. Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment. Gels 2022, 8, 685. [Google Scholar] [CrossRef]
- Yeo, M.; Yoon, J.W.; Park, G.T.; Shin, S.C.; Song, Y.C.; Cheon, Y.I.; Lee, B.-J.; Kim, G.H.; Kim, J.H. Esophageal wound healing by aligned smooth muscle cell-laden nanofibrous patch. Mater. Today Bio. 2023, 19, 100564. [Google Scholar] [CrossRef]
- Stöberl, S.; Balles, M.; Kellerer, T.; Rädler, J.O. Photolithographic microfabrication of hydrogel clefts for cell invasion studies. Lab. A Chip 2023, 23, 1886–1895. [Google Scholar] [CrossRef]
- Huang, T.Y.; Zeng, Y.; Li, C.F.; Zhou, Z.Q.; Xu, J.; Wang, L.; Yu, D.-G.; Wang, K. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2024, 10, 4114–4144. [Google Scholar] [CrossRef]
- Yang, M.; Cheng, Q.C.; Zhou, G.S.; Wei, T.C.; Zhong, S.T.; Lu, L.H.; Yan, C.; Wang, Y.; Fang, M.; Yang, M.; et al. Electrospinning Aligned SF/Magnetic Nanoparticles-Blend Nanofiber Scaffolds for Inducing Skeletal Myoblast Alignment and Differentiation. ACS Appl. Bio. Mater. 2024, 7, 7710–7718. [Google Scholar] [CrossRef]
- Masuda, A.; Kurashina, Y.; Tani, H.; Soma, Y.; Muramatsu, J.; Itai, S.; Tohyama, S.; Onoe, H. Maturation of Human iPSC-Derived Cardiac Microfiber with Electrical Stimulation Device. Adv. Healthc. Mater. 2024, 13, 2303477. [Google Scholar] [CrossRef]
- Gaidau, C.; Râpă, M.; Ionita, G.; Stanculescu, I.R.; Zaharescu, T.; Constantinescu, R.R.; Lazea-Stoyanova, A.; Stanca, M. The Influence of Gamma Radiation on Different Gelatin Nanofibers and Gelatins. Gels 2024, 10, 226. [Google Scholar] [CrossRef]
- Gao, J.P.; Liu, X.; Cheng, J.Y.; Deng, J.H.; Han, Z.C.; Li, M.; Wang, X.; Liu, J.; Zhang, L. Application of photocrosslinkable hydrogels based on photolithography 3D bioprinting technology in bone tissue engineering. Regen. Biomater. 2023, 10, rbad037. [Google Scholar] [CrossRef]
- Omidian, H.; Mfoafo, K. Three-Dimensional Printing Strategies for Enhanced Hydrogel Applications. Gels 2024, 10, 220. [Google Scholar] [CrossRef]
- Wu, Y.; Ganguly, S.; Tang, X.S. 3D bioprinting of anisotropic filler-reinforced polymer nanocomposites: Synthesis, assembly, and multifunctional applications. Int. J. Bioprinting 2024, 10, 1637. [Google Scholar] [CrossRef]
- Barceló, X.; Eichholz, K.; Gonçalves, I.; Kronemberger, G.S.; Dufour, A.; Garcia, O.; Kelly, D.J. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication 2024, 16, 015013. [Google Scholar] [CrossRef]
- Castro, A.L.; Vedaraman, S.; Haraszti, T.; Barbosa, M.A.; Gonçalves, R.M.; De Laporte, L. Engineering Anisotropic Cell Models: Development of Collagen Hydrogel Scaffolds with Magneto-Responsive PEG Microgels for Tissue Engineering Applications. Adv. Mater. Technol. 2024, 9, 2301391. [Google Scholar] [CrossRef]
- Sapudom, J.; Karaman, S.; Quartey, B.C.; Mohamed, W.K.E.; Mahtani, N.; Garcia-Sabaté, A.; Teo, J. Collagen Fibril Orientation Instructs Fibroblast Differentiation Via Cell Contractility. Adv. Sci. 2023, 10, 2301353. [Google Scholar] [CrossRef]
- Wu, N.; Meng, S.; Li, Z.; Fang, J.; Qi, C.; Kong, T.; Liu, Z. Tailoring the Heterogeneous Structure of Macro-Fibers Assembled by Bacterial Cellulose Nanofibrils for Tissue Engineering Scaffolds. Small 2024, 20, 2307603. [Google Scholar] [CrossRef]
- Shi, B.; Zhu, T.; Luo, Y.; Zhang, X.; Yao, J.; Cao, X.; Zhu, Y.; Miao, H.; Li, L.; Song, Q.; et al. Three-dimensional bioprinted cell-adaptive hydrogel with anisotropic micropores for enhancing skin wound healing. Int. J. Biol. Macromol. 2024, 280, 136106. [Google Scholar] [CrossRef]
- Choi, S.; Lee, K.Y.; Kim, S.L.; MacQueen, L.A.; Chang, H.; Zimmerman, J.F.; Jin, Q.; Peters, M.M.; Ardona, H.A.M.; Liu, X.; et al. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat. Mater. 2023, 22, 1039–1046. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, S.; Wu, C.; Wang, L.; Lei, S.; Wang, Z. A spatiotemporal controllable crosslinking route for preparing tough tissue-like anisotropic PVA hydrogel. Chem. Eng. J. 2023, 465, 142882. [Google Scholar] [CrossRef]
- Hu, S.; Huang, Y.; Liu, X.; Zong, C.; Lei, L.; Li, H. Mechanically robust and highly conductive bacterial cellulose hydrogels through synergy of directional freeze–thawing and salting-out for wearable sensors. Chem. Eng. J. 2024, 499, 156161. [Google Scholar] [CrossRef]
- Xu, G.; Xiao, L.; Guo, P.; Wang, Y.; Ke, S.; Lyu, G.; Ding, X.; Lu, Q.; Kaplan, D.L. Silk Nanofiber Scaffolds with Multiple Angiogenic Cues to Accelerate Wound Regeneration. ACS Biomater. Sci. Eng. 2023, 9, 5813–5823. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, C.; Deng, H.; Du, Y.; Xiao, L.; Shi, X. Electrically induced anisotropic assembly of chitosan with different molecular weights. Carbohydr. Polym. 2023, 304, 120494. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Furlani, F.; Bassi, G.; Cunha, C.; Lunghi, A.; Molinari, F.; Teran, F.J.; Lista, F.; Bianchi, M.; Piperno, A.; et al. Contactless magnetically responsive injectable hydrogel for aligned tissue regeneration. Mater. Today Bio. 2024, 27, 101110. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tan, Z.; Guo, B.; Yu, C.; Yao, M.; Liang, L.; Wu, X.; Zhao, Z.; Yao, F.; Zhang, H.; et al. Magnet-oriented hydrogels with mechanical–electrical anisotropy and photothermal antibacterial properties for wound repair and monitoring. Chem. Eng. J. 2023, 463, 142387. [Google Scholar] [CrossRef]
- Shi, W.; Huang, J.; Fang, R.; Liu, M. Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. ACS Appl. Mater. Interfaces 2020, 12, 5177–5194. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, T.; Wang, Z.; Hou, J.; Liu, S.; Yang, Q.; Yu, L.; Guo, W.; Wang, Y.; Guo, B.; et al. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials 2022, 285, 121537. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Chen, K.; Wu, X.; Zong, T.; Feng, C.; Zhang, D. Anisotropic hydrogels with enhanced mechanical and tribological performance by magnetically oriented nanohybrids. Chem. Eng. J. 2022, 430, 133036. [Google Scholar] [CrossRef]
- Pardo, A.; Bakht, S.M.; Gomez-Florit, M.; Rial, R.; Monteiro, R.F.; Teixeira, S.P.B.; Taboada, P.; Reis, R.L.; Domingues, R.M.A.; Gomes, M.E. Magnetically-Assisted 3D Bioprinting of Anisotropic Tissue-Mimetic Constructs. Adv. Funct. Mater. 2022, 32, 2208940. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, Z.; Ni, R.; Xu, R.; Zhao, J.; Feng, P.; Zhu, T.; Chen, Y.; Yao, J.; Yao, Y.; et al. Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration. Biomater. Res. 2024, 28, 0076. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Zhang, A.; Liu, L.; Mithieux, S.M.; Bilek, M.M.M.; Weiss, A.S. Development of tropoelastin-functionalized anisotropic PCL scaffolds for musculoskeletal tissue engineering. Regen. Biomater. 2023, 10, rbac087. [Google Scholar] [CrossRef]
- Ghomi, E.R.; Lakshminarayanan, R.; Chellappan, V.; Verma, N.K.; Chinnappan, A.; Neisiany, R.E.; Amuthavalli, K.; Poh, Z.S.; Wong, B.H.S.; Dubey, N.; et al. Electrospun Aligned PCL/Gelatin Scaffolds Mimicking the Skin ECM for Effective Antimicrobial Wound Dressings. Adv. Fiber Mater. 2023, 5, 235–251. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Y.; Gu, Z.; Ni, R.; Feng, P.; Hu, Z.; Song, L.; Shen, X.; Gu, C.; Li, J.; et al. Engineered muscle from micro-channeled PEG scaffold with magnetic Fe3O4 fixation towards accelerating esophageal muscle repair. Mater. Today Bio 2023, 23, 100853. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Yu, T.; Tang, S.; Xu, X.; Guo, Z.; Qian, J.; Cheng, Y.; Zhao, Y.; Yan, S.; Zhang, H.; et al. Dual anisotropicity comprising 3D printed structures and magnetic nanoparticle assemblies: Towards the promotion of mesenchymal stem cell osteogenic differentiation. NPG Asia Mater. 2021, 13, 19. [Google Scholar] [CrossRef]
- Yu, Y.; Shen, X.; Liu, J.; Hu, Y.; Ran, Q.; Mu, C.; Cai, K. Regulation of osteogenesis by micro/nano hierarchical titanium surfaces through a Rock-Wnt5a feedback loop. Colloids Surf. B Biointerfaces 2018, 170, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dewey, M.J.; Nosatov, A.V.; Subedi, K.; Harley, B. Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion. RSC Adv. 2020, 10, 15629–15641. [Google Scholar] [CrossRef]
- Azeem, A.; English, A.; Kumar, P.; Satyam, A.; Biggs, M.; Jones, E.; Tripathi, B.; Basu, N.; Henkel, J.; Vaquette, C.; et al. The influence of anisotropic nano-to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine 2015, 10, 693–711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Luo, Y.; Xu, R.; Cao, X.; Li, G.; Chen, S. Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation. Gels 2024, 10, 814. https://doi.org/10.3390/gels10120814
Zhang H, Luo Y, Xu R, Cao X, Li G, Chen S. Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation. Gels. 2024; 10(12):814. https://doi.org/10.3390/gels10120814
Chicago/Turabian StyleZhang, Hua, Yang Luo, Rong Xu, Xu Cao, Guanrong Li, and Shang Chen. 2024. "Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation" Gels 10, no. 12: 814. https://doi.org/10.3390/gels10120814
APA StyleZhang, H., Luo, Y., Xu, R., Cao, X., Li, G., & Chen, S. (2024). Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation. Gels, 10(12), 814. https://doi.org/10.3390/gels10120814