MaPac2, a Transcriptional Regulator, Is Involved in Conidiation, Stress Tolerances and Pathogenicity in Metarhizium acridum
<p>Bioinformatics analysis of <span class="html-italic">MaPac2</span> protein and constructions of vectors. (<b>A</b>) Domain graph of <span class="html-italic">MaPac2</span> proteins with DOG 1.0. Asterisks represent the putative phosphorylation sites. (<b>B</b>) Phylogenetic analysis of <span class="html-italic">MaPac2</span> protein with MEGA 7.0. Bold words represent the Pac2 homologous protein in <span class="html-italic">M. acridum</span>. (<b>C</b>) Construction of <span class="html-italic">MaPac2</span> deletion and complementation vectors. Black arrows indicate the positions of primers. (<b>D</b>) The relative expression levels of <span class="html-italic">MaPac2</span> in WT, Δ<span class="html-italic">MaPac2</span>, and CP strains were analyzed by RT-qPCR. WT—the wild-type strain; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion strain; CP—the <span class="html-italic">MaPac2</span> complemented strain. Asterisks indicate significant difference at (**) <span class="html-italic">p</span> < 0.01 and (ns) <span class="html-italic">p</span> > 0.05.</p> "> Figure 2
<p>Germination assays and conidiation assays of fungal strains. (<b>A</b>) Germination rates of fungal strains incubated for 2, 4, 6, 8, 10, and 12 h on 1/4 SDAY medium. (<b>B</b>) GT<sub>50</sub>s of fungal strains. Error bars indicate the standard deviations. WT—the wild type; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion mutant; CP—the <span class="html-italic">MaPac2</span> complemented transformant. (<b>C</b>) Conidia of each strain on 1/4 SDAY media at 28 °C for 3 d, 5 d, 7 d, 9 d, 11 d, and 13 d. (<b>D</b>) Conidiation pattern of Δ<span class="html-italic">MaPac2</span> and complementation strains grown on SYA media. (<b>E</b>) Colonies of each strain grown on 1/4 SDAY media at 28 °C for 6 d. WT—the wild-type strain; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion strain; CP—the <span class="html-italic">MaPac2</span> complemented strain. Asterisks indicate significant difference at (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01, and (ns) <span class="html-italic">p</span> > 0.05.</p> "> Figure 3
<p>Stress tolerance assays to UV-B irradiation and wet heat of fungal strains. (<b>A</b>) Germination rates of fungal conidia treated with UV-B irradiation at 1350 mW/m<sup>2</sup> for 1 h, 2 h, 3 h, and 4 h. (<b>B</b>) IT<sub>50</sub>s of fungal strains treated with UV-B. (<b>C</b>) Gemination rates of fungal conidia treated with wet heat at 46 °C for 3 h, 5 h, 7 h, and 9 h. (<b>D</b>) IT<sub>50</sub>s of fungal strains treated with wet heat. Error bars indicate the standard deviations. WT—the wild-type strain; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion strain; CP—the <span class="html-italic">MaPac2</span> complemented strain. Asterisks indicate significant difference at (**) <span class="html-italic">p</span> < 0.01 and (ns) <span class="html-italic">p</span> > 0.05.</p> "> Figure 4
<p>The resistance of WT, Δ<span class="html-italic">MaPac2</span>, and CP strains to different chemicals. (<b>A</b>) Colony growth on 1/4SDAY solid medium and 1/4 SDAY solid medium with different chemical reagents. Bar: 0.5 cm. (<b>B</b>) Relative growth rate of colony. (<b>C</b>) Relative inhibition rate of colony. All experiments were repeated three times. WT—the wild-type strain; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion strain; CP—the <span class="html-italic">MaPac2</span> complemented strain. Asterisks indicate significant difference at (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01, and (ns) <span class="html-italic">p</span> > 0.05.</p> "> Figure 5
<p>Deletion of <span class="html-italic">MaPac2</span> increases fungal virulence by in vivo injection. (<b>A</b>) Survival of locusts after topical application of 5 µL paraffin oil conidial suspension from WT, Δ<span class="html-italic">MaPac2</span>, and CP. Control insects were treated with 5 µL paraffin oil. (<b>B</b>) The LT<sub>50</sub>s of the Δ<span class="html-italic">MaPac2</span>, WT, and CP strains after topical inoculation. (<b>C</b>) Survival of locusts after injection of 5 µL ddH<sub>2</sub>O conidial suspension from WT, Δ<span class="html-italic">MaPac2</span>, and CP. Control insects were treated with 5 µL ddH<sub>2</sub>O. (<b>D</b>) The LT<sub>50</sub>s of the Δ<span class="html-italic">MaPac2</span>, WT, and CP strains after injection. WT—the wild-type strain; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion strain; CP—the <span class="html-italic">MaPac2</span> complemented strain. Asterisks indicate significant difference at (**) <span class="html-italic">p</span> < 0.01 and (ns) <span class="html-italic">p</span> > 0.05.</p> "> Figure 6
<p>Deletion of <span class="html-italic">MaPac2</span> reduces fungal virulence and affects the formation of appressorium on locust wings. (<b>A</b>) Penetration assays. (<b>B</b>) Relative growth of colonies of different strains in penetration experiments. (<b>C</b>) Germination of conidia on the locust wings of fungal strains. (<b>D</b>) The GT<sub>50S</sub> of different strains on locust wings. (<b>E</b>) Appressorium formation of different fungal strains on locust wings. WT—the wild-type strain; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion strain; CP—the <span class="html-italic">MaPac2</span> complemented strain. Asterisks indicate significant difference at (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01, and (ns) <span class="html-italic">p</span> > 0.05.</p> "> Figure 7
<p>Deletion of <span class="html-italic">MaPac2</span> reduces the cuticle penetration but enhances the colonization in locust hemolymph. (<b>A</b>) The number of nodules after injection at 24 h on ventral of insect body walls. (<b>B</b>) Detection of conidial cell surface components with labeled lectins and antibodies. (<b>C</b>) Concentration of fungal gDNA in host hemolymph without blood cells in vitro. (<b>D</b>) Fresh weight (g) of each strain after inoculation to TBP liquid medium for 3 days. WT—the wild-type strain; Δ<span class="html-italic">MaPac2</span>—the <span class="html-italic">MaPac2</span> deletion strain; CP—the <span class="html-italic">MaPac2</span> complemented strain. Asterisks indicate significant difference at (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01, and (ns) <span class="html-italic">p</span> > 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Bioinformatic Analysis
2.3. Constructions of the Mutants
2.4. Phenotypic Analyses
2.5. Insect Bioassays
2.6. Cuticle Penetration Assays and Appressorium Formation on Locust Wings
2.7. Fungal Growth in Locust Hemolymph In Vitro and Nodule Formation Assays
2.8. Fluorescent Staining of Cell Wall Components
2.9. Data Analysis
3. Results
3.1. Features of Pac2 in M. acridum and Generation of Its Mutant Strains
3.2. Deletions of MaPac2 Promoted the Conidial Germination and Decreased the Conidial Yield
3.3. Deletion of MaPac2 Enhances Tolerances to UV-B Irradiation and Heat Shock and Increases Sensitivity to SDS, CR, NaCl, and SOR
3.4. Deletion of MaPac2 Increases Fungal Virulence by Injection
3.5. Deletion of MaPac2 Reduces the Cuticle Penetration but Enhances the Colonization in Locust Hemolymph
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Z.; Yu, R.; Xiong, D.; Tian, C. A Sge1 homolog in Cytospora chrysosperma governs conidiation, virulence and the expression of putative effectors. Gene 2021, 778, 145474. [Google Scholar] [CrossRef] [PubMed]
- Tollot, M.; Assmann, D.; Becker, C.; Altmüller, J.; Dutheil, J.Y.; Wegner, C.-E.; Kahmann, R. The WOPR protein Ros1 is a master regulator of sporogenesis and late effector gene expression in the maize pathogen Ustilago maydis. PLoS Pathog. 2016, 12, e1005697. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.B.; Rosenberg, O.S.; Cox, J.S.; Stroud, R.M.; Finer-Moore, J.S.; Johnson, A.D. Structure of a new DNA-binding domain which regulates pathogenesis in a wide variety of fungi. Proc. Natl. Acad. Sci. USA 2014, 111, 10404. [Google Scholar] [CrossRef] [PubMed]
- Dabholkar, A.; Pandit, S.; Devkota, R.; Dhingra, S.; Lorber, S.; Puel, O.; Calvo, A.M. Role of the osaA gene in Aspergillus fumigatus development, secondary metabolism and virulence. J. Fungi 2024, 10, 103. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; Yan, M.; Ding, J.; Chen, J. Crystal structure of the WOPR-DNA complex and implications for Wor1 function in white-opaque switching of Candida albicans. Cell Res. 2014, 24, 1108. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.B.; Zordan, R.E.; Cain, C.W.; Johnson, A.D. Distinct class of DNA-binding domains is exemplified by a master regulator of phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA 2010, 107, 14105. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Xiong, D.; Tian, C. The roles of Gti1/Pac2 family proteins in fungal growth, morphogenesis, stress response, and pathogenicity. Mol. Plant Microbe Interact. 2024, 37, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Kunitomo, H.; Sugimoto, A.; Yamamoto, M.; Wilkinson, C.R.M. Schizosaccharomyces pombe pac2+ controls the onset of sexual development via a pathway independent of the cAMP cascade. Curr. Genet. 1995, 28, 32–38. [Google Scholar] [CrossRef]
- Cain, C.W.; Lohse, M.B.; Homann, O.R.; Sil, A.; Johnson, A.D. A conserved transcriptional regulator governs fungal morphology in widely diverged species. Genetics 2012, 190, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhai, S.; Zhang, H.; Zuo, R.; Wang, J.; Guo, M.; Zheng, X.; Wang, P.; Zhang, Z. Shared and distinct functions of two Gti1/Pac2 family proteins in growth, morphogenesis and pathogenicity of Magnaporthe oryzae. Environ. Microbiol. 2014, 16, 788–801. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.W.; Zhang, X.P.; Yu, M.H.; Yin, Y.N.; Ma, Z.H. The potential protein kinase A (PKA) phosphorylation site is required for the function of FgSge1 in Fusarium graminearum. World J. Microbiol. Biotechnol. 2015, 31, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Michielse, C.B.; Becker, M.; Heller, J.; Moraga, J.; Collado, I.G.; Tudzynski, P. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol. Plant Microbe Interact. 2011, 24, 1074–1085. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Xu, J.R.; Jiang, C. Penetration peg formation and invasive hyphae development require stage-specific activation of mogti1 in Magnaporthe oryzae. Mol. Plant Microbe Interact. 2016, 29, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Jonkers, W.; Dong, Y.; Broz, K.; Kistler, H.C. The wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog. 2012, 8, e1002724. [Google Scholar] [CrossRef]
- Michielse, C.B.; van Wijk, R.; Reijnen, L.; Manders, E.M.M.; Boas, S.; Olivain, C.; Alabouvette, C.; Rep, M. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog. 2009, 5, e1000637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Kato, E.; Bianchi, F.; Bhandary, P.; Gort, G.; van der Werf, W. Farmers’ perceptions of crop pest severity in Nigeria are associated with landscape, agronomic and socio-economic factors. Agric. Ecosyst. Environ. 2018, 259, 159–167. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Banerjee, G.; Mukherjee, S. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech. 2017, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Dutta, V.; Arora, N.K. Biopesticides in India: Technology and sustainability linkages. 3 Biotech. 2020, 10, 210. [Google Scholar] [CrossRef]
- Hong, S.; Shang, J.; Sun, Y.; Tang, G.; Wang, C. Fungal infection of insects: Molecular insights and prospects. Trends Microbiol. 2024, 32, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, S. Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 2017, 62, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Rumbos, C.I.; Athanassiou, C.G. Use of entomopathogenic fungi for the control of stored-product insects: Can fungi protect durable commodities? J. Pest. Sci. 2017, 90, 839–854. [Google Scholar] [CrossRef]
- Heinig, R.L.; Paaijmans, K.P.; Hancock, P.A.; Thomas, M.B. The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions. J. Appl. Ecol. 2015, 52, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Bihal, R.; Al-Khayri, J.M.; Banu, A.N.; Kudesia, N.; Ahmed, F.K.; Sarkar, R.; Arora, A.; Abd-Elsalam, K.A. Entomopathogenic fungi: An eco-friendly synthesis of sustainable nanoparticles and their nanopesticide properties. Microorganisms 2023, 11, 1617. [Google Scholar] [CrossRef]
- Ghorui, M.; Chowdhury, S.; Burla, S. The science behind entomopathogenic fungi: Mechanisms and applications. In Entomopathogenic Fungi: Prospects and Challenges; Deshmukh, S.K., Sridhar, K.R., Eds.; Springer Nature: Singapore, 2024; pp. 3–35. [Google Scholar]
- Aw, K.M.S.; Hue, S.M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. J. Fungi 2017, 3, 30. [Google Scholar] [CrossRef]
- Du, Y.; Li, J.; Chen, S.; Xia, Y.; Jin, K. Pathogenicity analysis and comparative genomics reveal the different infection strategies between the generalist Metarhizium anisopliae and the specialist Metarhizium acridum. Pest. Manag. Sci. 2024, 80, 820–836. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Jin, K.; Ying, S.H.; Zhang, Y.; Xiao, G.; Shang, Y.; Duan, Z.; Hu, X.; Xie, X.Q.; Zhou, G.; et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 2011, 7, e1001264. [Google Scholar] [CrossRef] [PubMed]
- Raeder, U.; Broda, P. Rapid preparation of dna from filamentous fungi. Lett. Appl. Microbiol. 1985, 1, 17–20. [Google Scholar] [CrossRef]
- Du, Y.; Jin, K.; Xia, Y. Involvement of MaSom1, a downstream transcriptional factor of camp/pka pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Appl. Microbiol. Biotechnol. 2018, 102, 5611–5623. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yan, X.; Chen, X.; Guo, M.; Xia, Y.; Cao, Y. Calcofluor White hypersensitive proteins contribute to stress tolerance and pathogenicity in entomopathogenic fungus, Metarhizium acridum. Pest. Manag. Sci. 2021, 77, 1915–1924. [Google Scholar] [PubMed]
- He, M.; Xia, Y. Construction and Analysis of a Normalized cDNA Library from Metarhizium anisopliae Var. acridum germinating and differentiating on Locusta migratoria wings. FEMS Microbiol. Lett. 2009, 291, 127–135. [Google Scholar] [PubMed]
- Cai, Q.; Wang, J.J.; Xie, J.T.; Jiang, D.H. Functional characterization of BbEaf6 in Beauveria bassiana: Implications for fungal virulence and stress response. Virulence 2024, 15, 2387172. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xia, Y. Host-Pathogen Interactions between Metarhizium spp. and Locusts. J. Fungi 2022, 8, 602. [Google Scholar] [CrossRef] [PubMed]
- Chantasingh, D.; Kitikhun, S.; Keyhani, N.O.; Boonyapakron, K.; Thoetkiattikul, H.; Pootanakit, K.; Eurwilaichitr, L. Identification of catalase as an early up-regulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biol. Control 2013, 67, 85–93. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Eleftherianos, I.; Mohamed, A.; Bastin, A.; Keyhani, N.O. Cross-talk between immunity and behavior: Insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol. Rev. 2024, 48, 003. [Google Scholar] [CrossRef]
- Jin, K.; Han, L.; Xia, Y. MaMk1, a FUS3/KSS1-Type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. J. Invertebr. Pathol. 2014, 115, 68–75. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Li, B.; Li, Y.; Xia, Y.; Jin, K. MaPac2, a Transcriptional Regulator, Is Involved in Conidiation, Stress Tolerances and Pathogenicity in Metarhizium acridum. J. Fungi 2025, 11, 100. https://doi.org/10.3390/jof11020100
Hu X, Li B, Li Y, Xia Y, Jin K. MaPac2, a Transcriptional Regulator, Is Involved in Conidiation, Stress Tolerances and Pathogenicity in Metarhizium acridum. Journal of Fungi. 2025; 11(2):100. https://doi.org/10.3390/jof11020100
Chicago/Turabian StyleHu, Xiaobin, Baicheng Li, Yan Li, Yuxian Xia, and Kai Jin. 2025. "MaPac2, a Transcriptional Regulator, Is Involved in Conidiation, Stress Tolerances and Pathogenicity in Metarhizium acridum" Journal of Fungi 11, no. 2: 100. https://doi.org/10.3390/jof11020100
APA StyleHu, X., Li, B., Li, Y., Xia, Y., & Jin, K. (2025). MaPac2, a Transcriptional Regulator, Is Involved in Conidiation, Stress Tolerances and Pathogenicity in Metarhizium acridum. Journal of Fungi, 11(2), 100. https://doi.org/10.3390/jof11020100