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Abstract: The taxonomic identification of organisms from images is an active research area within
the machine learning community. Current algorithms are very effective for object recognition and
discrimination, but they require extensive training datasets to generate reliable assignments. This
study releases 5.6 million images with representatives from 10 arthropod classes and 26 insect orders.
All images were taken using a Keyence VHX-7000 Digital Microscope system with an automatic stage
to permit high-resolution (4K) microphotography. Providing phenotypic data for 324,000 species
derived from 48 countries, this release represents, by far, the largest dataset of standardized arthropod
images. As such, this dataset is well suited for testing the efficacy of machine learning algorithms for
identifying specimens into higher taxonomic categories.

Keywords: insects; machine learning; object recognition; image-based classification; biodiversity

1. Summary

The identification of organisms is a fundamental part of recognizing and describ-
ing biodiversity. The development of automated methods, which can identify specimens
without involving taxonomists, is critical given the taxonomic impediment [1,2]. One
effective solution involves the adoption of identification systems based on the analysis
of sequence variation in short, standardized DNA regions [3]. In addition, digitization
initiatives at major natural history collections [4] and imaging linked to large DNA barcod-
ing projects [5,6] are providing the basis for image-based identification systems driven by
machine learning algorithms.

Images can be used to build classification systems capable of identifying species [7–9].
Various methods and datasets have been proposed to advance image-based identifications
for arthropods [10,11]. Most past work has considered arthropod classification from (1) the
context of integrated pest management [12–14], (2) as part of crowd-sourced citizen science
efforts such as iNaturalist [15,16], or (3) interpreting data acquired by camera traps [17,18].

Machine learning algorithms, especially convolutional artificial neural networks and
their variants, have emerged as the most effective method for object recognition and
detection [10,19,20]. However, datasets of sufficient size for properly training these models
are scarce [20–23], as creating them is labour-intensive and expensive. On the other hand,
they are urgently needed to avoid performance issues and limitations for vision models
resulting from insufficient training [24]. For instance, most available biodiversity image
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datasets have poor representation of arthropod species even though these represent a large
fraction of eukaryotic life. In recent years, substantial efforts have been invested into the
digitization of arthropod natural history collections, which have imaged both individual
specimens [25–27] and entire drawers of specimens [6,28,29]. This work provides training
material for classification algorithms, but the images are structurally uniform. Specimens
are usually mounted and therefore captured in a single standard orientation (mostly dorsal
view), limiting their application in less regimented contexts [24]. In addition, there are
biases in selecting insects, which translate into the availability of specimens for digitization
or images gathered by community science [30,31].

In this study, we present a dataset of 5.6 million arthropod images gathered during a
large-scale DNA barcoding project. As specimens were not placed in a standard orientation
before photography, any machine learning-based object detection must interpret specimens
in varying orientations to classify them taxonomically, an approach that requires massive
training sets.

2. Data Generation

The present dataset was generated as part of an ongoing effort to build a global DNA
barcode reference library for terrestrial arthropods [32]. The workflow involves placing
each small (<5 mm) specimen into a well of a round-bottom 96-well microplate before DNA
extraction. The specimens are individually photographed at 4K resolution in plate format
using a Keyence VHX-7000 Digital Microscope system (Keyence, Osaka, Japan) with a fully
integrated head and an automatic stage (Figure 1). The setup uses an adjustable Keyence
illumination adapter to ensure uniform light conditions and a scanning stage equipped
with a custom-engineered mount that holds each plate (Figure 1, Supplementary File S1).
This system can capture 95 images within 15 min by controlling stage movements in X-Y
coordinates. It also has the capability to automatically control the height of the stage with
a precision of 0.1 µm. By moving the lens throughout the different focal planes of each
specimen, the VHX system captures every pixel that comes into focus at each level and
combines them into a single, fully focused image. For all the images, the system was set to
a brightness of 27.8 ms, and colours were set to R1.7 G1.0 B2.19.
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Figure 1. Keyence VHX-7000 Digital Microscope system. The inset shows a microplate within the
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The resulting images are packaged with a Python script (Supplementary File S2)
and uploaded onto the Barcode of Life Data Systems V4 (BOLD) [33] where they are
automatically associated with individual specimen records. BOLD is a cloud-based data
storage and analysis platform that supports the assembly and use of DNA barcode data.
Users can generate and populate the specimen records. BOLD enables its users to upload
and store many collaterals such as specimen-associated taxonomic labels, images, and DNA
sequences [33]. A backup copy of each image is subsequently transferred to a third-party
cloud service using an automated script (Supplementary File S3).

3. Data Description

The present dataset includes 5,675,731 images, mostly of terrestrial arthropods. Associ-
ated metadata include information on provenance and taxonomy (Supplementary File S4).
The dataset includes 1.13 million images from a previous release [20] together with 4.54M
images generated from 2019 to 2022. The size of each image is 2880 × 2160 pixels, creating
an average file size of 17.9 MB for a TIFF file and 1.88 MB for a JPEG file. Figure 2 shows
an array of 95 images taken with the Keyence system (the empty space at the lower right
corresponds to an empty control well in the microplate).
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and dip nets [34]. 

Figure 2. Panel of example images taken with the Keyence setup. The empty space at the lower right
corresponds to an empty control well in the microplate.

3.1. Geographic Coverage

The dataset contains images for specimens from 1698 sites in 48 countries (Figure 3A).
Most specimens were derived from Costa Rica (62%), followed by South Africa (6%),
United States (5%), and Thailand (3%) (Figure 3B, Supplementary File S4). Most specimens
were collected using Malaise traps, but about 1500 were captured using plankton and dip
nets [34].
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[35]. A total of 324,427 such BINs are represented in this dataset. 

Figure 3. (A) Sampling locations for photographed specimens. (B) Tree map of countries of origin.
* a complete list of countries can be found in Supplementary File S5.

3.2. Taxonomic Coverage

Most of the images show individuals from the class Insecta (98%) (Figure 4A). Figure 4B
shows the distribution of insect orders within the dataset. A very high proportion of the
complete set of specimens has taxonomic assignments at the ordinal (99.4%) and family
(85.9%) levels, but only 20.3% possess a generic assignment. Just 7.6% of the specimens
(430,036) have a Linnean species designation, but 90.6% (N = 5,143,970) possess a Barcode
Index Number (BIN) assignment. The BIN system [35] is a key feature of BOLD. It employs
an algorithm that combines single linkage and Markov clustering to group DNA barcode
sequences into Operational Taxonomic Units that represent good species proxies [35]. A
total of 324,427 such BINs are represented in this dataset.
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Figure 4. Log-scale plot showing coverage for 10 arthropod classes (A) and 27 insect orders (B).

4. Conclusions

This dataset of 5.6 million images representing over 320,000 species of arthropods,
mostly insects, is the largest of its kind. It is also unique in the geographic distribution of the
photographed samples. As such, it represents a dataset that should aid the development of
machine learning algorithms for object recognition and classification despite a considerable
class imbalance (69% Diptera). Data from a previous release were successfully used for
several classification tasks across arthropod orders [20]. In addition, a larger subset of this
dataset has been combined with DNA sequence information to develop and benchmark
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multimodal classification experiments [36]. These images can also be used to estimate
biomass [37,38] or even abundance when entire communities are digitized [39,40]. Each
image in the dataset is also available as an element of the collateral data for a barcode
record on BOLD [33] providing support for taxonomic assignment and to enable direct
visual comparisons between individuals.

Generating high quality images at the described rate can be difficult with any auto-
mated system given the manifold differences in shape and size of specimens [6]. Some
large and some very small individuals might be outside the standard stacking depth, which
can result in an out-of-focus image. Furthermore, mistakes during the placement of indi-
viduals onto the microplates can lead to accidental imaging of an empty well or, rarely, the
placement of more than one individual into one well.

By using three Keyence VHX-7000 systems for 50 h per week, the Centre for Biodiver-
sity Genomics generates three million images per year. The deployment of Keyence systems
at a few core facilities could readily generate ten million images per year, allowing rapid
growth in the training sets required to hone AI-enabled identification systems, including
routines that automatically flag instances of lower quality as described above.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/data9110122/s1: Supplementary File S1: 3D-print file for custom plate
mount; Supplementary File S2: Python script to pack and upload images; Supplementary File S3:
Python script for file transfer; Supplementary File S4: List of countries of origin for photographed
specimens; Supplementary File S5: Metadata field definitions.
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