A High-Resolution Global Gridded Historical Dataset of Climate Extreme Indices
<p>Snapshot of the data repository web interface showing individual files in CEI_0p25_1970_2016 that are available for download at <a href="https://doi.org/10.1594/PANGAEA.898014" target="_blank">https://doi.org/10.1594/PANGAEA.898014</a>.</p> "> Figure A1
<p>Annual Warmest Day “TXx” (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) in 2003.</p> "> Figure A2
<p>Warmest Day “HWM_Tx90” (<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) in 2003 (Average temperature across all individual heatwaves).</p> "> Figure A3
<p>Cold Spell Duration Index “CSDI” (Days) in 2013.</p> "> Figure A4
<p>Total wet-day rainfall “PRCPTOT” (mm) in July 2005.</p> ">
Abstract
:1. Introduction
2. Dataset Description
2.1. Spatial and Temporal coverage of CEI_0p25_1970_2016
2.2. Other Existing Datasets Incorporating CEIs
3. Materials and Methods
3.1. Data Acquisition and Processing
3.2. Choice of GLDAS as a Reanalysis Dataset for the Computation of CEIs
4. Key Features, Scope of Application, and Limitations of CEI_0p25_1970_2016
4.1. Novelty of CEI_0p25_1970_2016
4.2. Scope of Application
4.3. Limitations of Indices Included in CEI_0p25_1970_2016
5. Dataset Availability and Plans for Future Work
5.1. Data Access, File Naming Convention, and Size
5.2. Ongoing Work and Recommendations for Work in Future
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Sample Plots of Selective Indices from Tables S1 and S2 Using Panoply
References
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMOWorkshop on Indices and Indicators for Climate Extremes Workshop Summary. In Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry; Karl, T.R., Nicholls, N., Ghazi, A., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 3–7. [Google Scholar] [CrossRef]
- Alexander, L.; Tebaldi, C. Chapter 10 - Climate and Weather Extremes: Observations, Modelling, and Projections. In The Future of the World’s Climate, 2nd ed.; Henderson-Sellers, A., McGuffie, K., Eds.; Elsevier: Boston, MA, USA, 2012; pp. 253–288. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global Land-Based Datasets for Monitoring Climatic Extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.; Herold, N. ClimPACT2 Indices and Software (R Software Package). Available online: https://htmlpreview.github.io/?https://raw.githubusercontent.com/ARCCSS-extremes/climpact2/master/user_guide/ClimPACT2_user_guide.htm (accessed on 12 March 2019).
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Mistry, M. A High-Resolution Global Gridded Dataset of Climate Indices Relevant for Health and Energy Sector. 2019; under prep. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Senay, G.B.; Verdin, J.P. Evaluation of the Global Land Data Assimilation System (GLDAS) Air Temperature Data Products. J. Hydrometeorol. 2015, 16, 2463–2480. [Google Scholar] [CrossRef]
- Iizumi, T.; Takikawa, H.; Hirabayashi, Y.; Hanasaki, N.; Nishimori, M. Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. J. Geophys. Res. Atmos. 2017, 122, 7800–7819. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Begueria, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. R Package Version 1.6. 2013. Available online: http://CRAN.R-project.org/package=SPEI (accessed on 11 August 2018).
- Kumar, S.V.; Peters-Lidard, C.D.; Tian, Y.; Houser, P.R.; Geiger, J.; Olden, S.; Lighty, L.; Eastman, J.L.; Doty, B.; Dirmeyer, P.; et al. Land information system: An interoperable framework for high resolution land surface modeling. Environ. Model. Softw. 2006, 21, 1402–1415. [Google Scholar] [CrossRef]
- Peters-Lidard, C.D.; Houser, P.R.; Tian, Y.; Kumar, S.V.; Geiger, J.; Olden, S.; Lighty, L.; Doty, B.; Dirmeyer, P.; Adams, J.; et al. High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Softw. Eng. 2007, 3, 157–165. [Google Scholar] [CrossRef]
- Zender, C.S. Analysis of self-describing gridded geoscience data with netCDF Operators (NCO). Environ. Model. Softw. 2008, 23, 1338–1342. [Google Scholar] [CrossRef] [Green Version]
- Schulzweida, U. Climate Data Operators (CDO) User Guide, Version 1.9.0; Max-Planck-Institute for Meteorology: Hamburg, Germany, 2018. [Google Scholar]
- De Cian, E.; Sue Wing, I. Global Energy Consumption in a Warming Climate. Environ. Resour. Econ. 2019, 72, 365–410. [Google Scholar] [CrossRef]
- Zhong, L.; Su, Z.; Ma, Y.; Salama, M.S.; Sobrino, J.A. Accelerated Changes of Environmental Conditions on the Tibetan Plateau Caused by Climate Change. J. Clim. 2011, 24, 6540–6550. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Cuo, L.; Zhang, Y. Changes in Moisture Flux over the Tibetan Plateau during 1979–2011 and Possible Mechanisms. J. Clim. 2014, 27, 1876–1893. [Google Scholar] [CrossRef]
- Mysiak, J.; Torresan, S.; Bosello, F.; Mistry, M.; Amadio, M.; Marzi, S.; Furlan, E.; Sperotto, A. Climate risk index for Italy. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2018, 376, 20170305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Cannon, A.J.; Murdock, T.; Sobie, S.; Zwiers, F.; Anderson, K.; Qian, B. Indices of Canada’s future climate for general and agricultural adaptation applications. Clim. Chang. 2018, 148, 249–263. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Beecham, S.; Xu, H.; Ingleton, G. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption. Environ. Res. Lett. 2017, 12, 024021. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V. On the Measurement of Heat Waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef] [Green Version]
- Nairn, J.R.; Fawcett, R.J.B. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2015, 12, 227–253. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, M.; Russo, S.; di Sabatino, S.; Michetti, M.; Scoccimarro, E.; Gualdi, S. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Sci. Total Environ. 2016, 571, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE Handbook; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2001; Chapter 31.
- Masterton, J.M.; De l’environnement atmosphérique, C.S.; Richardson, F.A. Humidex: A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity; Environment Canada, Atmospheric Environment: Downsview, ON, Canada, 1979. [Google Scholar]
- Buzan, J.R.; Oleson, K.; Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 2015, 8, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Steadman, R.G. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J. Appl. Meteorol. 1979, 18, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Rothfusz, L. The Heat Index “Equation” (or, More Than You Ever Wanted to Know About Heat Index). Natl. Weather Serv. Tech. Attach. 1990. Available online: https://www.weather.gov/media/bgm/ta_htindx.PDF (accessed on 12 March 2019).
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S. Thermal Comfort and the Heat Stress Indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1. | CORDEX: http://www.cordex.org/; PRIMAVERA: https://www.primavera-h2020.eu/. |
2. | Formed by the World Meteorological Organization (WMO) Commission for Climatology (CCl). |
3. | Extreme events that by definition typically occur a few times annually rather than severe impact, decadal weather events. The indices for moderate weather extremes use absolute or percentile thresholds generally set at moderate values (e.g., 25 °C, 90th percentile). |
4. | ~27 km × 27 km at the equator. |
5. | |
6. | The two indices Cooling and Heating Degree Days (CDD and HDD) are computed separately as part of another dataset of additional indices relevant for health and energy sectors, currently under preparation [12]. Further details are provided in Section 5.2. |
7. | R version 3.5.0 (“Joy in Playing”) x86_64 on Linux Centos 6.6 software architecture. ClimPACT2 was accessed on 23 September 2018 from https://github.com/ARCCSS-extremes/climpact2. |
8. | NetCDF is a set of scientific software libraries, with self-describing and machine-independent data format. https://www.unidata.ucar.edu/software/netcdf/docs/. |
9. | Data accessed from https://disc.gsfc.nasa.gov/ on 12 July 2018. |
10. | NCO [20]: accessed on 14 July 2018 from http://nco.sourceforge.net/. |
11. | CDO [21] accessed on 14 July 2018 from http://www.mpimet.mpg.de/cdo. |
12. | At the time of assembling the current dataset, the newly released ECMWF-ERA5 that also includes a large set of variables was not publicly available prior to the year 2000. |
13. | The authors use a slightly modified version of HWDId in their study, which they refer to as Heat Magnitude Day (HMD) in agriculture. |
14. | The dataset will also be mirrored on KNMI Climate Explorer (http://climexp.knmi.nl/about.cgi?id=someone@somewhere), a web application interface that can facilitate not only rapid aggregation and robust statistical analysis of the CEI, but also downloading of spatio-temporal subsets and quick plotting. |
15. | The dataset includes a total of 89 netCDF4 files (49 on annual, 39 on monthly and 1 on daily timescales). Some indices have data both on monthly and annual timescales. |
16. | The R ClimPACT2 used in the present study for computing CEI_0p25_1970_2016 is hard-coded to compute the degree-days (CDD, HDD) on annual time scales. Degree-days at monthly and seasonal timescales are equally important in the energy sector. These are developed at various base (threshold) temperatures at the same gridded resolution in HEI_0p25_1970_2016. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mistry, M.N. A High-Resolution Global Gridded Historical Dataset of Climate Extreme Indices. Data 2019, 4, 41. https://doi.org/10.3390/data4010041
Mistry MN. A High-Resolution Global Gridded Historical Dataset of Climate Extreme Indices. Data. 2019; 4(1):41. https://doi.org/10.3390/data4010041
Chicago/Turabian StyleMistry, Malcolm N. 2019. "A High-Resolution Global Gridded Historical Dataset of Climate Extreme Indices" Data 4, no. 1: 41. https://doi.org/10.3390/data4010041
APA StyleMistry, M. N. (2019). A High-Resolution Global Gridded Historical Dataset of Climate Extreme Indices. Data, 4(1), 41. https://doi.org/10.3390/data4010041