Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel
Abstract
:1. Summary
2. Data Description
2.1. The Origin of Materials
2.2. The Properties of Raw and Pyrolyzed Materials
- Read-me (guide);
- Pyrolysis process;
- Proximate analysis;
- HHV;
- Ultimate analysis;
- DSC;
- TGA.
3. Methods
3.1. Material Preparation
3.2. Carbonized Solid Fuel (CSF) Production
3.3. Proximate and Ultimate Analysis of Raw and Carbonized Materials
- The moisture content (MC) was determined using a dryer (WAMED, model KBC-65W, Warsaw, Poland) according to the PN-EN 14346:2011 standard [24], in three replications;
- The organic matter content measured as loss on ignition (O.M.) was determined using a muffle furnace (Snol 8.1/1100, Utena, Lithuania) according to the PN-EN 15169:2011 standard [25], in three replications;
- The ash and combustible part (C.P.) was determined using a muffle furnace (Snol 8.1/1100, Utena, Lithuania) according to the PN-Z-15008-04:1993 standard [26], in three replications;
- The HHV was determined using a calorimeter (IKA® Werke GmbH, model C200, Staufen, Germany) according to PN-Z-15008-04:1993 [27], in two replications. During the experiment, for all CSF samples, with the exclusion of PAP/AL/PE composite packaging, the mass was 0.2 ± 0.05 g. For CSF made from PAP/AL/PE composite packaging, the mass of samples for testing was reduced to 0.01 g ± 0.002 g. The reason for that was the high content of aluminum in the PAP/AL/PE composite packaging, which did not oxidize completely for a larger sample mass.
3.4. Thermogravimetric Analysis (TGA) of Raw Materials
3.5. Differential Scanning Calorimetry Analysis of Raw Materials
4. User Notes
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dalai, A.K.; Batta, N.; Eswaramoorthi, I.; Schoenau, G.J. Gasification of refuse derived fuel in a fixed bed reactor for syngas production. Waste Manag. 2009, 29, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Szul, M. Possibilities for application of alternative fuels in Poland. Arch. Waste Manag. Environ. Prot. 2016, 18, 33–44. Available online: https://docplayer.pl/50891650-Possibilities-for-application-of-alternative-fuels-in-poland.html (accessed on 20 April 2020).
- Białowiec, A.; Pulka, J.; Manczarski, P.; Stępień, P.; Gołaszewski, J. The RDF/SRF torrefaction: An effect of temperature on characterization of the product – Carbonized Refuse Derived Fuel. Waste Manag. 2017, 70, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Pawłowski, P.; Bałazińskia, M.; Ignasiak, K.; Robak, J. Preparation of the selected groups of waste their energy use—Fuel from waste type SRF. Piece Przem. Kotły 2016, 4, 20–26. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-e47428b1-ef35-4fce-81b4-5d4f7cce3866 (accessed on 20 April 2020).
- Velis, C.A.; Longhurst, P.J.; Drew, G.H.; Smith, R.; Pollard, S.J.T. Critical Reviews in Environmental Science and Technology Production and Quality Assurance of Solid Recovered Fuels Using Mechanical—Biological Treatment (MBT) of Waste: A Comprehensive Assessment. Crit. Rev. Environ. Sci. Technol. 2010, 40, 979–1105. [Google Scholar] [CrossRef] [Green Version]
- Velis, C.A.; Longhurst, P.J.; Drew, G.H.; Smith, R.; Pollard, S.J.T. Bioresource Technology Biodrying for mechanical—biological treatment of wastes: A review of process science and engineering. Bioresour. Technol. 2009, 100, 2747–2761. [Google Scholar] [CrossRef] [Green Version]
- Karwat, B.; Dariusz, G.; Stańczyk, E. Using alternative fuels in the production of cement. Environ. Prot. Natrual Resour. 2014, 25, 35–38. [Google Scholar]
- Municipal Waste by Waste Management Operations. Eurostat. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do# (accessed on 20 April 2020).
- Wielgosiński, G.; Namiecińska, O. Czym różni się spalarnia zmieszanych odpadów komunalnych od spalarni RDF? Nowa Energ. 2018, 1, 12–15. Available online: https://www.cire.pl/pokaz-pdf-%252Fpliki%252F2%252F2018%252Fwielgosinski_art_z_gazety.pdf (accessed on 20 April 2020).
- Ireneusz, Z. Response to Parliamentary Interpellations DGO-I.050.91.2019.AT 1116949.3244791.2519892; Warszawa. 2020. Available online: http://orka2.sejm.gov.pl/INT9.nsf/klucz/ATTBKWJKS/%24FILE/i00935-o1.pdf (accessed on 17 May 2020).
- Hollins, O.; Lee, P.; Sims, E.; Bertham, O.; Symington, H.; Bell, N.; Pfaltzgraff, L.; Sjögren, P. Towards a Circular Economy—Waste Management in the EU; Science and Technology Options Assessment: Brussels, Belgium, 2017; Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2017/581913/EPRS_STU%282017%29581913_EN.pdf (accessed on 20 March 2020).
- European Commission. Communication from the Commission to the Europea Parliamentnt, the Council, the European Economic and Social Committee and the Committee of the Regions—The Role of Waste-to-Energy in the Circular Economy. 2017. Available online: https://ec.europa.eu/environment/waste/waste-to-energy.pdf (accessed on 20 April 2020).
- Agirre, I.; Griessacher, T.; Rösler, G.; Antrekowitsch, J. Production of charcoal as an alternative reducing agent from agricultural residues using a semi-continuous semi-pilot scale pyrolysis screw reactor. Fuel Process. Technol. 2013, 106, 114–121. [Google Scholar] [CrossRef]
- Ansah, E.; Wang, L.; Shahbazi, A. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Manag. 2016, 56, 196–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buah, W.K.; Cunliffe, A.M.; Williams, P.T.Ã. Characterization of products from the pyrolysis of muncipal solid waste. Process Saf. Environ. Prot. 2007, 85, 450–457. [Google Scholar] [CrossRef]
- Velghe, I.; Carleer, R.; Yperman, J.; Schreurs, S. Study of the pyrolysis of municipal solid waste for the production of valuable products. J. Anal. Appl. Pyrolysis 2011, 92, 366–375. [Google Scholar] [CrossRef]
- Yool Ahn, S.; Yong Eom, S.; Hoon Rhie, Y.; Mo Sung, Y.; Eon Moon, C.; Min Choi, G.; Jool Kim, D. Application of refuse fuels in a direct carbon fuel cell system. Energy 2013, 51, 447–456. [Google Scholar] [CrossRef]
- Stępień, P.; Serownik, M.; Koziel, J.A.; Bialowiec, A. Waste to Carbon: Estimating the Energy Demand for Production of Carbonized Refuse-Derived Fuel. Sustainability 2019, 11, 5685. [Google Scholar] [CrossRef] [Green Version]
- Stępień, P.; Serownik, M.; Koziel, J.A.; Białowiec, A. Waste to Carbon Energy Demand Model and Data Based on the TGA and DSC Analysis of Individual MSW Components. Data 2019, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Long, Y.; Meng, A.; Li, Q.; Zhang, Y. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Manag. 2015, 38, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, G.X.; Yang, Q.Y.; Luo, W.H. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere 2013, 93, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Stępień, P.; Pulka, J.; Serowik, M.; Białowiec, A. Thermogravimetric and Calorimetric Characteristics of Alternative Fuel in Terms of Its Use in Low-Temperature Pyrolysis. Waste Biomass Valorization 2018, 10, 1669–1677. [Google Scholar] [CrossRef]
- Świechowski, K.; Koziel, J.A.; Liszewski, M.; Bąbelewski, P.; Białowiec, A. Fuel Properties of Torrefied Biomass from Pruning of Oxytree. Data 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Waste Characteristics. Calculation of Dry Mass on the Basis of Dry Residue or Water Content. Polish Standard PN-EN 14346:2011. Available online: https://sklep.pkn.pl/pn-en-14346-2011p.html?options=cart (accessed on 20 April 2020).
- Waste Characteristics. Content of Organic Matter. Polish Standard PN-EN 15169:2011. Available online: https://sklep.pkn.pl/pn-en-15169-2011p.html?options=cart (accessed on 20 April 2020).
- Municipal Solid Waste. Analysis of Combustible and Non-Combustible Content. Polish Standard PN-Z-15008-03:1993. Available online: https://sklep.pkn.pl/pn-z-15008-03-1993p.html (accessed on 20 April 2020).
- Municipal Solid Waste. Determination of the Higher Heating Value and the Lower Heating Value. Polish Standard PN-Z-15008-04:1993. Available online: https://sklep.pkn.pl/pn-z-15008-04-1993p.html?options=cart (accessed on 20 April 2020).
- Solid Mineral Fuel—Determination of Total Carbon, Hydrogen and Nitorgen—Instrumental Methods. Polish Standard PKN ISO/TS 12902:2007. Available online: https://sklep.pkn.pl/pkn-iso-ts-12902-2007p.html?options=cart (accessed on 20 April 2020).
- Stępień, P.; Świechowski, K.; Hnat, M.; Kugler, S.; Stegenta-Dąbrowska, S.; Koziel, J.A.; Manczarski, P.; Białowiec, A. Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel. Energies 2019, 12, 4344. [Google Scholar] [CrossRef] [Green Version]
Morphological Group of Waste | Material |
---|---|
Carton | Grey carton |
Fabrics | Cotton t-shirt |
Kitchen waste | Vegetables 41.6% (carrot 13.86%, potato 13.86%, salad 13.86%), banana peel 29.7%, basic food (pasta 7.43%, rice 7.43%, bread 7.43%), chicken 0.2%, eggshells 4%, and walnut shells 2.2% by weight |
Paper | Office paper |
Plastics | Polyethylene foil |
Rubber | Car inner tube |
PAP/AL/PE composite packaging | Tetra Pak packaging |
Wood | Branches from pruning of trees |
Morphological Group of Waste | RDF-1, % | RDF-2, % |
---|---|---|
Carton | 9.64 | 8.57 |
Fabrics | 6.20 | 9.54 |
Kitchen waste | 4.02 | 7.10 |
Paper | 9.64 | 8.57 |
Plastics | 34.23 | 45.24 |
Rubber | 9.60 | 7.71 |
PAP/AL/PE composite packaging | 12.22 | 5.81 |
Wood | 14.45 | 7.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świechowski, K.; Syguła, E.; Koziel, J.A.; Stępień, P.; Kugler, S.; Manczarski, P.; Białowiec, A. Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel. Data 2020, 5, 48. https://doi.org/10.3390/data5020048
Świechowski K, Syguła E, Koziel JA, Stępień P, Kugler S, Manczarski P, Białowiec A. Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel. Data. 2020; 5(2):48. https://doi.org/10.3390/data5020048
Chicago/Turabian StyleŚwiechowski, Kacper, Ewa Syguła, Jacek A. Koziel, Paweł Stępień, Szymon Kugler, Piotr Manczarski, and Andrzej Białowiec. 2020. "Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel" Data 5, no. 2: 48. https://doi.org/10.3390/data5020048
APA StyleŚwiechowski, K., Syguła, E., Koziel, J. A., Stępień, P., Kugler, S., Manczarski, P., & Białowiec, A. (2020). Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel. Data, 5(2), 48. https://doi.org/10.3390/data5020048