A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar
<p>(<b>a</b>) Susceptibility of <span class="html-italic">R. delemar</span> to SL inhibitors MYR and AbA. Approx. 10<sup>3</sup> spores were spotted on YPD plates with different concentrations of MYR and AbA. Plates were imaged after incubation at 30 °C for 48 h. (<b>b</b>) Pie chart represents proportion of different SL intermediates in <span class="html-italic">R. delemar</span>.</p> "> Figure 2
<p>LCBs detected in <span class="html-italic">R. delemar</span>: DHS, DHS-1-P(d18:0), PHS(t18:0) and SPH, SPH-1-P(d18:1). Bar graphs represent relative proportion of these bases out of total SL content. Structures represent top three major bases, each with different backbone.</p> "> Figure 3
<p>SL classes and molecular species of the neutral branch of SL biosynthesis pathway in <span class="html-italic">R. delemar</span>. (<b>a</b>) Heatmap represents the relative representation of different molecular species of dhCer, Cer, and αOH-Cer. (<b>b</b>) Top five species of each class were quantified and are represented by bar graphs. (<b>c</b>) Structures represent the major molecular species of each class.</p> "> Figure 4
<p>Fungal-specific SL intermediates (<b>a</b>) with d18:2(Δ8-Cer); and (<b>b</b>) with d19:2 backbone (9Me,Δ8-Cer). Bars depict the top molecular species for each backbone type. The structure of one representative species is depicted at the bottom of (<b>a</b>,<b>b</b>) panels.</p> "> Figure 5
<p>Five major species of αOH-GlcCer with d18:2 and d19:2 backbones acylated to fatty acids of varying chain lengths (<span class="html-italic">x</span>-axis). Structures of two major α-OH GlcCer species are drawn. GlcCer(d18:2/16:0(OH)) on the left has a backbone of 18 carbons with double bonds at C4 and C8 position, glucose at C1 position and hydroxyl group at C2 position of the 16C fatty acid chain. Similarly, on the right side, GlcCer(d19:2/16:0(OH)) is the major species with methyl group at C9 position of the sphingoid base.</p> "> Figure 6
<p>(<b>a</b>) PCer and αOH-PCer, two major classes in the acidic branch and their molecular species. (<b>b</b>) Bar graphs represents the relative amounts of top five molecular species for each class. (<b>c</b>) At the bottom, structures of major species in each class are shown.</p> "> Figure 7
<p>PL landscape of <span class="html-italic">R. delemar</span> with relative distribution of PL classes.</p> "> Figure 8
<p>Major PL and Lyso-lipid species of different PL classes detected in <span class="html-italic">R delemar</span>. (<b>a</b>) Heatmap represents relative abundance of molecular species in each class with varying numbers of carbons and double bonds in both acyl chains. (<b>b</b>) Top molecular species from PC, PE, and PI were quantified and are represented by bar graphs. (<b>c</b>) Structures represent major molecular species from each class.</p> "> Figure 9
<p>Major PL classes detected in <span class="html-italic">R delemar</span> and their Lyso-species. (<b>a</b>) Heatmap represents relative abundance of molecular species in each class with varying numbers of carbons and double bonds in both acyl chains. (<b>b</b>) Abundant molecular species from PA, PG, and PS were quantified and are represented by bar graphs. (<b>c</b>) Structures represent major molecular species from each class.</p> "> Figure 10
<p>Major sterol intermediates in <span class="html-italic">R. delemar</span> as detected by GCMS. Only the detected intermediates are shown as bar graphs. Data on <span class="html-italic">Y</span>-axis represent % of each sterol intermediate of total sterol content.</p> "> Figure 11
<p>Putative lipid biosynthesis pathways in <span class="html-italic">R. delemar</span>. Relative abundance of each detected intermediate is depicted by different colors. (<b>a</b>) SL biosynthesis pathway based on the intermediates detected in our analyses. Description of SL class in circles is given by short abbreviations followed by characteristic backbone present. (<b>b</b>) PL biosynthesis pathway and the major classes are given in circles. (<b>c</b>) Sterol biosynthesis pathway as described in other fungi. Sterol intermediates in the circles are the abundant ones detected in our analysis. The intermediates in the central panel form the main pathway while the right and the left are alternative pathways.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Growth Conditions
2.2. Drug Susceptibility
2.3. Sphingolipid Isolation
2.4. Phospholipid Isolation
2.5. Sterol Extraction
2.6. Liquid Chromatography–Mass Spectrometry
2.7. Gas Chromatography–Mass Spectrometry
2.8. Protein Estimation
2.9. Data Analysis
3. Results
3.1. R. delemar Harbours All Major SL Classes
3.1.1. Long-Chain Base (LCBs) Content Is Very Low with DHS-1-P as the Major Base
3.1.2. dhCer Synthesis Leads the Initiation of Neutral Pathway and 16:0 Is the Major Species
3.1.3. Cer and α-OH Cer Species Were Also Detected and 24:0 Is the Major Species in Both Classes
3.1.4. R. delemar Harbors Typical Fungal-Specific Lipids
3.1.5. Glucosylceramides Represent the Second Most Abundant SL Class
3.1.6. PCer Is the Most Abundant SL Class While Its Terminal Acidic Intermediates Are Absent in R. delemar Cells
3.2. All Major Glycerophospholipds (GPLs) Are Present in R. delemar
3.2.1. Phosphatidylethanolamine (PE) and Lysophosphatidylethanolamne (LPE) Constitute the Bulk of PL Content
3.2.2. Phosphatidyl Choline (PC) Content Is Low
3.2.3. Phosphatidyl Inositol (PI) and Phosphatidic Acid (PA) Show Equal Abundance
3.2.4. Phosphatidyl Serine (PS) and Phosphatidyl Glycerol (PG) Represent the Least Abundant GPLs
3.3. Ergosterol Is the Major Sterol and Alternative Sterol Biosynthesis Pathway Also Exists in R. delemar
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, W.; Keighley, C.; Wolfe, R.; Lee, W.L.; Slavin, M.A.; Kong, D.C.M.; Chen, S.C.-A. The Epidemiology and Clinical Manifestations of Mucormycosis: A Systematic Review and Meta-Analysis of Case Reports. Clin. Microbiol. Infect. 2019, 25, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Das, A.; Mandal, J.; Shivaprakash, M.R.; George, V.K.; Tarai, B.; Rao, P.; Panda, N.; Verma, S.C.; Sakhuja, V. The Rising Trend of Invasive Zygomycosis in Patients with Uncontrolled Diabetes Mellitus. Med. Mycol. 2006, 44, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Chatterjee, S.S.; Das, A.; Panda, N.; Shivaprakash, M.R.; Kaur, A.; Varma, S.C.; Singhi, S.; Bhansali, A.; Sakhuja, V. Invasive Zygomycosis in India: Experience in a Tertiary Care Hospital. Postgrad. Med. J. 2009, 85, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Roden, M.M.; Zaoutis, T.E.; Buchanan, W.L.; Knudsen, T.A.; Sarkisova, T.A.; Schaufele, R.L.; Sein, M.; Sein, T.; Chiou, C.C.; Chu, J.H.; et al. Epidemiology and Outcome of Zygomycosis: A Review of 929 Reported Cases. Clin. Infect. Dis. 2005, 41, 634–653. [Google Scholar] [CrossRef]
- Sun, Q.N.; Fothergill, A.W.; McCarthy, D.I.; Rinaldi, M.G.; Graybill, J.R. In Vitro Activities of Posaconazole, Itraconazole, Voriconazole, Amphotericin B, and Fluconazole against 37 Clinical Isolates of Zygomycetes. Antimicrob. Agents Chemother. 2002, 46, 1581–1582. [Google Scholar] [CrossRef]
- Gebremariam, T.; Gu, Y.; Singh, S.; Kitt, T.M.; Ibrahim, A.S. Combination Treatment of Liposomal Amphotericin B and Isavuconazole Is Synergistic in Treating Experimental Mucormycosis. J. Antimicrob. Chemother. 2021, 76, 2636–2639. [Google Scholar] [CrossRef]
- Nagy, G.; Kiss, S.; Varghese, R.; Bauer, K.; Szebenyi, C.; Kocsubé, S.; Homa, M.; Bodai, L.; Zsindely, N.; Nagy, G.; et al. Characterization of Three Pleiotropic Drug Resistance Transporter Genes and Their Participation in the Azole Resistance of Mucor Circinelloides. Front. Cell. Infect. Microbiol. 2021, 11, 660347. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Chakrabarti, A.; Chowdhary, A.; Cordoba, S.; Dannaoui, E.; Dufresne, P.; Fothergill, A.; Ghannoum, M.; Gonzalez, G.M.; Guarro, J.; et al. Multicenter Evaluation of MIC Distributions for Epidemiologic Cutoff Value Definition To Detect Amphotericin B, Posaconazole, and Itraconazole Resistance among the Most Clinically Relevant Species of Mucorales. Antimicrob. Agents Chemother. 2015, 59, 1745–1750. [Google Scholar] [CrossRef]
- Almyroudis, N.G.; Sutton, D.A.; Fothergill, A.W.; Rinaldi, M.G.; Kusne, S. In Vitro Susceptibilities of 217 Clinical Isolates of Zygomycetes to Conventional and New Antifungal Agents. Antimicrob. Agents Chemother. 2007, 51, 2587–2590. [Google Scholar] [CrossRef]
- Lee, Y.; Robbins, N.; Cowen, L.E. Molecular Mechanisms Governing Antifungal Drug Resistance. Npj Antimicrob. Resist. 2023, 1, 5. [Google Scholar] [CrossRef]
- Narayanan, A.; Kumar, P.; Chauhan, A.; Kumar, M.; Yadav, K.; Banerjee, A.; Sharma, R.D.; Rudramurthy, S.M.; Chakrabarti, A.; Sanyal, K.; et al. Directed Evolution Detects Supernumerary Centric Chromosomes Conferring Resistance to Azoles in Candida Auris. mBio 2022, 13, e0305222. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.J.; Arendrup, M.C. Acquired Antifungal Drug Resistance in Aspergillus Fumigatus: Epidemiology and Detection. Med. Mycol. 2011, 49, S90–S95. [Google Scholar] [CrossRef] [PubMed]
- Ngamskulrungroj, P.; Chang, Y.; Hansen, B.; Bugge, C.; Fischer, E.; Kwon-Chung, K.J. Characterization of the Chromosome 4 Genes That Affect Fluconazole-Induced Disomy Formation in Cryptococcus Neoformans. PLoS ONE 2012, 7, e33022. [Google Scholar] [CrossRef] [PubMed]
- Rodero, L.; Mellado, E.; Rodriguez, A.C.; Salve, A.; Guelfand, L.; Cahn, P.; Cuenca-Estrella, M.; Davel, G.; Rodriguez-Tudela, J.L. G484S Amino Acid Substitution in Lanosterol 14-Alpha Demethylase (ERG11) Is Related to Fluconazole Resistance in a Recurrent Cryptococcus Neoformans Clinical Isolate. Antimicrob. Agents Chemother. 2003, 47, 3653–3656. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Rice, L.B. Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef]
- Niu, X.; Al-Hatmi, A.M.S.; Vitale, R.G.; Lackner, M.; Ahmed, S.A.; Verweij, P.E.; Kang, Y.; de Hoog, S. Evolutionary Trends in Antifungal Resistance: A Meta-Analysis. Microbiol. Spectr. 2024, 12, e02127–e02223. [Google Scholar] [CrossRef]
- Caramalho, R.; Tyndall, J.D.A.; Monk, B.C.; Larentis, T.; Lass-Flörl, C.; Lackner, M. Intrinsic Short-Tailed Azole Resistance in Mucormycetes Is Due to an Evolutionary Conserved Aminoacid Substitution of the Lanosterol 14α-Demethylase. Sci. Rep. 2017, 7, 15898. [Google Scholar] [CrossRef]
- Chau, A.S.; Mendrick, C.A.; Sabatelli, F.J.; Loebenberg, D.; McNicholas, P.M. Application of Real-Time Quantitative PCR to Molecular Analysis of Candida Albicans Strains Exhibiting Reduced Susceptibility to Azoles. Antimicrob. Agents Chemother. 2004, 48, 2124–2131. [Google Scholar] [CrossRef]
- Lv, Q.; Yan, L.; Jiang, Y. The Synthesis, Regulation, and Functions of Sterols in Candida Albicans: Well-Known but Still Lots to Learn. Virulence 2016, 7, 649–659. [Google Scholar] [CrossRef]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-Associated Fungal Infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Ma, L.-J.; Ibrahim, A.S.; Skory, C.; Grabherr, M.G.; Burger, G.; Butler, M.; Elias, M.; Idnurm, A.; Lang, B.F.; Sone, T.; et al. Genomic Analysis of the Basal Lineage Fungus Rhizopus Oryzae Reveals a Whole-Genome Duplication. PLoS Genet. 2009, 5, e1000549. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Singh, A.; Kumari, S.; Kumar, P.; Wasi, M.; Mondal, A.K.; Rudramurthy, S.M.; Chakrabarti, A.; Gaur, N.A.; Gow, N.A.R.; et al. Sphingolipidomics of Drug Resistant Candida Auris Clinical Isolates Reveal Distinct Sphingolipid Species Signatures. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2021, 1866, 158815. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Ascoli, I.; Lees, M.; Meath, J.A.; LeBARON, N. Preparation of Lipide Extracts from Brain Tissue. J. Biol. Chem. 1951, 191, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Morio, F.; Pagniez, F.; Lacroix, C.; Miegeville, M.; Le Pape, P. Amino Acid Substitutions in the Candida Albicans Sterol Δ5,6-Desaturase (Erg3p) Confer Azole Resistance: Characterization of Two Novel Mutants with Impaired Virulence. J. Antimicrob. Chemother. 2012, 67, 2131–2138. [Google Scholar] [CrossRef]
- Müller, C.; Binder, U.; Bracher, F.; Giera, M. Antifungal Drug Testing by Combining Minimal Inhibitory Concentration Testing with Target Identification by Gas Chromatography–Mass Spectrometry. Nat. Protoc. 2017, 12, 947–963. [Google Scholar] [CrossRef]
- Ali, B.; Kumar, M.; Kumar, P.; Chauhan, A.; Usmani, S.A.; Rudramurthy, S.M.; Meis, J.F.; Chakrabarti, A.; Singh, A.; Gaur, N.A.; et al. Sphingolipid Diversity in Candida Auris: Unraveling Interclade and Drug Resistance Fingerprints. FEMS Yeast Res. 2024, 24, foae008. [Google Scholar] [CrossRef]
- Singh, A.; MacKenzie, A.; Girnun, G.; Poeta, M.D. Analysis of Sphingolipids, Sterols, and Phospholipids in Human Pathogenic Cryptococcus Strains. J. Lipid Res. 2017, 58, 2017–2036. [Google Scholar] [CrossRef]
- Aoki, K.; Uchiyama, R.; Yamauchi, S.; Katayama, T.; Itonori, S.; Sugita, M.; Hada, N.; Yamada-Hada, J.; Takeda, T.; Kumagai, H.; et al. Newly Discovered Neutral Glycosphingolipids in Aureobasidin A-Resistant Zygomycetes: IDENTIFICATION OF A NOVEL FAMILY OF GALA-SERIES GLYCOLIPIDS WITH CORE Galα1-6Galβ1-6Galβ SEQUENCES. J. Biol. Chem. 2004, 279, 32028–32034. [Google Scholar] [CrossRef]
- Shoma, J.F.; Ernan, B.; Keiser, G.; Heiss, C.; Azadi, P.; Free, S.J. Genetic Characterization of the Acidic and Neutral Glycosphingolipid Biosynthetic Pathways in Neurospora Crassa. Microorganisms 2023, 11, 2093. [Google Scholar] [CrossRef]
- Usmani, S.A.; Kumar, M.; Arya, K.; Ali, B.; Bhardwaj, N.; Gaur, N.A.; Prasad, R.; Singh, A. Beyond Membrane Components: Uncovering the Intriguing World of Fungal Sphingolipid Synthesis and Regulation. Res. Microbiol. 2023, 174, 104087. [Google Scholar] [CrossRef]
- Bauer, K.; Rafael, B.; Vágó, B.; Kiss-Vetráb, S.; Molnár, A.; Szebenyi, C.; Varga, M.; Szekeres, A.; Vágvölgyi, C.; Papp, T.; et al. Characterization of the Sterol 24-C-Methyltransferase Genes Reveals a Network of Alternative Sterol Biosynthetic Pathways in Mucor Lusitanicus. Microbiol. Spectr. 2023, 11, e0031523. [Google Scholar] [CrossRef] [PubMed]
- Rybak, J.M.; Dickens, C.M.; Parker, J.E.; Caudle, K.E.; Manigaba, K.; Whaley, S.G.; Nishimoto, A.T.; Luna-Tapia, A.; Roy, S.; Zhang, Q.; et al. Loss of C-5 Sterol Desaturase Activity Results in Increased Resistance to Azole and Echinocandin Antifungals in a Clinical Isolate of Candida Parapsilosis. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Mendoza, M.I.; Pérez-Arques, C.; Parker, J.; Xu, Z.; Kelly, S.; Heitman, J. Alternative Ergosterol Biosynthetic Pathways Confer Antifungal Drug Resistance in the Human Pathogens within the Mucor Species Complex. mBio 2024, 15, e01661–e01724. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ji, Z.; Feng, Y.; Yan, T.; Cao, Y.; Lu, H.; Jiang, Y. Myriocin Enhances the Antifungal Activity of Fluconazole by Blocking the Membrane Localization of the Efflux Pump Cdr1. Front. Pharmacol. 2022, 13, 1101553. [Google Scholar] [CrossRef]
- Poeta, M.D.; Nimrichter, L.; Rodrigues, M.L.; Luberto, C. Synthesis and Biological Properties of Fungal Glucosylceramide. PLOS Pathog. 2014, 10, e1003832. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, T.; Kapoor, K.; Mandal, A.; Roth, M.; Welti, R.; Prasad, R. Phospholipidome of Candida: Each Species of Candida Has Distinctive Phospholipid Molecular Species. OMICS J. Integr. Biol. 2010, 14, 665–677. [Google Scholar] [CrossRef]
- Urbanek, A.K.; Muraszko, J.; Derkacz, D.; Łukaszewicz, M.; Bernat, P.; Krasowska, A. The Role of Ergosterol and Sphingolipids in the Localization and Activity of Candida Albicans’ Multidrug Transporter Cdr1p and Plasma Membrane ATPase Pma1p. Int. J. Mol. Sci. 2022, 23, 9975. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; Li, Z.; Wong, A.H.-H.; Wang, Y.-Z.; Guo, Y.; Lin, X.; Zeng, G.; Liu, H.; Wang, Y.; et al. Candida Albicans Gains Azole Resistance by Altering Sphingolipid Composition. Nat. Commun. 2018, 9, 4495. [Google Scholar] [CrossRef]
- Mukhopadhyay, K.; Prasad, T.; Saini, P.; Pucadyil, T.J.; Chattopadhyay, A.; Prasad, R. Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug Resistance in Candida Albicans. Antimicrob. Agents Chemother. 2004, 48, 1778–1787. [Google Scholar] [CrossRef]
- Khandelwal, N.K.; Sarkar, P.; Gaur, N.A.; Chattopadhyay, A.; Prasad, R. Phosphatidylserine Decarboxylase Governs Plasma Membrane Fluidity and Impacts Drug Susceptibilities of Candida Albicans Cells. Biochim. Biophys. Acta Biomembr. 2018, 1860, 2308–2319. [Google Scholar] [CrossRef]
- Gebremariam, T.; Liu, M.; Luo, G.; Bruno, V.; Phan, Q.T.; Waring, A.J.; Edwards, J.E.; Filler, S.G.; Yeaman, M.R.; Ibrahim, A.S. CotH3 Mediates Fungal Invasion of Host Cells during Mucormycosis. J. Clin. Investig. 2014, 124, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.S.M.; Baldin, C.; Gu, Y.; Singh, S.; Gebremariam, T.; Swidergall, M.; Alqarihi, A.; Youssef, E.G.; Alkhazraji, S.; Pikoulas, A.; et al. Mucoricin Is a Ricin-Like Toxin That Is Critical for the Pathogenesis of Mucormycosis. Nat. Microbiol. 2021, 6, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Tani, Y.; Funatsu, T.; Ashida, H.; Ito, M.; Itonori, S.; Sugita, M.; Yamamoto, K. Novel Neogala-Series Glycosphingolipids with Terminal Mannose and Glucose Residues from Hirsutella Rhossiliensis, an Aureobasidin A-Resistant Ascomycete Fungus. Glycobiology 2010, 20, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Rittershaus, P.C. Glucosylceramide Synthase Is an Essential Regulator of Pathogenicity of Cryptococcus Neoformans. J. Clin. Investig. 2006, 116, 1651–1659. [Google Scholar] [CrossRef]
- Levery, S.B.; Momany, M.; Lindsey, R.; Toledo, M.S.; Shayman, J.A.; Fuller, M.; Brooks, K.; Doong, R.L.; Straus, A.H.; Takahashi, H.K. Disruption of the Glucosylceramide Biosynthetic Pathway in Aspergillus Nidulans and Aspergillus Fumigatus by Inhibitors of UDP-Glc:Ceramide Glucosyltransferase Strongly Affects Spore Germination, Cell Cycle, and Hyphal Growth. FEBS Lett. 2002, 525, 59–64. [Google Scholar] [CrossRef]
- Oura, T.; Kajiwara, S. Candida Albicans Sphingolipid C9-Methyltransferase Is Involved in Hyphal Elongation. Microbiology 2010, 156, 1234–1243. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Goldman, G.H.; Del Poeta, M. Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. mBio 2018, 9, e00642–e00718. [Google Scholar] [CrossRef]
- da Xisto, M.I.D.S.; Rollin-Pinheiro, R.; Rochetti, V.P.; de Castro-Almeida, Y.; Borba-Santos, L.P.; dos Santos-Freitas, G.M.P.; Cypriano, J.; de Abreu, F.Á.; Rozental, S.; Barreto-Bergter, E. Miltefosine: A Repurposing Drug against Mucorales Pathogens. J. Fungi 2023, 9, 1166. [Google Scholar] [CrossRef]
- Zamith-Miranda, D.; Heyman, H.M.; Cleare, L.G.; Couvillion, S.P.; Clair, G.C.; Bredeweg, E.L.; Gacser, A.; Nimrichter, L.; Nakayasu, E.S.; Nosanchuk, J.D. Multi-Omics Signature of Candida Auris, an Emerging and Multidrug-Resistant Pathogen. MSystems 2019, 4, 00257–00319. [Google Scholar] [CrossRef]
- Healey, K.R.; Katiyar, S.K.; Raj, S.; Edlind, T.D. CRS–MIS in Candida Glabrata: Sphingolipids Modulate Echinocandin–Fks Interaction. Mol. Microbiol. 2012, 86, 303–313. [Google Scholar] [CrossRef]
- Liu, T.T.; Znaidi, S.; Barker, K.S.; Xu, L.; Homayouni, R.; Saidane, S.; Morschhäuser, J.; Nantel, A.; Raymond, M.; Rogers, P.D. Genome-Wide Expression and Location Analyses of the Candida Albicans Tac1p Regulon. Eukaryot. Cell 2007, 6, 2122–2138. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, M.S.; Nagiec, M.M.; Lester, R.L.; Dickson, R.C. Analysis of Phosphorylated Sphingolipid Long-Chain Bases Reveals Potential Roles in Heat Stress and Growth Control in Saccharomyces. J. Bacteriol. 1999, 181, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- de Kroon, A.I.P.M. Metabolism of Phosphatidylcholine and Its Implications for Lipid Acyl Chain Composition in Saccharomyces Cerevisiae. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2007, 1771, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Tams, R.N.; Cassilly, C.D.; Anaokar, S.; Brewer, W.T.; Dinsmore, J.T.; Chen, Y.-L.; Patton-Vogt, J.; Reynolds, T.B. Overproduction of Phospholipids by the Kennedy Pathway Leads to Hypervirulence in Candida Albicans. Front. Microbiol. 2019, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, N.K.; Chauhan, N.; Sarkar, P.; Esquivel, B.D.; Coccetti, P.; Singh, A.; Coste, A.T.; Gupta, M.; Sanglard, D.; White, T.C.; et al. Azole Resistance in a Candida Albicans Mutant Lacking the ABC Transporter CDR6/ROA1 Depends on TOR Signaling. J. Biol. Chem. 2018, 293, 412–432. [Google Scholar] [CrossRef]
- Trentin, G.; Bitencourt, T.A.; Guedes, A.; Pessoni, A.M.; Brauer, V.S.; Pereira, A.K.; Costa, J.H.; Fill, T.P.; Almeida, F. Mass Spectrometry Analysis Reveals Lipids Induced by Oxidative Stress in Candida Albicans Extracellular Vesicles. Microorganisms 2023, 11, 1669. [Google Scholar] [CrossRef]
- Shahi, G.; Kumar, M.; Kumari, S.; Rudramurthy, S.M.; Chakrabarti, A.; Gaur, N.A.; Singh, A.; Prasad, R. A Detailed Lipidomic Study of Human Pathogenic Fungi Candida auris. FEMS Yeast Res. 2020, 20, foaa045. [Google Scholar] [CrossRef]
- Rybak, J.M.; Xie, J.; Martin-Vicente, A.; Guruceaga, X.; Thorn, H.I.; Nywening, A.V.; Ge, W.; Souza, A.C.O.; Shetty, A.C.; McCracken, C.; et al. A Secondary Mechanism of Action for Triazole Antifungals in Aspergillus Fumigatus Mediated by Hmg1. Nat. Commun. 2024, 15, 3642. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, B.; Chauhan, A.; Kumar, M.; Kumar, P.; Carolus, H.; Lobo Romero, C.; Vergauwen, R.; Singh, A.; Banerjee, A.; Prakash, A.; et al. A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar. J. Fungi 2024, 10, 760. https://doi.org/10.3390/jof10110760
Ali B, Chauhan A, Kumar M, Kumar P, Carolus H, Lobo Romero C, Vergauwen R, Singh A, Banerjee A, Prakash A, et al. A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar. Journal of Fungi. 2024; 10(11):760. https://doi.org/10.3390/jof10110760
Chicago/Turabian StyleAli, Basharat, Anshu Chauhan, Mohit Kumar, Praveen Kumar, Hans Carolus, Celia Lobo Romero, Rudy Vergauwen, Ashutosh Singh, Atanu Banerjee, Amresh Prakash, and et al. 2024. "A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar" Journal of Fungi 10, no. 11: 760. https://doi.org/10.3390/jof10110760
APA StyleAli, B., Chauhan, A., Kumar, M., Kumar, P., Carolus, H., Lobo Romero, C., Vergauwen, R., Singh, A., Banerjee, A., Prakash, A., Rudramurthy, S. M., Van Dijck, P., Ibrahim, A. S., & Prasad, R. (2024). A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar. Journal of Fungi, 10(11), 760. https://doi.org/10.3390/jof10110760