Draft Genome Sequence of Bacillus thuringiensis INTA 103-23 Reveals Its Insecticidal Properties: Insights from the Genomic Sequence
<p>Morphology of <span class="html-italic">B. thuringiensis</span> INTA 103-23 colonies (<b>A</b>) after 72 h of cultivation on an BM agar plate at 29 °C [<a href="#B14-data-09-00040" class="html-bibr">14</a>] and (<b>B</b>) a sporulating culture stained with Coomassie brilliant blue (VC, vegetative cells; S, spores; C, crystals) (100× objective).</p> "> Figure 2
<p>GBDP phylogeny tree based on whole-genome data using the TYGS (average branch support of 98.0%). The utilization of the gray color serves to emphasize the clustering of INTA 103-23 with the type strains.</p> ">
Abstract
:1. Summary
2. Data Description
2.1. Isolation, Morphological Characterization, and Insecticidal Activity of Bacillus thuringiensis INTA 103-23
2.2. Genome Assembly and Annotation
3. Methods
3.1. DNA Extraction, Library Construction, and Massive Genome Sequencing
3.2. Genome Assembly, Sequence Analysis, and Annotation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, P.A.; Travers, R.S. Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates. Appl. Environ. Microbiol. 1989, 55, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar] [CrossRef] [PubMed]
- Arthur, B.P.; Suh, C.P.; McKnight, B.M.; Parajulee, M.N.; Yang, F.; Kerns, D.L. Field Evaluation of Cotton Expressing Mpp51Aa2 as a Management Tool for Cotton Fleahoppers, Pseudatomoscelis seriatus (Reuter). Toxins 2023, 15, 644. [Google Scholar] [CrossRef] [PubMed]
- Jurat-Fuentes, J.L.; Crickmore, N. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J. Invertebr. Pathol. 2017, 142, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Sánchez, J.; Miranda, R.; Bravo, A.; Soberón, M. Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 2002, 513, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Ramírez, R.; Huesa, J.; Bel, Y.; Ferré, J.; Casino, P.; Arias-Palomo, E. Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis. Nat. Commun. 2020, 11, 3974. [Google Scholar] [CrossRef] [PubMed]
- Caccia, S.; Di Lelio, I.; La Storia, A.; Marinelli, A.; Varricchio, P.; Franzetti, E.; Banyuls, N.; Tettamanti, G.; Casartelli, M.; Giordana, B.; et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, 9486–9491. [Google Scholar] [CrossRef] [PubMed]
- Unzue, A.; Caballero, C.J.; Villanueva, M.; Fernández, A.B.; Caballero, P. Multifunctional Properties of a Bacillus thuringiensis Strain (BST-122): Beyond the Parasporal Crystal. Toxins 2022, 14, 768. [Google Scholar] [CrossRef]
- Sauka, D.H.; Piccinetti, C.F.; Vallejo, D.A.; Onco, M.I.; Pérez, M.P.; Benintende, G.B. New entomopathogenic strain of Bacillus thuringiensis is able to solubilize different sources of inorganic phosphates. Appl. Soil Ecol. 2021, 160, 103839. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect Pathogens as Biological Control Agents: Back to the Future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Yin, W.; Shao, X.; Zheng, H.; Li, M.; Zhao, Y.; Sun, M.; Wang, S.; Yu, Z. Complete genome sequence of Bacillus thuringiensis subsp. chinensis strain CT-43. J. Bacteriol. 2011, 193, 3407–3408. [Google Scholar] [PubMed]
- Liu, J.; Li, L.; Peters, B.M.; Li, B.; Chen, D.; Xu, Z.; Shirtliff, M.E. Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426. Microb. Pathog. 2017, 108, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Fayad, N.; Barssoum, R.; Marsaud, N.; Nasseredine, R.; Abdelmalek, N.; Rouis, S.; Teste, M.A.; Pailler, V.; Gautier, V.; Belmonte, E.; et al. Complete genome sequences of two Bacillus thuringiensis serovar kurstaki strains isolated from Lebanon and Tunisia, highly toxic against lepidopteran larvae. Microbiol. Resour. Announc. 2023, 12, e0006023. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.P.; Sauka, D.H.; Onco, M.I.; Berretta, M.F.; Benintende, G.B. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae. Rev. Argent. Microbiol. 2017, 49, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Sauka, D.H.; Monella, R.H.; Benintende, G.B. Induced-feeding bioassays for detection of Bacillus thuringiensis insecticidal activity against Epilachna paenulata (Coleoptera). Pesqui. Agropecuária Bras. 2010, 45, 430–432. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 10 January 2024).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinfomatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. mBio 2020, 11, 1–15. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ruan, L.; Peng, D.; Li, L.; Sun, M.; Yu, Z. Thuringiensin: A thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects. Toxins 2014, 6, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. Bacterial Pesticidal Protein Resource Center. Data. Available online: https://www.bpprc.org (accessed on 10 January 2024).
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. AntiSMASH 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
Total contig count | 243 |
Largest contig (nucleotide count) | 304,352 |
Total length (nucleotide count) | 6,302,053 |
GC-content (%) | 34.94 |
N50 value | 92,502 |
N75 value | 48,719 |
L50 value | 21 |
L75 value | 43 |
Assembly completeness (%) | 99.43 |
Suspected contamination (%) | 0.57 |
Database | Bacillales_odb10 |
---|---|
Single-copy orthologues assembled completely | 449 (99.8%) |
Orthologues present in one copy | 444 (98.7%) |
Multi-copy orthologues | 5 |
Fragmented sequences | 0 |
Orthologues missing from the assembly | 1 |
Total count of singleton orthologs in the dataset | 450 |
NCBI RefSeq Assembly | Strain | ANI | TYGS Taxonomy |
---|---|---|---|
GCF_900114335.1 | 5MFCol3.1 | 98.2317 | B. cereus sensu stricto |
GCF_001583685.1 | FSL K6-0043 | 98.2235 | B. cereus sensu stricto |
GCF_000412975.1 | BAG1O-3 | 98.2222 | B. cereus sensu stricto |
GCA_000293725.1 | HuB1-1 | 98.2017 | B. cereus sensu stricto |
GCF_000633295.1 | H1m | 98.1528 | B. cereus sensu stricto |
GCF_000291035.1 | BAG1X1-2 | 98.1277 | B. cereus sensu stricto |
GCF_001883875.1 | B-2012 | 98.0455 | B. cereus sensu stricto |
GCF_900142585.1 | BC15 | 98.0288 | B. cereus sensu stricto |
GCF_002146345.1 | BGSC 4AD1 | 97.9884 | B. cereus sensu stricto |
GCF_002146395.1 | BGSC 4AG1 | 97.9505 | B. cereus sensu stricto |
Contig | Insecticidal Proteins | Percent of Identity | Target Order | Target Species | Assay Method |
---|---|---|---|---|---|
28 | Mpp46Ab1 | 34 | Diptera | Culex pipens | Addition to water |
35 | Spp1Aa1 | 80 | Blattodea | Blattella germanica | Injection |
Lepidoptera | Spodoptera litura | Injection | |||
87 | Xpp22Ab1 | 34 | Coleoptera | Cylas brunneus | Diet incorporation |
Coleoptera | Cylas puncticollis | Diet incorporation | |||
Coleoptera | Anthonomus grandis | Diet incorporation | |||
Coleoptera | Diabrotica virgifera virgifera | Surface contamination | |||
Lepidoptera | Plutella xylostella | Surface contamination | |||
Lepidoptera | Trichoplusia ni | Surface contamination | |||
104 | Cry73Aa1 | 39 | ND a | ND | ND |
152 | Cry54Ba2 | 34 | ND | ND | ND |
153 | Cry4Ba2 | 31 | Diptera | Aedes aegypti | Addition to water |
168 | Cry4Ba4 | 47 | Diptera | Anopheles albimanus | Addition to water |
Diptera | Anopheles gambiae | Addition to water | |||
Diptera | Anopheles stephensi | Addition to water | |||
Diptera | Culex pipens | Addition to water | |||
Diptera | Culex quinquefasciatus | Addition to water | |||
Diptera | Simulium spp. | Addition to water | |||
206 | Tpp49Aa4 | 52 | Diptera | Culex quinquefasciatus | Addition to water |
212 | Tpp36Aa1 | 38 | Coleoptera | Diabrotica virgifera virgifera | Surface contamination |
215 | Tpp36Aa1 | 31 | Coleoptera | Diabrotica virgifera virgifera | Surface contamination |
Contig | Type/Activity | Location (Relative Coordinate, b.p. a) | Most Similar Known Cluster | Percent of Similarity |
---|---|---|---|---|
4 | Betalactone | 1–18,969 (18,969) | Fengycin | 40 |
4 | NRPS | 92,175–158,083 (65,909) | - | - |
27 | LAP, RiPP-like | 9582–33,088 (23,507) | - | - |
28 | Ladderane | 1–36,711 (36,711) | S-layer glycan | 26 |
34 | Siderophore | 5069–18,776 (13,708) | Petrobactin | 100 |
37 | NRPS-like | 4398–47,979 (43,582) | - | - |
45 | NRPS | 4439–44,738 (30,300) | - | - |
46 | Terpene | 7890–29,743 (21,854) | Molybdenum cofactor | 17 |
61 | RiPP-like | 6156–16,377 (10,222) | - | - |
72 | NRPS | 1–18,492 (18,492) | Anabaenopeptin NZ857/nostamide A | 100 |
75 | Ranthipeptide | 1594–16,138 (14,545) | - | - |
90 | NRPS | 1–10,777 (10,777) | Bacillibactin | 23 |
97 | RiPP-like | 1–8503 (8503) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, L.; Ortiz, L.; Niz, J.; Berretta, M.; Sauka, D. Draft Genome Sequence of Bacillus thuringiensis INTA 103-23 Reveals Its Insecticidal Properties: Insights from the Genomic Sequence. Data 2024, 9, 40. https://doi.org/10.3390/data9030040
Palma L, Ortiz L, Niz J, Berretta M, Sauka D. Draft Genome Sequence of Bacillus thuringiensis INTA 103-23 Reveals Its Insecticidal Properties: Insights from the Genomic Sequence. Data. 2024; 9(3):40. https://doi.org/10.3390/data9030040
Chicago/Turabian StylePalma, Leopoldo, Leila Ortiz, José Niz, Marcelo Berretta, and Diego Sauka. 2024. "Draft Genome Sequence of Bacillus thuringiensis INTA 103-23 Reveals Its Insecticidal Properties: Insights from the Genomic Sequence" Data 9, no. 3: 40. https://doi.org/10.3390/data9030040
APA StylePalma, L., Ortiz, L., Niz, J., Berretta, M., & Sauka, D. (2024). Draft Genome Sequence of Bacillus thuringiensis INTA 103-23 Reveals Its Insecticidal Properties: Insights from the Genomic Sequence. Data, 9(3), 40. https://doi.org/10.3390/data9030040