Molecular Biodiversity in Fusarium subglutinans and F. temperatum: A Valuable Tool to Distinguish the Two Sister Species and Determine the Beauvericin Chemotype
<p>Species tree inferred by ML analysis of <span class="html-italic">Tef1</span> gene. Values on branches indicate bootstrap values based on 1000 replicates. Reference isolates are indicated by R. The tree is rooted with <span class="html-italic">F. proliferatum</span> (NRRL 62905) according to Fumero et al.’s (2020) study [<a href="#B13-jof-10-00785" class="html-bibr">13</a>].</p> "> Figure 2
<p>PCR amplifications with species-specific primer pairs targeting (<b>a</b>) <span class="html-italic">F. subglutinans</span> (subF/subR) and (<b>b</b>) <span class="html-italic">F. temperatum</span> (tempF/tempR). * GeneRuler 1 kb DNA Ladder.</p> "> Figure 3
<p>Microevolution in the beauvericin gene cluster of <span class="html-italic">F. subglutinans</span> and <span class="html-italic">F. temperatum</span>. White numbers in the circles indicate the number of strains. The black letters with colors alone indicate the geographical origin: A: Argentina, As: Australia, Au: Austria, G: Germany, I: Italy, N: Netherland, P: Poland, Se: Serbia, Sl: Slovakia, Sw: Switzerland, T: Turkey, U: USA.</p> "> Figure 4
<p>Phylogenetic tree based on the combined sequences (1022 bp) of SNP298 and SNP528 regions. Data were obtained from 93 strains. Sequences were aligned using MUSCLE as implemented in MEGAX. The evolutionary history was inferred using the maximum likelihood method as implemented in IQ-Tree, with the substitution model K2P + R2. Numbers on branches indicates bootstrap values based on 1000 pseudoreplicates. The tree is rooted with <span class="html-italic">F. proliferatum</span> (NRRL62905) according to Fumero et al.’s (2020) study [<a href="#B13-jof-10-00785" class="html-bibr">13</a>]. *: strains with SNP298; °: strains with SNP528.</p> "> Figure 5
<p>Phylogenetic tree based on the combined sequences (1671 bp) of SNP298, SNP528, and NRPS22ins. Data were obtained from a subset of 39 strains. Sequences were aligned using MUSCLE as implemented in MEGAX. The evolutionary history was inferred using the maximum likelihood method as implemented in IQ-Tree, with substitution model K2P + G4. Numbers on branches indicate bootstrap values based on 1000 pseudoreplicates. The tree is rooted with <span class="html-italic">F. proliferatum</span> (NRRL62905) according to Fumero et al.’s (2020) study [<a href="#B13-jof-10-00785" class="html-bibr">13</a>]. <sup>a</sup> strains with SNP528; * strains with SNP298; Bold: strains with 184 bp insertion.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. DNA Extraction
2.3. Species-Specific PCR Primer Design
2.4. Bea1 Gene PCR Primer Design
2.5. RNA Isolation and Reverse Transcription
2.6. Sequence Analysis
2.7. Phylogenetic Analysis
3. Results
3.1. Species Phylogeny
3.2. Identification with Species-Specific PCR Primers
3.3. Bea1 Variability Analysis
3.4. Bea1 Phylogeny
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moretti, A.; Logrieco, A.; Bottalico, A.; Ritieni, A.; Randazzo, G.; Corda, P. Beauvericin production by Fusarium subglutinans from different maize geographical areas. Mycol. Res. 1995, 99, 282–286. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. Annu. Rev. Phytopathol. 2021, 59, 373–402. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Newton, A.C. Climate Change, Plant Diseases and Food Security: An Overview: Climate Change and Food Security. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Vaughan, M.; Backhouse, D.; Ponte, E.M.D. Climate Change Impacts on the Ecology of Fusarium graminearum Species Complex and Susceptibility of Wheat to Fusarium Head Blight: A Review. World Mycotoxin J. 2016, 9, 685–700. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin Risks under a Climate Change Scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Niehaus, E.-M.; Münsterkötter, M.; Proctor, R.H.; Brown, D.W.; Sharon, A.; Idan, Y.; Oren-Young, L.; Sieber, C.M.; Novák, O.; Pěnčík, A.; et al. Comparative “Omics” of the Fusarium Fujikuroi Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biol. Evol. 2016, 8, 3574–3599. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Proctor, R.H.; Kim, H.-S.; Brown, D.W.; Logrieco, A.F.; Amatulli, M.T.; Moretti, A.; Susca, A. Variation in Secondary Metabolite Production Potential in the Fusarium Incarnatum-Equiseti Species Complex Revealed by Comparative Analysis of 13 Genomes. BMC Genom. 2019, 20, 314. [Google Scholar] [CrossRef]
- O’Donnell, K.; Whitaker, B.K.; Laraba, I.; Proctor, R.H.; Brown, D.W.; Broders, K.; Kim, H.S.; McCormick, S.P.; Busman, M.; Aoki, T. DNA Sequence-Based Identification of Fusarium: A Work in Progress. Plant Dis. 2022, 106, 1597–1609. [Google Scholar] [CrossRef]
- Brown, D.W.; Kim, H.-S.; McGovern, A.E.; Probyn, C.E.; Proctor, R.H. Genus-Wide Analysis of Fusarium Polyketide Synthases Reveals Broad Chemical Potential. Fungal Genet. Biol. 2022, 160, 103696. [Google Scholar] [CrossRef]
- Moretti, A.; Mulé, G.; Ritieni, A.; Láday, M.; Stubnya, V.; Hornok, L.; Logrieco, A. Cryptic Subspecies and Beauvericin Production by Fusarium subglutinans from Europe. Int. J. Food Microbiol. 2008, 127, 312–315. [Google Scholar] [CrossRef]
- Scauflaire, J.; Gourgue, M.; Munaut, F. Fusarium Temperatum Sp. Nov. from Maize, an Emergent Species Closely Related to Fusarium subglutinans. Mycologia 2011, 103, 586–597. [Google Scholar] [CrossRef]
- Fumero, M.V.; Reynoso, M.M.; Chulze, S. Fusarium temperatum and Fusarium subglutinans Isolated from Maize in Argentina. Int. J. Food Microbiol. 2015, 199, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Fumero, M.V.; Villani, A.; Susca, A.; Haidukowski, M.; Cimmarusti, M.T.; Toomajian, C.; Leslie, J.F.; Chulze, S.N.; Moretti, A. Fumonisin and Beauvericin Chemotypes and Genotypes of the Sister Species Fusarium subglutinans and Fusarium temperatum. Appl. Environ. Microbiol. 2020, 86, e00133-20. [Google Scholar] [CrossRef] [PubMed]
- Fumero, M.V.; Yue, W.; Chiotta, M.L.; Chulze, S.N.; Leslie, J.F.; Toomajian, C. Divergence and Gene Flow Between Fusarium subglutinans and F. temperatum Isolated from Maize in Argentina. Phytopathology 2021, 111, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Chiara, M.; Fanelli, F.; Mulè, G.; Logrieco, A.F.; Pesole, G.; Leslie, J.F.; Horner, D.S.; Toomajian, C. Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within Fusarium fujikuroi. Genome Biol. Evol. 2015, 7, 3062–3069. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, S.; Rowland, O.; Rodrigue, N.; Subramaniam, R. Whole Genome Sequencing and Comparative Genomics of Closely Related Fusarium Head Blight Fungi: Fusarium Graminearum, F. meridionale and F. asiaticum. BMC Genom. 2016, 17, 1014. [Google Scholar] [CrossRef] [PubMed]
- Susca, A.; Villani, A.; Moretti, A.; Stea, G.; Logrieco, A. Identification of Toxigenic Fungal Species Associated with Maize Ear Rot: Calmodulin as Single Informative Gene. Int. J. Food Microbiol. 2020, 319, 108491. [Google Scholar] [CrossRef] [PubMed]
- Agri-Food Toxigenic Fungi Culture Collection (ITEM) Home Page. Available online: http://www.ispa.cnr.it/Collection/ (accessed on 7 November 2024).
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple Evolutionary Origins of the Fungus Causing Panama Disease of Banana: Concordant Evidence from Nuclear and Mitochondrial Gene Genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Torres-Cruz, T.J.; Whitaker, B.K.; Proctor, R.H.; Broders, K.; Laraba, I.; Kim, H.-S.; Brown, D.W.; O’Donnell, K.; Estrada-Rodríguez, T.L.; Lee, Y.-H.; et al. FUSARIUM-ID v.3.0: An Updated, Downloadable Resource for Fusarium Species Identification. Plant Dis. 2022, 106, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, M.M.; Torres, A.M.; Chulze, S.N. Fusaproliferin, Beauvericin and Fumonisin Production by Different Mating Populations among the Gibberella Fujikuroi Complex Isolated from Maize. Mycol. Res. 2004, 108, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Scauflaire, J.; Gourgue, M.; Callebaut, A.; Munaut, F. Fusarium Temperatum, a Mycotoxin-Producing Pathogen of Maize. Eur. J. Plant Pathol. 2012, 133, 911–922. [Google Scholar] [CrossRef]
Primers | 5′ > 3′ Sequence | Tm (°C) | Exp. Size (bp) | Species Target |
---|---|---|---|---|
subF | GCGTTTCTGCCCTCTCATTTT | 59 | 71 | F. subglutinans |
subR | TCGGCGGCTTCCTATTGTT | |||
tempF | TTTCTGCCCTCCCATTGC | 59 | 68 | F. temperatum |
tempR | GCTCAGCGGCTTCCTATTGAC |
Primers | 5′ > 3′ Sequence | Tm (°C) | Expected Size (bp) |
---|---|---|---|
Nrps22insF | TTTCCGCGCAGCACACTAT | 58 | 710/526 * |
Nrps22insR | AACATTCGGCTTCTCAAGACCA | ||
SNP298F | GAGGCCCAGAATCTGATTCG | 58 | 554 |
SNP298R | TGGTTATCATTCGCGTCGC | ||
SNP528F | CAATCGTCCGCTACAGGSA | 58 | 656 |
SNP528R | ACCACTATCGTAGCATCYARTCG |
NRPS22 Loci | Combination | Geographic Origin | F. subglutinans Strains | ||
---|---|---|---|---|---|
NRPS22ins | SNP298 | SNP528 | |||
+ | − | − | I | USA | ITEM 3848 |
+ | + | − | II | Argentina | RC 298 |
+ | − | + | III | Argentina Germany Italy Poland Serbia Slovakia USA | ITEM (1348-1553-1765-1766-1785-2393-2398-2624-2645-2647-2857-2858-2863-3237-3443-3837-3839-3842-3850-3853-3908-3916-3920-3922-3926-4398-4404-16032-16033) RC (1048-1594-1655-528) |
− | + | − | IV | Argentina Serbia Slovakia USA | ITEM (2633-3847-4400-4402-4407) RC 1096 |
− | − | + | V | Argentina | RC (1739-1986-2491-2535-2548-2620) |
− | − | − | VI | Germany | ITEM 3576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susca, A.; Villani, A.; Haidukowski, M.; Epifani, F.; Logrieco, A.F.; Moretti, A. Molecular Biodiversity in Fusarium subglutinans and F. temperatum: A Valuable Tool to Distinguish the Two Sister Species and Determine the Beauvericin Chemotype. J. Fungi 2024, 10, 785. https://doi.org/10.3390/jof10110785
Susca A, Villani A, Haidukowski M, Epifani F, Logrieco AF, Moretti A. Molecular Biodiversity in Fusarium subglutinans and F. temperatum: A Valuable Tool to Distinguish the Two Sister Species and Determine the Beauvericin Chemotype. Journal of Fungi. 2024; 10(11):785. https://doi.org/10.3390/jof10110785
Chicago/Turabian StyleSusca, Antonia, Alessandra Villani, Miriam Haidukowski, Filomena Epifani, Antonio F. Logrieco, and Antonio Moretti. 2024. "Molecular Biodiversity in Fusarium subglutinans and F. temperatum: A Valuable Tool to Distinguish the Two Sister Species and Determine the Beauvericin Chemotype" Journal of Fungi 10, no. 11: 785. https://doi.org/10.3390/jof10110785
APA StyleSusca, A., Villani, A., Haidukowski, M., Epifani, F., Logrieco, A. F., & Moretti, A. (2024). Molecular Biodiversity in Fusarium subglutinans and F. temperatum: A Valuable Tool to Distinguish the Two Sister Species and Determine the Beauvericin Chemotype. Journal of Fungi, 10(11), 785. https://doi.org/10.3390/jof10110785