Collaborative Data Use between Private and Public Stakeholders—A Regional Case Study
<p>Participant domains (<b>left</b>). Size of participating organizations: Small (S), medium (M), and large (L) (<b>center</b>). The number of sites (single-/multi-site) are shown as a regional, national, or international organization (<b>right</b>). Interview-Guide <a href="#app1-data-07-00020" class="html-app">Section S1 in the Supplementary Materials</a>.</p> "> Figure 2
<p>Attitude towards findable, accessible, interoperable, reusable (FAIR) principles among interviewees (average = gray), from for-profit organizations (FPOs) (blue), academia (yellow), and public administration (PA) institutions (red). Interview-Guide <a href="#app1-data-07-00020" class="html-app">Section S4.7 in the Supplementary Materials</a>.</p> "> Figure 3
<p>Average managed data per month among respondents, average (gray), FPO (blue), academia (yellow), and public administration (red), color grades relate to rankings based on frequency of responses in one category or readability. Interview-Guide <a href="#app1-data-07-00020" class="html-app">Section S4.6 in the Supplementary Materials</a>.</p> "> Figure 4
<p>Data-related tasks among respondents in their daily work-routine (<b>left</b>). Tools used in general for data-related tasks by % organizations (<b>right</b>). From FPOs (blue), academia (yellow), PA institutions (red), and average (gray). Interview-Guide <a href="#app1-data-07-00020" class="html-app">Sections S2.2 and S4.5 in the Supplementary Materials</a>.</p> "> Figure 5
<p>Need for changes in technical infrastructure (<b>left</b>) among interviewees (average = gray), from FPOs (blue), PA departments (red), as well academia (yellow). Change assessment of data-related tasks, applicability for % organizations (<b>right</b>). Interview-Guide <a href="#app1-data-07-00020" class="html-app">Sections S3.2 and S3.7 in the Supplementary Materials</a>.</p> "> Figure 6
<p>Recent acquisitions of technical infrastructure: equipment and tools built in-house or outsourced by % respondents, average (gray), FPOs (blue), academia (yellow), and public administration (red). Interview-Guide <a href="#app1-data-07-00020" class="html-app">Section S3.3 in the Supplementary Materials</a>.</p> ">
Abstract
:1. Introduction
2. Literature Survey
3. Materials and Methods
3.1. Procedure & Analysis
3.2. Questionnaire
3.3. Participants
4. Results
4.1. Different Positions on the Value of Data and Data Sharing
4.2. Data-Related Tasks Differing between Institutions Are Not Class- or Domain-Specific
4.3. Need for Changes in Technical Infrastructure
4.4. Open Questions
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANSI | Americal National Standards Institute |
CDO | Chief data officer |
DIH | Digital Innovation Hub |
EOSC | European Open Science Cloud |
ERP | Electronic resource planning |
FAIR | Findable Accessible Interoperable Reusable |
FL | Federated Learning |
FPO | For-profit organization |
GB | Gigabyte |
HR | Human resources |
IDE@S | Innovative Data Environment @ Styria |
iRODS | integrated Rule-Oriented Data System |
ISO | International organization for Standardization |
ML | Machine learning |
NFPO | Not-for-profit organization |
PA | Public administration |
PB | Petabyte |
SQL | Structured query language |
TB | Terrabyte |
XML | extensible markup language |
References
- Chatterjee, S.; Chaudhuri, R.; Vrontis, D. Does data-driven culture impact innovation and performance of a firm? An empirical examination. Ann. Oper. Res. 2021, 1–26. [Google Scholar] [CrossRef]
- Monino, J.L. Data value, big data analytics, and decision-making. J. Knowl. Econ. 2021, 12, 256–267. [Google Scholar] [CrossRef]
- Aubin, I.; Cardou, F.; Boisvert-Marsh, L.; Garnier, E.; Strukelj, M.; Munson, A.D. Managing data locally to answer questions globally: The role of collaborative science in ecology. J. Veg. Sci. 2020, 31, 509–517. [Google Scholar] [CrossRef]
- Mannheimer, S.; Pienta, A.; Kirilova, D.; Elman, C.; Wutich, A. Qualitative data sharing: Data repositories and academic libraries as key partners in addressing challenges. Am. Behav. Sci. 2019, 63, 643–664. [Google Scholar] [CrossRef]
- Fernandes, G.; O’Sullivan, D.; Ferreira, L.M.D. Addressing the Challenges to Successfully Manage University- Industry R&D Collaborations. Procedia Comput. Sci. 2022, 196, 724–731. [Google Scholar]
- Zhang, Z.; Song, S.; Yu, J.; Zhao, W.; Xiao, J.; Bao, Y. The elements of data sharing. Genom. Proteom. Bioinform. 2020, 18, 1. [Google Scholar] [CrossRef]
- Fafalios, P.; Petrakis, K.; Samaritakis, G.; Doerr, K.; Kritsotaki, A.; Tzitzikas, Y.; Doerr, M. FAST CAT: Collaborative Data Entry and Curation for Semantic Interoperability in Digital Humanities. arXiv 2021, arXiv:2105.13733. [Google Scholar] [CrossRef]
- Cios, K.J.; Swiniarski, R.W.; Pedrycz, W.; Kurgan, L.A. The knowledge discovery process. In Data Mining; Springer: Boston, MA, USA, 2007; pp. 9–24. [Google Scholar]
- Attard, J.; Orlandi, F.; Auer, S. Data value networks: Enabling a new data ecosystem. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Omaha, NE, USA, 13–16 October 2016; pp. 453–456. [Google Scholar]
- Kitsios, F.; Papachristos, N.; Kamariotou, M. Business models for open data ecosystem: Challenges and motivations for entrepreneurship and innovation. In Proceedings of the 2017 IEEE 19th Conference on Business Informatics (CBI), Thessaloniki, Greece, 24–27 July 2017; Volume 1, pp. 398–407. [Google Scholar]
- Sjöö, K.; Hellström, T. University–industry collaboration: A literature review and synthesis. Ind. High. Educ. 2019, 33, 275–285. [Google Scholar] [CrossRef]
- Carbonara, N.; Pellegrino, R. The role of public private partnerships in fostering innovation. Constr. Manag. Econ. 2020, 38, 140–156. [Google Scholar] [CrossRef]
- Davis, A.M.; Engkvist, O.; Fairclough, R.J.; Feierberg, I.; Freeman, A.; Iyer, P. Public-Private Partnerships: Compound and Data Sharing in Drug Discovery and Development. SLAS Discov. Adv. Sci. Drug Discov. 2021, 26, 604–619. [Google Scholar] [CrossRef]
- Sergi, B.S.; Popkova, E.G.; Borzenko, K.V.; Przhedetskaya, N.V. Public–private partnerships as a mechanism of financing sustainable development. In Financing Sustainable Development; Palgrave Studies in Impact Finance; Springer: Cham, Swizerland, 2019. [Google Scholar] [CrossRef]
- Leydesdorff, L. The triple helix model and the study of knowledge based inovation systems. arXiv 2009, arXiv:0911.4291. [Google Scholar]
- Hannila, H.; Silvola, R.; Harkonen, J.; Haapasalo, H. Data-driven begins with DATA; potential of data assets. J. Comput. Inf. Syst. 2022, 62, 29–38. [Google Scholar] [CrossRef]
- Klievink, B.; Romijn, B.J.; Cunningham, S.; de Bruijn, H. Big data in the public sector: Uncertainties and readiness. Inf. Syst. Front. 2017, 19, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Craglia, M.; Micheli, M.; Hradec, J.; Calzada, I.; Luitjens, S.; Ponti, M.; Scholten, H.J.; Boter, J. Digitranscope: The Governance of Digitally-Transformed Society; EUR 30590; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Susha, I.; Janssen, M.; Verhulst, S. Data collaboratives as a new frontier of cross-sector partnerships in the age of open data: Taxonomy development. In Proceedings of the 50th Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 4–7 January 2017. [Google Scholar]
- Susha, I.; Gil-Garcia, J.R. A collaborative governance approach to partnerships addressing public problems with private data. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Martin, S.; Gautier, P.; Turki, S.; Kotsev, A. Establishment of Sustainable Data Ecosystems; EUR 30626 EN; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Tang, Q.; Shao, Z.; Huang, L.; Yin, W.; Dou, Y. Identifying Influencing Factors for Data Transactions: A Case Study from Shanghai Data Exchange. J. Syst. Sci. Syst. Eng. 2020, 29, 697–708. [Google Scholar] [CrossRef]
- Kilic, D.; Crabtree, A.; McGarry, G.; Goulden, M. The cardboard box study: Understanding collaborative data management in the connected home. Pers. Ubiquitous Comput. 2022, 26, 155–176. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lee, J. Collaborative data networks for public service: Governance, management, and performance. Public Manag. Rev. 2018, 20, 672–690. [Google Scholar] [CrossRef]
- Lazarova-Molnar, S.; Mohamed, N. Collaborative data analytics for smart buildings: Opportunities and models. Clust. Comput. 2019, 22, 1065–1077. [Google Scholar] [CrossRef]
- Oliveira, M.I.S.; Lima, G.d.F.B.; Lóscio, B.F. Investigations into Data Ecosystems: A systematic mapping study. Knowl. Inf. Syst. 2019, 61, 589–630. [Google Scholar] [CrossRef]
- Schmitt, C.; Buchinal, M.R. Data management practices for collaborative research. Front. Psychiatry 2011, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Mandl, K.D.; Glauser, T.; Krantz, I.D.; Avillach, P.; Bartels, A.; Beggs, A.H.; Biswas, S.; Bourgeois, F.T.; Corsmo, J.; Dauber, A.; et al. The Genomics Research and Innovation Network: Creating an interoperable, federated, genomics learning system. Genet. Med. 2020, 22, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Hohlenweger, T.S.; Pinheiro, M.; Spínola, A.L.; Macedo, I.L.; Martins, J.S.; Dourado, R.A.; Monteiro, J.A.S. An iRODS-based distributed and federated data repository for a Multi-CMF Network for Experimentation. In Proceedings of the 2015 Latin American Network Operations and Management Symposium (LANOMS), João Pessoa, Brazil, 1–3 October 2015; pp. 62–68. [Google Scholar]
- Fernández-del Castillo, E.; Scardaci, D.; García, Á.L. The EGI federated cloud e-infrastructure. Procedia Comput. Sci. 2015, 68, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Blümm, M.; Schmunk, S. Digital Research Infrastructures: DARIAH. In 3D Research Challenges in Cultural Heritage II; Springer: Cham, Swizerland, 2016; pp. 62–73. [Google Scholar]
- Otto, B.; Lis, D.; Jürjens, J.; Cirullies, J.; Howar, F.; Meister, S.; Spiekermann, M.; Pettenpohl, H.; Möller, F.; Rehof, J.; et al. Data Ecosystems. Conceptual Foundations, Constituents and Recommendations for Action; Fraunhofer ISST: Dortmund, Germany, 2019; ISSN 0943–1624. [Google Scholar]
- Speiser, S.; Harth, A. Taking the lids off data silos. In Proceedings of the 6th International Conference on Semantic Systems, Graz, Austria, 1–3 September 2010; pp. 1–4. [Google Scholar]
- Bizer, C. The emerging web of linked data. IEEE Intell. Syst. 2009, 24, 87–92. [Google Scholar] [CrossRef]
- Bader, S.; Pullmann, J.; Mader, C.; Tramp, S.; Quix, C.; Müller, A.W.; Akyürek, H.; Böckmann, M.; Imbusch, B.T.; Lipp, J.; et al. The International Data Spaces Information Model–An Ontology for Sovereign Exchange of Digital Content. In International Semantic Web Conference; Springer: Cham, Swizerland, 2020; pp. 176–192. [Google Scholar]
- Talbot, S.R.; Bruch, S.; Kießling, F.; Marschollek, M.; Jandric, B.; Tolba, R.H.; Bleich, A. Design of a joint research data platform: A use case for severity assessment. Lab. Anim. 2020, 54, 33–39. [Google Scholar] [CrossRef]
- Mohr, C.; Friedrich, A.; Wojnar, D.; Kenar, E.; Polatkan, A.C.; Codrea, M.C.; Czemmel, S.; Kohlbacher, O.; Nahnsen, S. qPortal: A platform for data-driven biomedical research. PLoS ONE 2018, 13, e0191603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrow, J.; Drysdale, R.; Smith, A.; Repo, S.; Lanfear, J.; Blomberg, N. ELIXIR: Providing a sustainable infrastructure for life science data at European scale. Bioinformatics 2021, 37, 2506–2511. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, A.; Alavi, A.; Buergel, T.; Upadhyayula, S.; Wang, Q.; Ananthakrishnan, S.K.; Alavi, A.; Celis, D.; Gillespie, D.; Young, G.; et al. A scalable, secure, and interoperable platform for deep data-driven health management. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Wieser, F.; Stryeck, S.; Lang, K.; Hahn, C.; Thallinger, G.; Feichtinger, J.; Hack, P.; Stepponat, M.; Merchant, N.; Lindstaedt, S.; et al. A local platform for user-friendly FAIR data management and reproducible analytics. J. Biotechnol. 2021, 341, 43–50. [Google Scholar] [CrossRef]
- Lynn, T.; Mooney, J.G.; Domaschka, J.; Ellis, K.A. Managing Distributed Cloud Applications and Infrastructure: A Self-Optimising Approach; Springer: Heidelberg, Germany, 2020. [Google Scholar]
- Grunzke, R.; Adolph, T.; Biardzki, C.; Bode, A.; Borst, T.; Bungartz, H.J.; Busch, A.; Frank, A.; Grimm, C.; Hasselbring, W.; et al. Challenges in creating a sustainable generic research data infrastructure. Softwaretechnik-Trends 2017, 37, 74–77. [Google Scholar]
- Mikalef, P.; Krogstie, J. Investigating the data science skill gap: An empirical analysis. In Proceedings of the 2019 IEEE Global Engineering Education Conference (EDUCON), Dubai, United Arab Emirates, 8–11 April 2019; pp. 1275–1284. [Google Scholar]
- Miller, S.; Hughes, D. The Quant Crunch: How the Demand for Data Science Skills Is Disrupting the Job Market; Burning Glass Technologies: Boston, MA, USA, 2017. [Google Scholar]
- Poole, A.H. How has your science data grown? Digital curation and the human factor: A critical literature review. Arch. Sci. 2015, 15, 101–139. [Google Scholar] [CrossRef]
- Jerman, A.; Pejić Bach, M.; Aleksić, A. Transformation towards smart factory system: Examining new job profiles and competencies. Syst. Res. Behav. Sci. 2020, 37, 388–402. [Google Scholar] [CrossRef]
- Braud, A.; Fromentoux, G.; Radier, B.; Le Grand, O. The Road to European Digital Sovereignty with Gaia-X and IDSA. IEEE Netw. 2021, 35, 4–5. [Google Scholar] [CrossRef]
- Iacob, N.; Simonelli, F. Towards a European Health Data Ecosystem. Eur. J. Risk Regul. 2020, 11, 884–893. [Google Scholar] [CrossRef]
- Lopes, J.; Franco, M. Review about regional development networks: An ecosystem model proposal. J. Knowl. Econ. 2019, 10, 275–297. [Google Scholar] [CrossRef]
- Petković, D. JSON integration in relational database systems. Int. J. Comput. Appl. 2017, 168, 14–19. [Google Scholar] [CrossRef]
- Fortner, B.; Ahalt, S.; Coposky, J.; Fecho, K.; Krishnamurthy, A.; Moore, R.; Rajasekar, A.; Schmitt, C.; Schroeder, W. Control Your Data: iRODS, the Integrated Rule-Oriented Data System; University of North Caroline at Chapel Hill: Chapel Hill, NC, USA, 2014. [Google Scholar]
- Taponen, S.; Kauppi, K. Service outsourcing decisions—A process framework. J. Glob. Oper. Strateg. Sourc. 2020, 13, 171–194. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Buyya, R. Container-based cluster orchestration systems: A taxonomy and future directions. Softw. Pract. Exp. 2019, 49, 698–719. [Google Scholar] [CrossRef] [Green Version]
- Tedersoo, L.; Küngas, R.; Oras, E.; Köster, K.; Eenmaa, H.; Leijen, Ä.; Pedaste, M.; Raju, M.; Astapova, A.; Lukner, H.; et al. Data sharing practices and data availability upon request differ across scientific disciplines. Sci. Data 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.A.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. arXiv 2019, arXiv:1912.04977. [Google Scholar]
- Lovrić, M.; Đuričić, T.; Tran, H.T.N.; Hussain, H.; Lacić, E.; Rasmussen, M.A.; Kern, R. Should We Embed in Chemistry? A Comparison of Unsupervised Transfer Learning with PCA, UMAP, and VAE on Molecular Fingerprints. Pharmaceuticals 2021, 14, 758. [Google Scholar] [CrossRef]
- David, L.; Arús-Pous, J.; Karlsson, J.; Engkvist, O.; Bjerrum, E.J.; Kogej, T.; Kriegl, J.M.; Beck, B.; Chen, H. Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research. Front. Pharmacol. 2019, 10, 1303. [Google Scholar] [CrossRef] [Green Version]
- Borgogno, O.; Colangelo, G. Data sharing and interoperability: Fostering innovation and competition through APIs. Comput. Law Secur. Rev. 2019, 35, 105314. [Google Scholar] [CrossRef]
- Rumble, J.; Broome, J.; Hodson, S. Building an international consensus on multi-disciplinary metadata standards: A codata case history in nanotechnology. Data Sci. J. 2019, 18, 12. [Google Scholar] [CrossRef] [Green Version]
- Bender, D.; Sartipi, K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal, 20–22 June 2013; pp. 326–331. [Google Scholar] [CrossRef]
- Joint Research Centre. The S3 Platform of Smart Specialisation; European Commission: Seville, Spain, 2011. [Google Scholar]
- McCann, P.; Ortega-Argilés, R. Smart specialisation in European regions: Issues of strategy, institutions and implementation. Eur. J. Innov. Manag. 2014, 17, 409–427. [Google Scholar] [CrossRef]
General (de facto) standards | ISO 27001, SQL & relational databases, GIT, SAP, Matlab Simulink, Micrsoft Suite, XML, DICOM |
Best practices | Internal rules of documentation, life-cycle management, chief data officer, open source frameworks, virtual servers, interoperability development testing, agile machine learning |
Self-learning, learning by doing |
Continuous training |
Technical studies & discipline-specific |
Certifications |
Data security & data management |
Cooperation facilitators | open data policies, common standard, workshops, integration with international channels, general public grants |
Requirements | automation, computing power, human resource, standards & interoperability, structure instead of quantity |
Additional factors for collaborative data use | openness & collaborative thinking, permanent exchange, exchange of know-how, service in return for data provision, visibility of own data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jean-Quartier, C.; Rey Mazón, M.; Lovrić, M.; Stryeck, S. Collaborative Data Use between Private and Public Stakeholders—A Regional Case Study. Data 2022, 7, 20. https://doi.org/10.3390/data7020020
Jean-Quartier C, Rey Mazón M, Lovrić M, Stryeck S. Collaborative Data Use between Private and Public Stakeholders—A Regional Case Study. Data. 2022; 7(2):20. https://doi.org/10.3390/data7020020
Chicago/Turabian StyleJean-Quartier, Claire, Miguel Rey Mazón, Mario Lovrić, and Sarah Stryeck. 2022. "Collaborative Data Use between Private and Public Stakeholders—A Regional Case Study" Data 7, no. 2: 20. https://doi.org/10.3390/data7020020
APA StyleJean-Quartier, C., Rey Mazón, M., Lovrić, M., & Stryeck, S. (2022). Collaborative Data Use between Private and Public Stakeholders—A Regional Case Study. Data, 7(2), 20. https://doi.org/10.3390/data7020020