Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach
<p>Set of elementary reactions for the dark relaxation of photosynthetic Reaction Centres embedded in liposome membranes. <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>AD</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mrow> <mi>k</mi> <mo>′</mo> </mrow> </mrow> <mrow> <mi>AD</mi> </mrow> </msub> </mrow> </semantics></math> are the kinetic constants of the electron transfer from <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">A</mi> <mo>−</mo> </msubsup> </mrow> </semantics></math> to D<sup>+</sup> when the <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">B</mi> </msub> </mrow> </semantics></math> pocket is empty or occupied, respectively. <span class="html-italic">k</span><sub>BD</sub> is the kinetic constant of the direct charge recombination from <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">B</mi> <mo>−</mo> </msubsup> </mrow> </semantics></math> to D<sup>+</sup>. <math display="inline"><semantics> <mrow> <msubsup> <mi>k</mi> <mrow> <mi>in</mi> </mrow> <mo>*</mo> </msubsup> <msubsup> <mrow> <mrow> <mo>/</mo> <mi>k</mi> </mrow> </mrow> <mrow> <mi>out</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>in</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>k</mi> <mrow> <mi>out</mi> </mrow> </msub> </mrow> </semantics></math> represent the kinetic constants of the ubiquinone association/dissociation to/from the <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">B</mi> </msub> </mrow> </semantics></math> site in the charge separated and neutral state, respectively; <span class="html-italic">k</span><sub>AB</sub> is the kinetic constant for the electron transfer reaction from <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">A</mi> <mo>−</mo> </msubsup> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">B</mi> </msub> </mrow> </semantics></math>, while <span class="html-italic">k</span><sub>BA</sub> is the kinetic constant for the backward reaction.</p> "> Figure 2
<p>Random distribution of the reacting molecules D<sup>+</sup>Q<sub>A</sub><sup>−</sup>, D<sup>+</sup>Q<sub>A</sub><sup>−</sup>Q<sub>B</sub> and Q at the beginning of a simulation run by setting [RC] = 1.0 × 10<sup>−3</sup> M and <math display="inline"><semantics> <mrow> <msubsup> <mi>c</mi> <mi>Q</mi> <mi>T</mi> </msubsup> <mo>/</mo> <msubsup> <mi>c</mi> <mrow> <mi>R</mi> <mi>C</mi> </mrow> <mi>T</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. Comparisons between the simulate distributions (bars) and the theoretical probabilities, Gaussian <span class="html-italic">N</span>(<span class="html-italic">n|N<sub>x</sub>,</span><math display="inline"><semantics> <mrow> <msqrt> <mrow> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </msqrt> </mrow> </semantics></math> )<span class="html-italic">dn</span> (blue curves) for D<sup>+</sup>Q<sub>A</sub><sup>−</sup> and Poisson <span class="html-italic">P(n|N<sub>x</sub>)</span> (red points and lines) for D<sup>+</sup>Q<sub>A</sub><sup>−</sup>Q<sub>B</sub> and Q, are reported.</p> "> Figure 3
<p>Experimental charge recombination traces at 865 nm for POPC at 25 °C: normalized absorbance χ(D<sup>+</sup>) = <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>A</mi> <mo>/</mo> <mo>Δ</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> </mrow> </semantics></math> <span class="html-italic">vs</span> time (black lines) along with the optimized solutions (red lines) of the ODE set reported in Equation (2). Q/RC ratios are: 0, 0.5, 0.8 and 20 going from the fastest decay to the slowest. Initial concentrations have been set, as described in Numerical Integration Section. The best-fit kinetic constants are reported in <a href="#data-05-00053-t001" class="html-table">Table 1</a>. The optimized kinetic parameters reduce the average RMSD of the four curves of about 50%.</p> "> Figure 4
<p>Time evolution of the photo excited species: comparisons between the single runs of stochastic simulations (black and gray curves) and the numerical solution of the ODE set (red dashed curves). Plots are referred to the same RC concentration: <span class="html-italic">c</span><sup>T</sup><sub>RC</sub> = 1.0 × 10<sup>−3</sup> M, but to six different values of the ratio <span class="html-italic">c</span><sup>T</sup><sub>Q</sub>/<span class="html-italic">c</span><sup>T</sup><sub>RC</sub>. In each plot simulation outcomes were performed for a vesicle with the same membrane composition, but with an increasing membrane volume, starting from the membrane volume of a 40 nm radius liposome <span class="html-italic">V</span><sub>40</sub> = <math display="inline"><semantics> <mrow> <mn>7</mn> <msup> <mrow> <mrow> <mo>.</mo> <mn>3</mn> <mtext> </mtext> <mo>×</mo> <mtext> </mtext> <mn>10</mn> </mrow> </mrow> <mrow> <mrow> <mo>−</mo> <mn>20</mn> </mrow> </mrow> </msup> <mo> </mo> <mi>d</mi> <msup> <mi>m</mi> <mn>3</mn> </msup> <mo>,</mo> </mrow> </semantics></math> (black curve) and enlarging the membrane volume by 10 to 10<sup>3</sup> times. Legends show the RMSD values for the individual stochastic traces calculated with Equation (4).</p> "> Figure 5
<p>Time evolution of the photo excited species: comparisons between the averages of stochastic simulations (black line with gray confidence bands) and the deterministic curves (red lines) for different <math display="inline"><semantics> <mrow> <msubsup> <mi>c</mi> <mi>Q</mi> <mi>T</mi> </msubsup> </mrow> </semantics></math>/<math display="inline"><semantics> <mrow> <msubsup> <mi>c</mi> <mrow> <mi>R</mi> <mi>C</mi> </mrow> <mi>T</mi> </msubsup> </mrow> </semantics></math>. The averages were calculated over the stochastic simulation outcomes of a 500 monodispersed vesicle population having a 40 nm radius and a membrane volume <span class="html-italic">V</span><sub>40</sub> = <math display="inline"><semantics> <mrow> <mn>7</mn> <msup> <mrow> <mrow> <mo>.</mo> <mn>3</mn> <mtext> </mtext> <mo>×</mo> <mtext> </mtext> <mn>10</mn> </mrow> </mrow> <mrow> <mrow> <mo>−</mo> <mn>20</mn> </mrow> </mrow> </msup> <mo> </mo> <mi>d</mi> <msup> <mi>m</mi> <mn>3</mn> </msup> <mo>,</mo> </mrow> </semantics></math> the same RC concentration: <span class="html-italic">c</span><sup>T</sup><sub>RC</sub> = 1.0 × 10<sup>−3</sup> M, but six different values of the ratio <span class="html-italic">c</span><sup>T</sup><sub>Q</sub>/<span class="html-italic">c</span><sup>T</sup><sub>RC</sub>. The RC proteins and Q molecules were distributed uniformly over the vesicle populations.</p> "> Figure 6
<p>Time evolution of the photo excited species: comparison between the averages of stochastic simulations (black lines with grey error bands) and the deterministic curves (red lines) for a population of 500 monodisperse vesicles of 200 nm (<b>A</b>), 40 nm (<b>B</b>), and 20 nm (<b>C</b>) radius, respectively, with the same membrane composition: <math display="inline"><semantics> <mrow> <msubsup> <mi>c</mi> <mrow> <mi>R</mi> <mi>C</mi> </mrow> <mi>T</mi> </msubsup> </mrow> </semantics></math> = 1.0 × 10<sup>−3</sup> M and <math display="inline"><semantics> <mrow> <msubsup> <mi>c</mi> <mi>Q</mi> <mi>T</mi> </msubsup> </mrow> </semantics></math> /<math display="inline"><semantics> <mrow> <msubsup> <mi>c</mi> <mrow> <mi>R</mi> <mi>C</mi> </mrow> <mi>T</mi> </msubsup> </mrow> </semantics></math> = 1. The RC proteins and Q molecules were distributed randomly over the vesicle populations according to a Gaussian density/Poisson probability.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. The Kinetic Mechanism
2.2. Experimental Outcomes and Kinetic Rate Constant Estimation
2.3. The Kinetic Ordinary Differential Equation Set
2.4. Numerical Integrations
2.5. Optimization Procedure
2.6. Stochastic Simulations
3. Results and Discussion
3.1. Stochastic Simulations of a Single Vesicle with Increasing Membrane Volume
3.2. Stochastic Simulations of Vesicle Populations with Constant Radius and Uniform Solute Distribution
3.3. Stochastic Simulations of Vesicles Populations with Gaussian Solute Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Bahatyrova, S.; Frese, R.N.; Siebert, C.A.; Olsen, J.D.; van der Werf, K.O.; van Grondelle, R.; Niederman, R.A.; Bullough, P.A.; Otto, C.; Hunter, C.N. The native architecture of a photosynthetic membrane. Nature 2004, 430, 1058–1062. [Google Scholar] [CrossRef]
- Allen, J.P.; Williams, J.C. Photosynthetic reaction centers. FEBS Lett. 1998, 438, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.P.; Feher, G.; Yeates, T.O.; Komiya, H.; Rees, D.C. Structure of the reaction center from Rhodobacter sphaeroides R-26: Protein-cofactor (quinones and Fe2+) interactions. Proc. Natl. Acad. Sci. USA 1988, 85, 8487–8491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stowell, M.H.; McPhillips, T.M.; Rees, D.C.; Soltis, S.M.; Abresch, E.; Feher, G. Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 1997, 276, 812–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcpherson, P.H.; Okamura, M.Y.; Feher, G. Electron transfer from the reaction center of Rhodobacter sphaeroides to the quinone pool - doubly reduced QB leaves the reaction center. Biochim. Biophys. Acta 1990, 1016, 289–292. [Google Scholar] [CrossRef]
- Crofts, A.R.; Meinhardt, S.W.; Jones, K.R.; Snozzi, M. The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides: A modified q-cycle mechanism. Biochim. Biophys. Acta 1983, 723, 202–218. [Google Scholar] [CrossRef] [Green Version]
- Altamura, E.; Fiorentino, R.; Palazzo, G.; Stano, P.; Mavelli, F. First moves towards photoautotrophic synthetic cells: In vitro study of photosynthetic reaction centre and cytochrome bc1 complex interactions. Biophys. Chem. 2017, 229, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Singhaory, A.; Maffeo, C.; Delgado-Magnero, K.H.; Swainsbury, D.J.K.; Sener, M.; Kleinekathöfer, U.; Vant, J.W.; Nguyen, J.; Hitchcock, A.; Isralewitz, B.; et al. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019, 179, 1098–1111. [Google Scholar] [CrossRef] [PubMed]
- Altamura, E.; Milano, F.; Tangorra, R.R.; Trotta, M.; Omar, O.H.; Stano, P.; Mavelli, F. Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells the article. Proc. Natl. Acad. Sci. USA 2017, 114, 3837–3842. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, G.; Mallardi, A.; Giustini, M.; Berti, D.; Venturoli, G. Cumulant analysis of charge recombination kinetics in bacterial reaction centers reconstituted into lipid vesicles. Biophys. J. 2000, 79, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Mavelli, F.; Trotta, M.; Ciriaco, F.; Agostiano, A.; Giotta, L.; Italiano, F.; Milano, F. The binding of quinone to the photosynthetic reaction centers: Kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. Eur. Biophys. J. 2014, 43, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Mavelli, F.; Altamura, E.; Cassidei, L.; Stano, P. Recent theoretical approaches to minimal artificial cells. Entropy 2014, 16, 2488–2511. [Google Scholar] [CrossRef]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 166–186. [Google Scholar]
- Gillespie, D.T. Markov Processes: An Introduction for Physical Scientists; Academic Press: San Diego, CA, USA, 1992; pp. 332–335. [Google Scholar]
- Érdi, P.; Lente, G. Stochastic Chemical Kinetics—Theory and (Mostly) Systems Biological Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Mavelli, F.; Piotto, S. Stochastic simulations of homogeneous chemically reacting systems. J. Mol. Struct. Theochem 2006, 771, 55–64. [Google Scholar] [CrossRef]
- Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic Reactions in Confined Environments. Nat. Nanotechnol. 2016, 11, 409–420. [Google Scholar] [CrossRef]
- Altamura, E.; Carrara, P.; D’Angelo, F.; Mavelli, F.; Stano, P. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: A review. Synth. Biol. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- D’Aguanno, E.; Altamura, E.; Mavelli, F.; Fahr, A.; Stano, P.; Luisi, P.L. Physical routes to primitive cells: An experimental model based on the spontaneous entrapment of enzymes inside Micrometer-Sized liposomes. Life 2015, 5, 969–996. [Google Scholar] [CrossRef] [Green Version]
- Mavelli, F.; Stano, P. Experiments and numerical modelling on the capture and concentration of transcription-translation machinery inside vesicles. Artif. Life 2015, 21. [Google Scholar] [CrossRef]
- Mavelli, F.; Ruiz-Mirazo, K. ENVIRONMENT: A computational platform to stochastically simulate reacting and self-reproducing compartments. Phys. Biol. 2010, 3, 36002. [Google Scholar] [CrossRef]
- Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Sipos, T.; Tóth, J.; Érdi, P. Stochastic simulation of complex chemical reactions by digital computer. I. The model. React. Kinet. Catal. Lett. 1974, 1, 113–117. [Google Scholar] [CrossRef]
- Sipos, T.; Tóth, J.; Érdi, P. Stochastic simulation of complex chemical reactions by digital computer. II. Applications. React. Kinet. Catal. Lett. 1974, 1, 209–213. [Google Scholar] [CrossRef]
- Kleinfeld, D.; Okamura, M.Y.; Feher, G. Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQ−B and free energy and kinetic relations between Q−AQB and QAQ−B. Biochim. Biophys. Acta 1984, 766, 126–140. [Google Scholar] [CrossRef]
- Shinkarev, V.P.; Wraight, C.A. Electron and proton transfer in the acceptor quinone complex of reaction centres of phototrophic bacteria. In The Photosynthetic Reaction Center; Deisenhofer, J., Norris, J.R., Eds.; Academic Press: Cambridge, MA, USA, 1993; pp. 193–255. [Google Scholar]
- Agostiano, A.; Milano, F.; Trotta, M. Investigation on the detergent role in the function of secondary quinone in bacterial reaction centers. Eur. J. Biochem. 1999, 262, 358–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallardi, A.; Palazzo, G.; Venturoli, G. Binding of ubiquinone to photosynthetic reaction centers: Determination of enthalpy and entropy changes in reverse micelles. J. Phys. Chem. B 1997, 101, 7850–7857. [Google Scholar] [CrossRef]
- Milano, F.; Agostiano, A.; Mavelli, F.; Trotta, M. Kinetics of the quinone binding reaction at the Q(B) site of reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes. Eur. J. Biochem. 2003, 270, 4595–4605. [Google Scholar] [CrossRef]
- Nagy, L.; Milano, F.; Dorogi, M.; Agostiano, A.; Laczko, G.; Szebenyi, K.; Varo, G.; Trotta, M.; Maroti, P. Protein/lipid interaction in the bacterial photosynthetic reaction center: Phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Biochemistry 2004, 43, 12913–12923. [Google Scholar] [CrossRef]
- Milano, F.; Italiano, F.; Agostiano, A.; Trotta, M. Characterisation of RC-proteoliposomes at different RC/lipid ratios. Photosynth. Res. 2009, 100, 107–112. [Google Scholar] [CrossRef]
- Shampine, L.F.; Reichelt, M.W. The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 18. [Google Scholar] [CrossRef] [Green Version]
- Levenberg, K. A Method for the Solution of Certain Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Li, H.; Cao, Y.; Petzold, L.R.; Gillespie, D.T. Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 2008, 24, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Mavelli, F.; Ruiz-Mirazo, K. Stochastic simulations of minimal self-reproducing cellular systems. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2007, 362, 1789–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavelli, F. Stochastic simulations of minimal cells: The Ribocell model. BMC Bioinform. 2012, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavelli, F.; Stano, P. Kinetic models for autopoietic chemical systems: Role of fluctuations in homeostatic regime. Phys. Biol. 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, T.G. The Relationship between Stochastic and Deterministic Models for Chemical Reactions. J. Chem. Phys. 1972, 57, 2976–2978. [Google Scholar] [CrossRef]
- Lente, G.; Ditrói, T. Stochastic Kinetic Analysis of the Frank Model. Stochastic Approach to Flow-Through Reactors. J. Phys. Chem. B 2009, 113, 7237–7242. [Google Scholar] [CrossRef]
- Stano, P.; Altamura, E.; Mavelli, F. Novel directions in molecular systems design: The case of light-transducing synthetic cells. Commun. Integr. Biol. 2017, 10, e1365993. [Google Scholar] [CrossRef]
- Altamura, E.; Albanese, P.; Marotta, R.; Milano, F.; Fiore, M.; Trotta, M.; Stano, P.; Mavelli, F. Light-driven ATP production promotes mRNA biosynthesis inside hybrid multi-compartment artificial protocells. bioRxiv 2020. [Google Scholar] [CrossRef]
Kinetic Rate Constants | ||
---|---|---|
Parameters | Guess Values | Best-Fit Values |
k*in = kin | ≤ 2.18 × 105 M−1 s−1 | 2.45 × 105 M−1 s−1 |
k*out | ≤ 154 s−1 | 114 s−1 |
kout | ≤ 154 s−1 | 170 s−1 |
kAD = k’AD | 10 s−1 | 9.7 s−1 |
kBD | 6.0 × 10−2 | 2.18 × 10−2 |
kAB | 8.15 × 103 s−1 | 1.0 × 104 |
kBA | 574 s−1 | 544 s−1 |
[D+QA−]0 = [DQA]Eq | [D+QA−QB]0 = [DQAQB]Eq | [Q] | |
---|---|---|---|
0.1 | 9.319 × 10−4 | 6.809 × 10−5 | 3.191 × 10−5 |
0.3 | 8.055 × 10−4 | 1.945 × 10−4 | 1.055 × 10−4 |
0.5 | 6.932 × 10−4 | 3.068 × 10−4 | 1.932 × 10−4 |
0.7 | 5.960 × 10−4 | 4.040 × 10−4 | 2.960 × 10−4 |
1.0 | 4.776 × 10−4 | 5.224 × 10−4 | 4.776 × 10−4 |
3.0 | 1.677 × 10−4 | 8.323 × 10−4 | 2.168 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altamura, E.; Albanese, P.; Stano, P.; Trotta, M.; Milano, F.; Mavelli, F. Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. Data 2020, 5, 53. https://doi.org/10.3390/data5020053
Altamura E, Albanese P, Stano P, Trotta M, Milano F, Mavelli F. Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. Data. 2020; 5(2):53. https://doi.org/10.3390/data5020053
Chicago/Turabian StyleAltamura, Emiliano, Paola Albanese, Pasquale Stano, Massimo Trotta, Francesco Milano, and Fabio Mavelli. 2020. "Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach" Data 5, no. 2: 53. https://doi.org/10.3390/data5020053
APA StyleAltamura, E., Albanese, P., Stano, P., Trotta, M., Milano, F., & Mavelli, F. (2020). Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. Data, 5(2), 53. https://doi.org/10.3390/data5020053