Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds
<p>Schematic representation of the progress of cell-based and cell-biomaterial scaffolds for AMD.</p> "> Figure 2
<p>Photomicrographs of 5 μm retinal sections, captured at 3 weeks post-treatment, demonstrate the survival of implanted cells (green) at the 3-week time point (<b>A</b>–<b>E</b>). The green fluorescence indicates the presence of photoreceptor precursor cells (pRPCs), while the blue fluorescence represents Hoechst counterstaining for nuclear visualization. Additionally, images taken 24 h post-implantation (<b>F</b>) are included for comparative analysis. Reprinted from Ref. [<a href="#B68-bioengineering-12-00278" class="html-bibr">68</a>].</p> "> Figure 3
<p>Subretinal engraftment of hESC-derived RPE cells in the albino rabbit model was evaluated through longitudinal multimodal imaging and histopathological analysis. (<b>A</b>) In vivo assessment utilizing multicolor confocal scanning laser ophthalmoscopy (cSLO) combined with spectral-domain optical coherence tomography (SD-OCT) demonstrated the structural integration of transplanted hESC-RPE cells at 1-, 4-, and 12-week postoperative intervals. The SD-OCT scan planes are demarcated by green reference lines. (<b>B</b>) Histological validation at the 4-week time point revealed successful RPE engraftment, as evidenced by bright-field microscopy and immunofluorescence staining for nuclear mitotic apparatus protein (NuMA) and bestrophin-1 (BEST-1), specific markers of RPE cellular integrity and functionality. Scale bars represent 200 μm for panel A and 50 μm for panel B. Reprinted from Ref. [<a href="#B77-bioengineering-12-00278" class="html-bibr">77</a>].</p> "> Figure 4
<p>RPE cell transplantation in RCS rats. (<b>A</b>,<b>B</b>) Fundus imaging (<b>A</b>) and hematoxylin and eosin (H&E) staining (<b>B</b>) were performed on the eyes of RCS rats following subretinal injection of saline or retinal pigment epithelial (RPE) cells. The inset in (<b>A</b>) demonstrates the presence of human nuclear antigen-positive cells in the RPE-injected eye at postnatal day 90 (P90). (<b>C</b>) Assessment of visual function via optokinetic tracking revealed a significant improvement in visual acuity in RCS rats that received RPE transplantation compared to those injected with saline. (<b>D</b>) Immunohistochemical analysis of retinal sections using cone arrestin antibody was conducted to evaluate cone photoreceptor preservation following RPE transplantation. (<b>E</b>,<b>F</b>) Quantitative analysis of retinal thickness (<b>E</b>) and cone photoreceptor density (<b>F</b>) was performed in RCS rats receiving low and high doses of RPE transplantation. Measurements were taken from both the nasal and temporal regions of the retina. Scale bars represent 100 μm. Reprinted from Ref. [<a href="#B83-bioengineering-12-00278" class="html-bibr">83</a>].</p> "> Figure 5
<p>(<b>A</b>) Experimental design for the transplantation of induced retinal pigment epithelial (iRPE) cells in a sodium iodate (SI)-induced rat model of AMD. (<b>B</b>) ERG waveforms recorded at various time points post-transplantation. The calibration scale indicates 200 μV vertically and 25 ms horizontally. (<b>C</b>) Quantitative analysis of ERG b-wave amplitude (<span class="html-italic">n</span> = 10). Statistical significance was determined using one-way ANOVA followed by Bonferroni’s post hoc test. (<b>D</b>) Representative micrographs of retinal sections at 6 weeks post-transplantation. Injection sites are indicated by arrows, and the outer nuclear layer (ONL) is demarcated by yellow dashed lines. (<b>E</b>) Quantitative assessment of ONL thickness (μm) (<span class="html-italic">n</span> = 6). Statistical analysis was performed using one-way ANOVA with Bonferroni’s post hoc test. (<b>F</b>) Representative micrographs of retinal cryosections stained using the TUNEL assay to detect apoptotic cells. (<b>G</b>) Statistical analysis of the percentage of apoptotic cells within the ONL (<span class="html-italic">n</span> = 6). Data were analyzed using one-way ANOVA followed by Bonferroni’s post hoc test. (<b>H</b>) Immunostaining of human umbilical cord mesenchymal stem cells (hUCMSCs) and iRPE cells at 4 weeks post-transplantation in vivo. (<b>I</b>) Quantitative analysis of the percentage of immunostaining-positive grafted cells (<span class="html-italic">n</span> = 7). Statistical significance was determined using Student’s unpaired <span class="html-italic">t</span>-test. (<b>J</b>) Pigment epithelium-derived factor (PEDF) levels secreted by hUCMSCs and iRPE cells, as measured by ELISA (<span class="html-italic">n</span> = 4). Statistical analysis was performed using Student’s unpaired <span class="html-italic">t</span>-test. Scale bar = 50 μm. Data are presented as mean ± standard deviation (SD). Statistical significance is denoted as follows: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 compared to the PBS control group; <sup>#</sup> <span class="html-italic">p</span> < 0.05, <sup>##</sup> <span class="html-italic">p</span> < 0.01 compared to the hUCMSC group; <sup><span>$</span></sup> <span class="html-italic">p</span> < 0.05 compared to the PBS group. Adapted from Ref. [<a href="#B87-bioengineering-12-00278" class="html-bibr">87</a>].</p> ">
Abstract
:1. Introduction
2. Age-Related Macular Degeneration
3. Treatment of AMD
3.1. Cell-Level Studies of RPE Replacement
3.1.1. RPCs
3.1.2. ESCs
3.1.3. iPSCs
3.1.4. MSC
3.1.5. Co-Culture System for RPE
3.2. Study of Cell-Biomaterial Scaffolds in RPE Replacement
3.2.1. Cell-Biomaterial Scaffold Functionality
3.2.2. Material Properties for Cell-Biomaterial Scaffolds
3.2.3. Potential Solutions to the Limitations of Biomaterial Scaffolds
4. Key Challenges of RPE Replacement
4.1. Cell Graft Survival and Long-Term Replacement Capability
4.2. Host Tissue Rejection
4.3. Cell Delivery
4.4. Evaluation of Cell Replacement
4.5. Surgically Induced Damage
4.6. Organoids
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia-Ayuso, D.; Di Pierdomenico, J.; García-Bernal, D.; Vidal-Sanz, M.; Villegas-Pérez, M.P. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen. Res. 2022, 17, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Global Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Panda-Jonas, S.; Jonas, R.A.; Xu, J.; Wang, Y.X.; Jonas, J.B. Intraretinal Retinal Pigment Epithelium Cells in Age-Related Macular Degeneration. Ophthalmol. Sci. 2025, 5, 100626. [Google Scholar] [CrossRef] [PubMed]
- Abdi, F.; Mohammadi, S.S.; Falavarjani, K.G. Intravitreal Methotrexate. J. Ophthalmic Vis. Res. 2021, 16, 657–669. [Google Scholar] [CrossRef]
- Afarid, M.; Sanie-Jahromi, F. Potential neuroprotective biomolecules in ophthalmology. Int. Ophthalmol. 2021, 41, 1103–1109. [Google Scholar] [CrossRef]
- Al-Khersan, H.; Hussain, R.M.; Ciulla, T.A.; Dugel, P.U. Innovative therapies for neovascular age-related macular degeneration. Expert Opin. Pharmacother. 2019, 20, 1879–1891. [Google Scholar] [CrossRef]
- Fisher, C.R.; Ferrington, D.A. Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD41–AMD47. [Google Scholar] [CrossRef]
- Nowak, J.Z. Age-related macular degeneration (AMD): Pathogenesis and therapy. Pharmacol. Rep. 2006, 58, 353–363. [Google Scholar]
- Li, S.Y.; Liu, Y.; Wang, L.; Wang, F.; Zhao, T.T.; Li, Q.Y.; Xu, H.W.; Meng, X.H.; Hao, J.; Zhou, Q.; et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years’ follow-up. Cell Prolif. 2021, 54, e13100. [Google Scholar] [CrossRef]
- Zhang, H.; Su, B.; Jiao, L.; Xu, Z.H.; Zhang, C.J.; Nie, J.; Gao, M.L.; Zhang, Y.V.; Jin, Z.B. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: The first pre-clinical study for safety and efficacy in China. Ann. Transl. Med. 2021, 9, 245. [Google Scholar] [CrossRef]
- Ben M’Barek, K.; Monville, C. Cell Therapy for Retinal Dystrophies: From Cell Suspension Formulation to Complex Retinal Tissue Bioengineering. Stem Cells Int. 2019, 2019, 4568979. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xia, Y.; Zhang, L.; Xu, T.; Yi, Y.; Chen, J.; Liu, Z.; Yang, L.; Chen, S.; Zhou, X.; et al. Loading neural stem cells on hydrogel scaffold improves cell retention rate and promotes functional recovery in traumatic brain injury. Mater. Today Bio 2023, 19, 100606. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, S.; Kannan, S.; Lee, M.; Sanjairaj, V.; Lu, W.F.; Fuh, J.Y.H.; Sriram, G.; Cao, T. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink. Biotechnol. Bioeng. 2021, 118, 3150–3163. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Weiland, J.D.; Roska, B.; Humayun, M.S. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog. Retin. Eye Res. 2016, 53, 21–47. [Google Scholar] [CrossRef]
- Zhang, S.M.; Fan, B.; Li, Y.L.; Zuo, Z.Y.; Li, G.Y. Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cell. Mol. Neurobiol. 2023, 43, 3265–3276. [Google Scholar] [CrossRef]
- Abidi, M.; Karrer, E.; Csaky, K.; Handa, J.T. A Clinical and Preclinical Assessment of Clinical Trials for Dry Age-Related Macular Degeneration. Ophthalmol. Sci. 2022, 2, 100213. [Google Scholar] [CrossRef]
- Wang, K.; Li, H.; Sun, R.; Liu, C.; Luo, Y.; Fu, S.; Ying, Y. Emerging roles of transforming growth factor beta signaling in wet age-related macular degeneration. Acta Biochim. Biophys. Sin. 2019, 51, 1–8. [Google Scholar] [CrossRef]
- Ahmed, I.; Johnston, R.J., Jr.; Singh, M.S. Pluripotent stem cell therapy for retinal diseases. Ann. Transl. Med. 2021, 9, 1279. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Pawlowska, E.; Szczepanska, J.; Blasiak, J. DICER1 in the Pathogenesis of Age-related Macular Degeneration (AMD)—Alu RNA Accumulation versus miRNA Dysregulation. Aging Dis. 2020, 11, 851–862. [Google Scholar] [CrossRef]
- Wu, A.; Lu, R.; Lee, E. Tissue engineering in age-related macular degeneration: A mini-review. J. Biol. Eng. 2022, 16, 11. [Google Scholar] [CrossRef]
- Cheong, K.X.; Cheung, C.M.G.; Teo, K.Y.C. Review of Fibrosis in Neovascular Age-Related Macular Degeneration. Am. J. Ophthalmol. 2023, 246, 192–222. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.Y.; Butcher, E.; Saint-Geniez, M. EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2020, 21, 4271. [Google Scholar] [CrossRef] [PubMed]
- Zisimopoulos, A.; Klavdianou, O.; Theodossiadis, P.; Chatziralli, I. The Role of the Microbiome in Age-Related Macular Degeneration: A Review of the Literature. Ophthalmologica 2021, 244, 173–178. [Google Scholar] [CrossRef]
- Jaffe, G.J.; Westby, K.; Csaky, K.G.; Monés, J.; Pearlman, J.A.; Patel, S.S.; Joondeph, B.C.; Randolph, J.; Masonson, H.; Rezaei, K.A. C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology 2021, 128, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.F.; Slakter, J.S.; et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Avery, R.; Brown, D.M.; Heier, J.S.; Ho, A.C.; Huddleston, S.M.; Jaffe, G.J.; Khanani, A.M.; Pakola, S.; Pieramici, D.J.; et al. Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: A phase 1/2a dose-escalation study. Lancet 2024, 403, 1563–1573. [Google Scholar] [CrossRef]
- Heier, J.S.; Cohen, M.N.; Chao, D.L.; Pepio, A.; Shiraga, Y.; Capuano, G.; Rogers, A.; Ackert, J.; Sen, H.N.; Csaky, K. Phase 1 Study of JNJ-81201887 Gene Therapy in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology 2024, 131, 1377–1388. [Google Scholar] [CrossRef]
- Jack, L.S.; Sadiq, M.A.; Do, D.V.; Nguyen, Q.D. Emixustat and Lampalizumab: Potential Therapeutic Options for Geographic Atrophy. Dev. Ophthalmol. 2016, 55, 302–309. [Google Scholar] [CrossRef]
- Ahn, J.; Jang, K.; Sohn, J.; Park, J.I.; Hwang, D.D. Effect of intravitreal ranibizumab and aflibercept injections on retinal nerve fiber layer thickness. Sci. Rep. 2021, 11, 5010. [Google Scholar] [CrossRef]
- Gil-Martínez, M.; Santos-Ramos, P.; Fernández-Rodríguez, M.; Abraldes, M.J.; Rodríguez-Cid, M.J.; Santiago-Varela, M.; Fernández-Ferreiro, A.; Gómez-Ulla, F. Pharmacological Advances in the Treatment of Age-related Macular Degeneration. Curr. Med. Chem. 2020, 27, 583–598. [Google Scholar] [CrossRef]
- Brown, G.C.; Brown, M.M.; Rapuano, S.; Boyer, D. Cost-Utility Analysis of VEGF Inhibitors for Treating Neovascular Age-Related Macular Degeneration. Am. J. Ophthalmol. 2020, 218, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Khanani, A.M.; Hershberger, V.S.; Pieramici, D.J.; Khurana, R.N.; Brunstein, F.; Ma, L.; Maass, K.F.; Honigberg, L.A.; Tom, I.; Chen, H.; et al. Phase 1 Study of the Anti-HtrA1 Antibody-binding Fragment FHTR2163 in Geographic Atrophy Secondary to Age-related Macular Degeneration. Am. J. Ophthalmol. 2021, 232, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Airody, A.; Baseler, H.A.; Seymour, J.; Allgar, V.; Mukherjee, R.; Downey, L.; Dhar-Munshi, S.; Mahmood, S.; Balaskas, K.; Empeslidis, T.; et al. Treatment of age-related macular degeneration with aflibercept using a treat, extend and fixed protocol; A 4-year study of treatment outcomes, durability, safety and quality of life (An extension to the MATE randomised controlled trial). Acta Ophthalmol. 2024, 102, e328–e338. [Google Scholar] [CrossRef] [PubMed]
- Kassa, E.; Ciulla, T.A.; Hussain, R.M.; Dugel, P.U. Complement inhibition as a therapeutic strategy in retinal disorders. Expert Opin. Biol. Ther. 2019, 19, 335–342. [Google Scholar] [CrossRef]
- Chia, M.A.; Keane, P.A. Beyond anti-VEGF: Can faricimab reduce treatment burden for retinal disease? Lancet 2022, 399, 697–699. [Google Scholar] [CrossRef]
- Yannuzzi, N.A.; Freund, K.B. Brolucizumab: Evidence to date in the treatment of neovascular age-related macular degeneration. Clin. Ophthalmol. 2019, 13, 1323–1329. [Google Scholar] [CrossRef]
- Dreismann, A.K.; Hallam, T.M.; Tam, L.C.; Nguyen, C.V.; Hughes, J.P.; Ellis, S.; Harris, C.L. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol. Rev. 2023, 313, 402–419. [Google Scholar] [CrossRef]
- Khanani, A.M.; Thomas, M.J.; Aziz, A.A.; Weng, C.Y.; Danzig, C.J.; Yiu, G.; Kiss, S.; Waheed, N.K.; Kaiser, P.K. Review of gene therapies for age-related macular degeneration. Eye 2022, 36, 303–311. [Google Scholar] [CrossRef]
- Akyol, E.; Lotery, A. Gene, Cell and Antibody-Based Therapies for the Treatment of Age-Related Macular Degeneration. Biol. Targets Ther. 2020, 14, 83–94. [Google Scholar] [CrossRef]
- Papaioannou, C. Advancements in the treatment of age-related macular degeneration: A comprehensive review. Postgrad. Med. J. 2024, 100, 445–450. [Google Scholar] [CrossRef]
- Khanani, A.M.; Maturi, R.K.; Bagheri, N.; Bakall, B.; Boyer, D.S.; Couvillion, S.S.; Dhoot, D.S.; Holekamp, N.M.; Jamal, K.N.; Marcus, D.M.; et al. A Phase I, Single Ascending Dose Study of GEM103 (Recombinant Human Complement Factor H) in Patients with Geographic Atrophy. Ophthalmol. Sci. 2022, 2, 100154. [Google Scholar] [CrossRef] [PubMed]
- Gelfman, C.M.; Grishanin, R.; Bender, K.O.; Nguyen, A.; Greengard, J.; Sharma, P.; Nieves, J.; Kiss, S.; Gasmi, M. Comprehensive Preclinical Assessment of ADVM-022, an Intravitreal Anti-VEGF Gene Therapy for the Treatment of Neovascular AMD and Diabetic Macular Edema. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2021, 37, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, L.; Fynes, K.; Georgiadis, O.; Kerby, J.; Luo, Y.H.; Ahmado, A.; Vernon, A.; Daniels, J.T.; Nommiste, B.; Hasan, S.M.; et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018, 36, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, L.; Soomro, T.; Georgiadis, O.; Nommiste, B.; Sagoo, M.S.; Coffey, P. The Fate of RPE Cells Following hESC-RPE Patch Transplantation in Haemorrhagic Wet AMD: Pigmentation, Extension of Pigmentation, Thickness of Transplant, Assessment for Proliferation and Visual Function-A 5 Year-Follow Up. Diagnostics 2024, 14, 1005. [Google Scholar] [CrossRef]
- Koh, S.; Chen, W.J.; Dejneka, N.S.; Harris, I.R.; Lu, B.; Girman, S.; Saylor, J.; Wang, S.; Eroglu, C. Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Müller Glial Reactivity. J. Neurosci. 2018, 38, 2923–2943. [Google Scholar] [CrossRef]
- Lin, T.W.; Chien, Y.; Lin, Y.Y.; Wang, M.L.; Yarmishyn, A.A.; Yang, Y.P.; Hwang, D.K.; Peng, C.H.; Hsu, C.C.; Chen, S.J.; et al. Establishing Liposome-Immobilized Dexamethasone-Releasing PDMS Membrane for the Cultivation of Retinal Pigment Epithelial Cells and Suppression of Neovascularization. Int. J. Mol. Sci. 2019, 20, 241. [Google Scholar] [CrossRef]
- Wang, J.; Fan, W.; Liu, B.; Pu, N.; Wu, H.; Xue, R.; Li, S.; Song, Z.; Tao, Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacol. Res. 2024, 203, 107159. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.W.; Wang, L.; Li, S.Y.; Zhao, C.J.; Hao, J.; Li, Q.Y.; Zhao, T.T.; Wu, W.; Wang, Y.; et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 2018, 4, 50. [Google Scholar] [CrossRef]
- John, S.; Natarajan, S.; Parikumar, P.; Shanmugam, P.M.; Senthilkumar, R.; Green, D.W.; Abraham, S.J. Choice of Cell Source in Cell-Based Therapies for Retinal Damage due to Age-Related Macular Degeneration: A Review. J. Ophthalmol. 2013, 2013, 465169. [Google Scholar] [CrossRef]
- Abdouh, M.; Lu, M.; Chen, Y.; Goyeneche, A.; Burnier, J.V.; Burnier, M.N., Jr. Filtering blue light mitigates the deleterious effects induced by the oxidative stress in human retinal pigment epithelial cells. Exp. Eye Res. 2022, 217, 108978. [Google Scholar] [CrossRef]
- Rajendran Nair, D.S.; Zhu, D.; Sharma, R.; Martinez Camarillo, J.C.; Bharti, K.; Hinton, D.R.; Humayun, M.S.; Thomas, B.B. Long-Term Transplant Effects of iPSC-RPE Monolayer in Immunodeficient RCS Rats. Cells 2021, 10, 2951. [Google Scholar] [CrossRef] [PubMed]
- Binder, S.; Stanzel, B.V.; Krebs, I.; Glittenberg, C. Transplantation of the RPE in AMD. Prog. Retin. Eye Res. 2007, 26, 516–554. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, R.N.; Chiang, M.F.; Dyer, M.A.; Greenwell, T.N.; Levin, L.A.; Wong, R.O.; Svendsen, C.N. Regenerative and restorative medicine for eye disease. Nat. Med. 2022, 28, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Bharti, K.; den Hollander, A.I.; Lakkaraju, A.; Sinha, D.; Williams, D.S.; Finnemann, S.C.; Bowes-Rickman, C.; Malek, G.; D’Amore, P.A. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Exp. Eye Res. 2022, 222, 109170. [Google Scholar] [CrossRef]
- Sung, Y.; Lee, M.J.; Choi, J.; Jung, S.Y.; Chong, S.Y.; Sung, J.H.; Shim, S.H.; Song, W.K. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br. J. Ophthalmol. 2021, 105, 829–837. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Regillo, C.D.; Lam, B.L.; Eliott, D.; Rosenfeld, P.J.; Gregori, N.Z.; Hubschman, J.P.; Davis, J.L.; Heilwell, G.; Spirn, M.; et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015, 385, 509–516. [Google Scholar] [CrossRef]
- Gupta, S.; Lytvynchuk, L.; Ardan, T.; Studenovska, H.; Faura, G.; Eide, L.; Znaor, L.; Erceg, S.; Stieger, K.; Motlik, J.; et al. Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research. Biomedicines 2023, 11, 310. [Google Scholar] [CrossRef]
- Johnen, S.; Koutsonas, A. Dry AMD—Cellular and Genetic Therapies. Klin. Monatsblatter Fur Augenheilkd. 2019, 236, 1096–1102. [Google Scholar] [CrossRef]
- Tomczak, W.; Winkler-Lach, W.; Tomczyk-Socha, M.; Misiuk-Hojło, M. Advancements in Ocular Regenerative Therapies. Biology 2023, 12, 737. [Google Scholar] [CrossRef]
- Battu, R.; Ratra, D.; Gopal, L. Newer therapeutic options for inherited retinal diseases: Gene and cell replacement therapy. Indian J. Ophthalmol. 2022, 70, 2316–2325. [Google Scholar] [CrossRef]
- Coco-Martin, R.M.; Pastor-Idoate, S.; Pastor, J.C. Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges. Pharmaceutics 2021, 13, 865. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, D.; Tang, Z.; Zhang, Y.; Gao, H.; Ni, N.; Shen, B.; Sun, H.; Gu, P. REST, regulated by RA through miR-29a and the proteasome pathway, plays a crucial role in RPC proliferation and differentiation. Cell Death Dis. 2018, 9, 444. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Smith, M.E.; Redenti, S.M.; Wnek, G.E.; Young, M.J. Mouse retinal progenitor cell dynamics on electrospun poly (ϵ-caprolactone). J. Biomater. Sci. Polym. Ed. 2012, 23, 1451–1465. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, J.; Mao, X.; Li, G.; Xie, L.; You, Z. Transplantation of rat embryonic stem cell-derived retinal cells restores visual function in the Royal College of Surgeons rats. Doc. Ophthalmol. 2018, 137, 71–78. [Google Scholar] [CrossRef]
- Xu, H.J.; Li, Q.Y.; Zou, T.; Yin, Z.Q. Development-related mitochondrial properties of retinal pigment epithelium cells derived from hEROs. Int. J. Ophthalmol. 2021, 14, 1138–1150. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Age-Related Macular Degeneration. Medicines 2020, 7, 16. [Google Scholar] [CrossRef]
- Pan, T.; Shen, H.; Yuan, S.; Lu, G.; Zhang, Y.; Wang, H.; Zhao, Y.; Sun, X.; Liu, Q. Combined Transplantation with Human Mesenchymal Stem Cells Improves Retinal Rescue Effect of Human Fetal RPE Cells in Retinal Degeneration Mouse Model. Investig. Ophthalmol. Vis. Sci. 2020, 61, 9. [Google Scholar] [CrossRef]
- Abud, M.B.; Baranov, P.; Patel, S.; Hicks, C.A.; Isaac, D.L.C.; Louzada, R.N.; Dromel, P.; Singh, D.; Sinden, J.; Ávila, M.P.; et al. In vivo study to assess dosage of allogeneic pig retinal progenitor cells: Long-term survival, engraftment, differentiation and safety. J. Cell. Mol. Med. 2022, 26, 3254–3268. [Google Scholar] [CrossRef]
- Aweidah, H.; Matsevich, C.; Khaner, H.; Idelson, M.; Ejzenberg, A.; Reubinoff, B.; Banin, E.; Obolensky, A. Survival of Neural Progenitors Derived from Human Embryonic Stem Cells Following Subretinal Transplantation in Rodents. J. Ocul. Pharmacol. Ther. 2023, 39, 347–358. [Google Scholar] [CrossRef]
- Chaqour, B.; Karrasch, C. Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int. J. Mol. Sci. 2020, 21, 3487. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Shen, B.; Zhang, Y.; Gu, P. Stem/Progenitor Cells and Biodegradable Scaffolds in the Treatment of Retinal Degenerative Diseases. Curr. Stem Cell Res. Ther. 2018, 13, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.W. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int. J. Mol. Sci. 2023, 24, 14349. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.C.; Paull, D.; Pébay, A.; Lidgerwood, G.E. Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review. Clin. Exp. Ophthalmol. 2022, 50, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Klimanskaya, I.; Hipp, J.; Rezai, K.A.; West, M.; Atala, A.; Lanza, R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 2004, 6, 217–245. [Google Scholar] [CrossRef]
- Limnios, I.J.; Chau, Y.Q.; Skabo, S.J.; Surrao, D.C.; O’Neill, H.C. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res. Ther. 2021, 12, 248. [Google Scholar] [CrossRef]
- Garcia, T.Y.; Gutierrez, M.; Reynolds, J.; Lamba, D.A. Modeling the Dynamic AMD-Associated Chronic Oxidative Stress Changes in Human ESC and iPSC-Derived RPE Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7480–7488. [Google Scholar] [CrossRef]
- Petrus-Reurer, S.; Kumar, P.; Padrell Sánchez, S.; Aronsson, M.; André, H.; Bartuma, H.; Plaza Reyes, A.; Nandrot, E.F.; Kvanta, A.; Lanner, F. Preclinical safety studies of human embryonic stem cell-derived retinal pigment epithelial cells for the treatment of age-related macular degeneration. Stem Cells Transl. Med. 2020, 9, 936–953. [Google Scholar] [CrossRef]
- Ajgaonkar, B.S.; Kumaran, A.; Kumar, S.; Jain, R.D.; Dandekar, P.P. Cell-based Therapies for Corneal and Retinal Disorders. Stem Cell Rev. Rep. 2023, 19, 2650–2682. [Google Scholar] [CrossRef]
- Yang, Y.P.; Hsiao, Y.J.; Chang, K.J.; Foustine, S.; Ko, Y.L.; Tsai, Y.C.; Tai, H.Y.; Ko, Y.C.; Chiou, S.H.; Lin, T.C.; et al. Pluripotent Stem Cells in Clinical Cell Transplantation: Focusing on Induced Pluripotent Stem Cell-Derived RPE Cell Therapy in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2022, 23, 13794. [Google Scholar] [CrossRef]
- Akiba, R.; Takahashi, M.; Baba, T.; Mandai, M. Progress of iPS cell-based transplantation therapy for retinal diseases. Jpn J. Ophthalmol. 2023, 67, 119–128. [Google Scholar] [CrossRef]
- D’Antonio-Chronowska, A.; D’Antonio, M.; Frazer, K.A. In vitro Differentiation of Human iPSC-derived Retinal Pigment Epithelium Cells (iPSC-RPE). Bio.-Protocol. 2019, 9, e3469. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.; Viken, K.; Geng, Z.; Barkan, S.; Johnson, B.; Ebeling, M.C.; Montezuma, S.R.; Ferrington, D.A.; Dutton, J.R. Automating Human Induced Pluripotent Stem Cell Culture and Differentiation of iPSC-Derived Retinal Pigment Epithelium for Personalized Drug Testing. SLAS Technol. 2021, 26, 287–299. [Google Scholar] [CrossRef]
- Surendran, H.; Soundararajan, L.; Reddy, K.V.; Subramani, J.; Stoddard, J.; Reynaga, R.; Tschetter, W.; Ryals, R.C.; Pal, R. An improved protocol for generation and characterization of human-induced pluripotent stem cell-derived retinal pigment epithelium cells. STAR Protoc. 2022, 3, 101803. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Ruiz, F.; Galindo-Romero, C.; García-Bernal, D.; Norte-Muñoz, M.; Rodríguez-Ramírez, K.T.; Salinas-Navarro, M.; Millán-Rivero, J.E.; Vidal-Sanz, M.; Agudo-Barriuso, M. Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters? Neural Regen. Res. 2019, 14, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.J.; Chailakhyan, R.K.; Latsinik, N.V.; Panasyuk, A.F.; Keiliss-Borok, I.V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974, 17, 331–340. [Google Scholar] [CrossRef]
- Huang, Q.; Ding, Y.; Yu, J.G.; Li, J.; Xiang, Y.; Tao, N. Induction of Differentiation of Mesenchymal Stem Cells into Retinal Pigment Epithelial Cells for Retinal Regeneration by Using Ciliary Neurotrophic Factor in Diabetic Rats. Curr. Med. Sci. 2021, 41, 145–152. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Z.; Wang, L.; Ou, Q.; Feng, Z.; Xiao, H.; Shen, Q.; Li, Y.; Jin, C.; Xu, J.Y.; et al. Direct conversion of human umbilical cord mesenchymal stem cells into retinal pigment epithelial cells for treatment of retinal degeneration. Cell Death Dis. 2022, 13, 785. [Google Scholar] [CrossRef]
- Churm, R.; Dunseath, G.J.; Prior, S.L.; Thomas, R.L.; Banerjee, S.; Owens, D.R. Development and characterization of an in vitro system of the human retina using cultured cell lines. Clin. Exp. Ophthalmol. 2019, 47, 1055–1062. [Google Scholar] [CrossRef]
- Chang, Y.H.; Kumar, V.B.; Wen, Y.T.; Huang, C.Y.; Tsai, R.K.; Ding, D.C. Induction of Human Umbilical Mesenchymal Stem Cell Differentiation Into Retinal Pigment Epithelial Cells Using a Transwell-Based Co-culture System. Cell Transplant. 2022, 31, 9636897221085901. [Google Scholar] [CrossRef]
- Calejo, M.T.; Saari, J.; Vuorenpää, H.; Vuorimaa-Laukkanen, E.; Kallio, P.; Aalto-Setälä, K.; Miettinen, S.; Skottman, H.; Kellomäki, M.; Juuti-Uusitalo, K. Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomater. 2020, 101, 327–343. [Google Scholar] [CrossRef]
- Rizzolo, L.J.; Nasonkin, I.O.; Adelman, R.A. Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem Cells Transl. Med. 2022, 11, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, Z.; Yazdian, F.; Tabandeh, F.; Sheikhpour, M. Regenerative medicine as a novel strategy for AMD treatment: A review. Biomed. Phys. Eng. Express 2019, 6, 012001. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tao, Z.; Deng, H.; Cui, Y.; Xu, Z.; Lyu, Q.; Zhao, J. Therapeutic implications of nanodrug and tissue engineering for retinal pigment epithelium-related diseases. Nanoscale 2022, 14, 5657–5677. [Google Scholar] [CrossRef] [PubMed]
- Gullapalli, V.K.; Zarbin, M.A. New Prospects for Retinal Pigment Epithelium Transplantation. Asia-Pac. J. Ophthalmol. 2022, 11, 302–313. [Google Scholar] [CrossRef]
- Rohiwal, S.S.; Ellederová, Z.; Ardan, T.; Klima, J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021, 9, 1005. [Google Scholar] [CrossRef]
- Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 2019, 134, 673–694. [Google Scholar] [CrossRef]
- Babi, M.; Riesco, R.; Boyer, L.; Fatona, A.; Accardo, A.; Malaquin, L.; Moran-Mirabal, J. Tuning the Nanotopography and Chemical Functionality of 3D Printed Scaffolds through Cellulose Nanocrystal Coatings. ACS Appl. Bio Mater. 2021, 4, 8443–8455. [Google Scholar] [CrossRef]
- Aguilar, A.; Zein, N.; Harmouch, E.; Hafdi, B.; Bornert, F.; Offner, D.; Clauss, F.; Fioretti, F.; Huck, O.; Benkirane-Jessel, N.; et al. Application of Chitosan in Bone and Dental Engineering. Molecules 2019, 24, 3009. [Google Scholar] [CrossRef]
- Bucatariu, S.M.; Constantin, M.; Varganici, C.D.; Rusu, D.; Nicolescu, A.; Prisacaru, I.; Carnuta, M.; Anghelache, M.; Calin, M.; Ascenzi, P.; et al. A new sponge-type hydrogel based on hyaluronic acid and poly(methylvinylether-alt-maleic acid) as a 3D platform for tumor cell growth. Int. J. Biol. Macromol. 2020, 165, 2528–2540. [Google Scholar] [CrossRef]
- Altunbek, M.; Gezek, M.; Buck, P.; Camci-Unal, G. Development of Human-Derived Photocrosslinkable Gelatin Hydrogels for Tissue Engineering. Biomacromolecules 2024, 25, 165–176. [Google Scholar] [CrossRef]
- Altiti, A.; He, M.; VanPatten, S.; Cheng, K.F.; Ahmed, U.; Chiu, P.Y.; Mughrabi, I.T.; Jabari, B.A.; Burch, R.M.; Manogue, K.R.; et al. Thiocarbazate building blocks enable the construction of azapeptides for rapid development of therapeutic candidates. Nat. Commun. 2022, 13, 7127. [Google Scholar] [CrossRef] [PubMed]
- Di Pompo, G.; Liguori, A.; Carlini, M.; Avnet, S.; Boi, M.; Baldini, N.; Focarete, M.L.; Bianchi, M.; Gualandi, C.; Graziani, G. Electrospun fibers coated with nanostructured biomimetic hydroxyapatite: A new platform for regeneration at the bone interfaces. Biomater. Adv. 2023, 144, 213231. [Google Scholar] [CrossRef] [PubMed]
- Weiden, J.; Schluck, M.; Ioannidis, M.; van Dinther, E.A.W.; Rezaeeyazdi, M.; Omar, F.; Steuten, J.; Voerman, D.; Tel, J.; Diken, M.; et al. Robust Antigen-Specific T Cell Activation within Injectable 3D Synthetic Nanovaccine Depots. ACS Biomater. Sci. Eng. 2021, 7, 5622–5632. [Google Scholar] [CrossRef] [PubMed]
- Atehortua, C.; Montoya, Y.; García, A.; Bustamante, J. Hemolytic, Biocompatible, and Functional Effect of Cellularized Polycaprolactone-Hydrolyzed Collagen Electrospun Membranes for Possible Application as Vascular Implants. J. Biomed. Nanotechnol. 2021, 17, 1184–1198. [Google Scholar] [CrossRef]
- Ansari, M.A.A.; Jain, P.K.; Nanda, H.S. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties. J. Biomater. Sci. Polym. Ed. 2023, 34, 1408–1429. [Google Scholar] [CrossRef]
- Cardenas Turner, J.; Collins, G.; Blaber, E.A.; Almeida, E.A.C.; Arinzeh, T.L. Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. J. Tissue Eng. Regen. Med. 2020, 14, 173–185. [Google Scholar] [CrossRef]
- Bonani, W.; Cagol, N.; Maniglio, D. Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication. Adv. Exp. Med. Biol. 2020, 1250, 49–61. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- ISO 10993-6; Biological Evaluation of Medical Devices. Part 6: Tests for Local Effects AFTER implantation. ISO: Geneva, Switzerland, 2016.
- ISO 10993-11; Biological Evaluation of Medical Devices. Part 11: Tests for Systemic Toxicity. ISO: Geneva, Switzerland, 2017.
- Benayahu, D.; Pomeraniec, L.; Shemesh, S.; Heller, S.; Rosenthal, Y.; Rath-Wolfson, L.; Benayahu, Y. Biocompatibility of a Marine Collagen-Based Scaffold In Vitro and In Vivo. Mar. Drugs 2020, 18, 420. [Google Scholar] [CrossRef]
- Kara, A.; Koçtürk, S.; Bilici, G.; Havitcioglu, H. Development of biological meniscus scaffold: Decellularization method and recellularization with meniscal cell population derived from mesenchymal stem cells. J. Biomater. Appl. 2021, 35, 1192–1207. [Google Scholar] [CrossRef]
- Chua, C.Y.X.; Viswanath, D.I.; Huston, D.P.; Grattoni, A. Engineering platforms for localized long-acting immune modulation. J. Allergy Clin. Immunol. 2024, 153, 572–575. [Google Scholar] [CrossRef]
- Yang, D.; Xiao, J.; Wang, B.; Li, L.; Kong, X.; Liao, J. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109927. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Gao, Y.Y.; Tang, X.N.; Zhang, J.J.; Wang, S.X. Construction of Artificial Ovaries with Decellularized Porcine Scaffold and Its Elicited Immune Response after Xenotransplantation in Mice. J. Funct. Biomater. 2022, 13, 165. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Z.; Zhao, L.; Chen, Z.; Lin, Z.; Li, B.; Feng, Z.; Jin, P.; Zhang, J.; Wu, Z.; et al. Customized Design 3D Printed PLGA/Calcium Sulfate Scaffold Enhances Mechanical and Biological Properties for Bone Regeneration. Front. Bioeng. Biotechnol. 2022, 10, 874931. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, X.; Xiong, M.; Liu, X.; Luo, S.; Luo, J.; Wang, Y. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering. Sci. Rep. 2024, 14, 3942. [Google Scholar] [CrossRef]
- Zhao, H.; Han, Y.; Pan, C.; Yang, D.; Wang, H.; Wang, T.; Zeng, X.; Su, P. Design and Mechanical Properties Verification of Gradient Voronoi Scaffold for Bone Tissue Engineering. Micromachines 2021, 12, 664. [Google Scholar] [CrossRef]
- Rojas-Murillo, J.A.; Simental-Mendia, M.A.; Moncada-Saucedo, N.K.; Delgado-Gonzalez, P.; Islas, J.F.; Roacho-Perez, J.A.; Garza-Trevino, E.N. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. Int. J. Mol. Sci. 2022, 23, 9879. [Google Scholar] [CrossRef]
- Gao, L.L.; Wei, Y.; Tan, Y.S.; Li, R.X.; Zhang, C.Q.; Gao, H. Irrigating degradation properties of silk fibroin-collagen type II composite cartilage scaffold in vitro and in vivo. Biomater. Adv. 2023, 149, 213389. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Pan, P.; Liu, X.; Zhang, W.; Hu, C.; Li, M. A high molecular weight silk fibroin scaffold that resists degradation and promotes cell proliferation. Biopolymers 2023, 114, e23554. [Google Scholar] [CrossRef]
- Mandal, S.; Viraj; Nandi, S.K.; Roy, M. Effects of multiscale porosity and pore interconnectivity on in vitro and in vivo degradation and biocompatibility of Fe-Mn-Cu scaffolds. J. Mater. Chem. B 2021, 9, 4340–4354. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Xu, L.; Wei, S.; Zhai, M. Radiation cross-linked collagen/dextran dermal scaffolds: Effects of dextran on cross-linking and degradation. J. Biomater. Sci. Polym. Ed. 2015, 26, 162–180. [Google Scholar] [CrossRef]
- Khodamoradi, M.; Eskandari, M.; Keshvari, H.; Zarei, R. An electro-conductive hybrid scaffold as an artificial Bruch’s membrane. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 126, 112180. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Kumar, S.; Choudhury, A.D.; Bisen, A.C.; Sanap, S.N.; Agrawal, S.; Mishra, A.; Verma, S.K.; Kumar, M.; Bhatta, R.S. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024, 115, e23578. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Liu, Y.; Zhang, C.J.; Zhang, C.; Zhu, P. Alginate/gelatin blended hydrogel fibers cross-linked by Ca(2+) and oxidized starch: Preparation and properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, M.; Iranbakhsh, A.; Baharara, J.; Ebadi, M.; Sotoodehnejadnematalahia, F. Evaluation of the Potential Effects of Retinol and Alginate/Gelatin-Based Scaffolds on Differentiation Capacity of Mouse Mesenchymal Stem Cells (MSCs) into Retinal Cells. Int. J. Stem Cells 2022, 15, 183–194. [Google Scholar] [CrossRef]
- Burhan, A.M.; Klahan, B.; Cummins, W.; Andrés-Guerrero, V.; Byrne, M.E.; O’Reilly, N.J.; Chauhan, A.; Fitzhenry, L.; Hughes, H. Posterior Segment Ophthalmic Drug Delivery: Role of Muco-Adhesion with a Special Focus on Chitosan. Pharmaceutics 2021, 13, 1685. [Google Scholar] [CrossRef]
- Zapata, M.E.V.; Tovar, C.D.G.; Hernandez, J.H.M. The Role of Chitosan and Graphene Oxide in Bioactive and Antibacterial Properties of Acrylic Bone Cements. Biomolecules 2020, 10, 1616. [Google Scholar] [CrossRef]
- Al-Absi, M.Y.; Caprifico, A.E.; Calabrese, G. Chitosan and Its Structural Modifications for siRNA Delivery. Adv. Pharm. Bull. 2023, 13, 275–282. [Google Scholar] [CrossRef]
- Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. “The Good, the Bad and the Ugly” of Chitosans. Mar. Drugs 2016, 14, 99. [Google Scholar] [CrossRef]
- Chen, H.; Fan, X.; Xia, J.; Chen, P.; Zhou, X.; Huang, J.; Yu, J.; Gu, P. Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering. Int. J. Nanomed. 2011, 6, 453–461. [Google Scholar] [CrossRef]
- Calejo, M.T.; Ilmarinen, T.; Jongprasitkul, H.; Skottman, H.; Kellomäki, M. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium. J. Biomed. Mater. Res. Part A 2016, 104, 1646–1656. [Google Scholar] [CrossRef]
- Majidnia, E.; Ahmadian, M.; Salehi, H.; Amirpour, N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Sci. Rep. 2022, 12, 6469. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.T.; Lee, C.J.; Bent, S.F.; Fishman, H.A.; Sabelman, E.E. Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials 2007, 28, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Geanaliu-Nicolae, R.E.; Andronescu, E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. Materials 2020, 13, 5641. [Google Scholar] [CrossRef] [PubMed]
- Abedin Zadeh, M.; Alany, R.G.; Satarian, L.; Shavandi, A.; Abdullah Almousa, M.; Brocchini, S.; Khoder, M. Maillard Reaction Crosslinked Alginate-Albumin Scaffolds for Enhanced Fenofibrate Delivery to the Retina: A Promising Strategy to Treat RPE-Related Dysfunction. Pharmaceutics 2023, 15, 1330. [Google Scholar] [CrossRef]
- Anwary, M.; Kumar, P.; du Toit, L.C.; Choonara, Y.E.; Pillay, V. Polymeric, injectable, intravitreal hydrogel devices for posterior segment applications and interventions. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1074–1081. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Y.; Tao, C.; Yang, W.; Chen, J.; Zhu, L.; Pan, T.; Narain, R.; Nan, K.; Chen, Y. Self-Healing Alginate Hydrogel Formed by Dynamic Benzoxaborolate Chemistry Protects Retinal Pigment Epithelium Cells against Oxidative Damage. Gels 2022, 9, 24. [Google Scholar] [CrossRef]
- Soroushzadeh, S.; Karamali, F.; Masaeli, E.; Atefi, A.; Nasr Esfahani, M.H. Scaffold free retinal pigment epithelium sheet engineering using modified alginate-RGD hydrogel. J. Biosci. Bioeng. 2022, 133, 579–586. [Google Scholar] [CrossRef]
- Shin, E.Y.; Park, J.H.; Shin, M.E.; Song, J.E.; Thangavelu, M.; Carlomagno, C.; Motta, A.; Migliaresi, C.; Khang, G. Injectable taurine-loaded alginate hydrogels for retinal pigment epithelium (RPE) regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109787. [Google Scholar] [CrossRef]
- Alshehri, F.A.; Alharbi, M.S. The Effect of Adjunctive Use of Hyaluronic Acid on Prevalence of Porphyromonas gingivalis in Subgingival Biofilm in Patients with Chronic Periodontitis: A Systematic Review. Pharmaceutics 2023, 15, 1883. [Google Scholar] [CrossRef]
- Aubry, S.; Collart-Dutilleul, P.Y.; Renaud, M.; Batifol, D.; Montal, S.; Pourreyron, L.; Carayon, D. Benefit of Hyaluronic Acid to Treat Facial Aging in Completely Edentulous Patients. J. Clin. Med. 2022, 11, 5874. [Google Scholar] [CrossRef]
- Kamatar, A.; Gunay, G.; Acar, H. Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. Polymers 2020, 12, 2506. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.; Choi, J.H.; Lee, S.; Lee, W.; Lee, S.W.; Kim, W.; Song, Y.; Tumursukh, N.E.; Song, J.E.; Khang, G. Fabrication and Evaluation of Gellan Gum/Hyaluronic Acid Hydrogel for Retinal Tissue Engineering Biomaterial and the Influence of Substrate Stress Relaxation on Retinal Pigment Epithelial Cells. Molecules 2022, 27, 5512. [Google Scholar] [CrossRef] [PubMed]
- Bolger, M.; Groynom, R.; Bogie, K.; Lavik, E. Reporter Scaffolds for Clinically Relevant Cell Transplantation Studies. Ann. Biomed. Eng. 2020, 48, 1982–1990. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.; Radwan, A.E.; Hafezi-Moghadam, A.; Malyala, P.; Amiji, M. Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration. J. Control. Release 2019, 296, 140–149. [Google Scholar] [CrossRef]
- Khristov, V.; Maminishkis, A.; Amaral, J.; Rising, A.; Bharti, K.; Miller, S. Validation of iPS Cell-Derived RPE Tissue in Animal Models. Adv. Exp. Med. Biol. 2018, 1074, 633–640. [Google Scholar] [CrossRef]
- McCormick, R.; Pearce, I.; Kaye, S.; Haneef, A. Optimisation of a Novel Bio-Substrate as a Treatment for Atrophic Age-Related Macular Degeneration. Front. Bioeng. Biotechnol. 2020, 8, 456. [Google Scholar] [CrossRef]
- Hua, Y.; Su, Y.; Zhang, H.; Liu, N.; Wang, Z.; Gao, X.; Gao, J.; Zheng, A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: A review. Drug Deliv. 2021, 28, 1342–1355. [Google Scholar] [CrossRef]
- Aragón-Navas, A.; López-Cano, J.J.; Johnson, M.; A, S.; Vicario-de-la-Torre, M.; Andrés-Guerrero, V.; Tai, H.; Wang, W.; Bravo-Osuna, I.; Herrero-Vanrell, R. Smart biodegradable hydrogels: Drug-delivery platforms for treatment of chronic ophthalmic diseases affecting the back of the eye. Int. J. Pharm. 2024, 649, 123653. [Google Scholar] [CrossRef]
- Belgio, B.; Boschetti, F.; Mantero, S. Towards an In Vitro Retinal Model to Study and Develop New Therapies for Age-Related Macular Degeneration. Bioengineering 2021, 8, 18. [Google Scholar] [CrossRef]
- Homaeigohar, S.; Boccaccini, A.R. Nature-Derived and Synthetic Additives to poly(ε-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front. Chem. 2021, 9, 809676. [Google Scholar] [CrossRef]
- Xiang, P.; Wu, K.C.; Zhu, Y.; Xiang, L.; Li, C.; Chen, D.L.; Chen, F.; Xu, G.; Wang, A.; Li, M.; et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 2014, 35, 9777–9788. [Google Scholar] [CrossRef] [PubMed]
- Faura, G.; Studenovska, H.; Sekac, D.; Ellederova, Z.; Petrovski, G.; Eide, L. The Effects of the Coating and Aging of Biodegradable Polylactic Acid Membranes on In Vitro Primary Human Retinal Pigment Epithelium Cells. Biomedicines 2024, 12, 966. [Google Scholar] [CrossRef] [PubMed]
- Farahani, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Tayebi, L.; Mostafavi, E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. J. Funct. Biomater. 2021, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.H.; Lebkowski, J.S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Chen, S.; Chan, C.; Palejwala, N.; Ingram, A.; Dang, W.; et al. One-Year Follow-Up in a Phase 1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lou, W.S.; Chen, J.C.; Weng, K.Y.; Shih, M.C.; Hung, Y.W.; Chen, Z.Y.; Wang, M.C. Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment. Micromachines 2020, 11, 1064. [Google Scholar] [CrossRef]
- Kashani, A.H.; Lebkowski, J.S.; Hinton, D.R.; Zhu, D.; Faynus, M.A.; Chen, S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Chan, C.; et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration. Stem Cell Rep. 2022, 17, 448–458. [Google Scholar] [CrossRef]
- Ortigoza-Diaz, J.; Scholten, K.; Larson, C.; Cobo, A.; Hudson, T.; Yoo, J.; Baldwin, A.; Weltman Hirschberg, A.; Meng, E. Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems. Micromachines 2018, 9, 422. [Google Scholar] [CrossRef]
- Koss, M.J.; Falabella, P.; Stefanini, F.R.; Pfister, M.; Thomas, B.B.; Kashani, A.H.; Brant, R.; Zhu, D.; Clegg, D.O.; Hinton, D.R.; et al. Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: A feasibility and safety study in Yucatán minipigs. Graefe’S Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Fur Klin. Und Exp. Ophthalmol. 2016, 254, 1553–1565. [Google Scholar] [CrossRef]
- Butenko, S.; Nagalla, R.R.; Guerrero-Juarez, C.F.; Palomba, F.; David, L.M.; Nguyen, R.Q.; Gay, D.; Almet, A.A.; Digman, M.A.; Nie, Q.; et al. Hydrogel crosslinking modulates macrophages, fibroblasts, and their communication, during wound healing. Nat. Commun. 2024, 15, 6820. [Google Scholar] [CrossRef]
- Ahmadi Soufivand, A.; Faber, J.; Hinrichsen, J.; Budday, S. Multilayer 3D bioprinting and complex mechanical properties of alginate-gelatin mesostructures. Sci. Rep. 2023, 13, 11253. [Google Scholar] [CrossRef]
- Wang, L.; Lv, H.; Liu, L.; Zhang, Q.; Nakielski, P.; Si, Y.; Cao, J.; Li, X.; Pierini, F.; Yu, J.; et al. Electrospun nanofiber-reinforced three-dimensional chitosan matrices: Architectural, mechanical and biological properties. J. Colloid Interface Sci. 2020, 565, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Byun, S.; Lee, C.; Park, S.H.; Rudra, D.; Iwakura, Y.; Lee, Y.J.; Im, S.H.; Hwang, D.S. Resolving the Mutually Exclusive Immune Responses of Chitosan with Nanomechanics and Immunological Assays. Adv. Healthc. Mater. 2022, 11, e2102667. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, T.D.; Desai, A.P.; Banerjee, S.; Agawu, A.; Stopek, J.B. An in situ forming collagen-PEG hydrogel for tissue regeneration. Acta Biomater. 2012, 8, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tang, Y.; Wei, L.; Yang, M.; Lu, Z.; Shi, F.; Zhan, F.; Li, Y.; Liao, W.; Lin, L.; et al. Alginate oligosaccharide modulates immune response, fat metabolism, and the gut bacterial community in grass carp (Ctenopharyngodon idellus). Fish Shellfish. Immunol. 2022, 130, 103–113. [Google Scholar] [CrossRef]
- Chircov, C.; Grumezescu, A.M.; Bejenaru, L.E. Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol. Rev. Roum. De Morphol. Et Embryol. 2018, 59, 71–76. [Google Scholar]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Łysik, D.; Deptuła, P.; Chmielewska, S.; Bucki, R.; Mystkowska, J. Degradation of Polylactide and Polycaprolactone as a Result of Biofilm Formation Assessed under Experimental Conditions Simulating the Oral Cavity Environment. Materials 2022, 15, 7061. [Google Scholar] [CrossRef]
- Smink, A.M.; Rodriquez, S.; Li, S.; Ceballos, B.; Corrales, N.; Alexander, M.; Koster, T.; de Haan, B.J.; Lakey, J.R.T.; de Vos, P. Successful Islet Transplantation Into a Subcutaneous Polycaprolactone Scaffold in Mice and Pigs. Transpl. Direct 2023, 9, e1417. [Google Scholar] [CrossRef]
- Caires, H.R.; Esteves, T.; Quelhas, P.; Barbosa, M.A.; Navarro, M.; Almeida, C.R. Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: A comprehensive study with different immune cells. J. R. Soc. Interface 2016, 13, 20160570. [Google Scholar] [CrossRef]
- Shalem, A.; Yehezkeli, O.; Fishman, A. Enzymatic degradation of polylactic acid (PLA). Appl. Microbiol. Biotechnol. 2024, 108, 413. [Google Scholar] [CrossRef]
- Ekinci, A.; Gleadall, A.; Johnson, A.A.; Li, L.; Han, X. Mechanical and hydrolytic properties of thin polylactic acid films by fused filament fabrication. J. Mech. Behav. Biomed. Mater. 2021, 114, 104217. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.; Street, M.G.; Sharma, R.; Takmakov, P.; Baker, B.; Rieth, L. Characterization of Parylene-C degradation mechanisms: In vitro reactive accelerated aging model compared to multiyear in vivo implantation. Biomaterials 2020, 232, 119731. [Google Scholar] [CrossRef] [PubMed]
- Amram, B.; Cohen-Tayar, Y.; David, A.; Ashery-Padan, R. The retinal pigmented epithelium—From basic developmental biology research to translational approaches. Int. J. Dev. Biol. 2017, 61, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Petrash, C.C.; Palestine, A.G.; Canto-Soler, M.V. Immunologic Rejection of Transplanted Retinal Pigmented Epithelium: Mechanisms and Strategies for Prevention. Front. Immunol. 2021, 12, 621007. [Google Scholar] [CrossRef]
- Kashani, A.H. Stem cell-derived retinal pigment epithelium transplantation in age-related macular degeneration: Recent advances and challenges. Curr. Opin. Ophthalmol. 2022, 33, 211–218. [Google Scholar] [CrossRef]
- Lv, Y.X.; Li, Q.Y.; Duan, P.; Zhang, M.F.; Liu, B.; Li, S.Y.; Zhao, T.T.; Wang, H.; Liu, Y.; Yin, Z.Q. Safe CNV removal is crucial for successful hESC-RPE transplantation in wet age-related macular degeneration. Stem Cell Rep. 2025, 20, 102424. [Google Scholar] [CrossRef]
- Vitillo, L.; Tovell, V.E.; Coffey, P. Treatment of Age-Related Macular Degeneration with Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Curr. Eye Res. 2020, 45, 361–371. [Google Scholar] [CrossRef]
- Alhasani, R.H.; Almarhoun, M.; Zhou, X.; Reilly, J.; Patterson, S.; Zeng, Z.; Shu, X. Tauroursodeoxycholic Acid Protects Retinal Pigment Epithelial Cells from Oxidative Injury and Endoplasmic Reticulum Stress In Vitro. Biomedicines 2020, 8, 367. [Google Scholar] [CrossRef]
- Sugita, S.; Mandai, M.; Kamao, H.; Takahashi, M. Immunological aspects of RPE cell transplantation. Prog. Retin. Eye Res. 2021, 84, 100950. [Google Scholar] [CrossRef]
- Sen, S.; de Guimaraes, T.A.C.; Filho, A.G.; Fabozzi, L.; Pearson, R.A.; Michaelides, M. Stem cell-based therapies for retinal diseases: Focus on clinical trials and future prospects. Ophthalmic Genet. 2024, 1–14. [Google Scholar] [CrossRef]
- Zhou, S.; Hum, J.; Taskintuna, K.; Olaya, S.; Steinman, J.; Ma, J.; Golestaneh, N. The Anti-Aging Hormone Klotho Promotes Retinal Pigment Epithelium Cell Viability and Metabolism by Activating the AMPK/PGC-1α Pathway. Antioxidants 2023, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, B.; Parsons, N.; Brandon, C.; Rohrer, B. The use of Matrigel combined with encapsulated cell technology to deliver a complement inhibitor in a mouse model of choroidal neovascularization. Mol. Vis. 2020, 26, 370–377. [Google Scholar] [PubMed]
- Pishavar, E.; Luo, H.; Bolander, J.; Atala, A.; Ramakrishna, S. Nanocarriers, Progenitor Cells, Combinational Approaches, and New Insights on the Retinal Therapy. Int. J. Mol. Sci. 2021, 22, 1776. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Rosenfeld, P.J.; Waheed, N.K.; Singh, R.P.; Ronca, N.; Slakter, J.S.; Staurenghi, G.; Monés, J.; Baumal, C.R.; Saroj, N.; et al. Characterizing New-Onset Exudation in the Randomized Phase 2 FILLY Trial of Complement Inhibitor Pegcetacoplan for Geographic Atrophy. Ophthalmology 2021, 128, 1325–1336. [Google Scholar] [CrossRef]
- Farjood, F.; Manos, J.D.; Wang, Y.; Williams, A.L.; Zhao, C.; Borden, S.; Alam, N.; Prusky, G.; Temple, S.; Stern, J.H.; et al. Identifying biomarkers of heterogeneity and transplantation efficacy in retinal pigment epithelial cells. J. Exp. Med. 2023, 220, e20230913. [Google Scholar] [CrossRef]
- Seah, I.; Liu, Z.; Soo Lin Wong, D.; Wong, W.; Holder, G.E.; Amutha Barathi, V.; Lingam, G.; Su, X.; Stanzel, B.V. Retinal Pigment Epithelium Transplantation in a Non-human Primate Model for Degenerative Retinal Diseases. J. Vis. Exp. JoVE 2021, e62638. [Google Scholar] [CrossRef]
- Neroeva, N.V.; Neroev, V.V.; Chesnokova, N.B.; Katargina, L.A.; Pavlenko, T.A.; Beznos, O.V.; Ilyukhin, P.A.; Utkina, O.A.; Lagarkova, M.A.; Laktionov, P.P.; et al. Changes of a2-macroglobulin activity and endothelin-1 concentration in tears of rabbits after transplantation of retinal pigment epithelium cells derived from the induced pluripotent stem cells. Biomeditsinskaia Khimiia 2022, 68, 352–360. [Google Scholar] [CrossRef]
- Sharma, R.; Khristov, V.; Rising, A.; Jha, B.S.; Dejene, R.; Hotaling, N.; Li, Y.; Stoddard, J.; Stankewicz, C.; Wan, Q.; et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019, 11, eaat5580. [Google Scholar] [CrossRef]
- Singh, R.K.; Occelli, L.M.; Binette, F.; Petersen-Jones, S.M.; Nasonkin, I.O. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev. 2019, 28, 1151–1166. [Google Scholar] [CrossRef]
- Andreazzoli, M.; Barravecchia, I.; De Cesari, C.; Angeloni, D.; Demontis, G.C. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021, 10, 2489. [Google Scholar] [CrossRef]
- Cheng, L.; Kuehn, M.H. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. Handb. Exp. Pharmacol. 2023, 281, 157–187. [Google Scholar] [CrossRef] [PubMed]
- Mandai, M. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review. Regen. Ther. 2023, 22, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.; Curcio, C.; Hicks, D.; Price, D.; Wong, F. Cell death in age-related macular degeneration. Mol. Vis. 1999, 5, 31. [Google Scholar] [PubMed]
- Cuevas, E.; Holder, D.L.; Alshehri, A.H.; Tréguier, J.; Lakowski, J.; Sowden, J.C. NRL(-/-) gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells 2021, 39, 414–428. [Google Scholar] [CrossRef]
- Matsuyama, T.; Tu, H.Y.; Sun, J.; Hashiguchi, T.; Akiba, R.; Sho, J.; Fujii, M.; Onishi, A.; Takahashi, M.; Mandai, M. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience 2021, 24, 102866. [Google Scholar] [CrossRef]
- Lin, B.; McLelland, B.T.; Aramant, R.B.; Thomas, B.B.; Nistor, G.; Keirstead, H.S.; Seiler, M.J. Retina Organoid Transplants Develop Photoreceptors and Improve Visual Function in RCS Rats with RPE Dysfunction. Investig. Ophthalmol. Vis. Sci. 2020, 61, 34. [Google Scholar] [CrossRef]
- Jackson, T.L.; Desai, R.; Wafa, H.A.; Wang, Y.; Peacock, J.; Peto, T.; Chakravarthy, U.; Dakin, H.; Wordsworth, S.; Lewis, C.; et al. Stereotactic radiotherapy for neovascular age-related macular degeneration (STAR): A pivotal, randomised, double-masked, sham-controlled device trial. Lancet 2024, 404, 44–54. [Google Scholar] [CrossRef]
- Liao, D.S.; Grossi, F.V.; El Mehdi, D.; Gerber, M.R.; Brown, D.M.; Heier, J.S.; Wykoff, C.C.; Singerman, L.J.; Abraham, P.; Grassmann, F.; et al. Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Phase 2 Trial. Ophthalmology 2020, 127, 186–195. [Google Scholar] [CrossRef]
Treatment | AMD Classification | |||||
---|---|---|---|---|---|---|
Dry AMD | Characteristics and Roles | Quote | Wet AMD | Characteristics and Roles | Quote | |
Antibody | Lampalizumab | A humanized monoclonal antibody targeting complement factor D to inhibit alternative pathway activation in GA | [28] | Ranibizumab | Humanized monoclonal antibody fragment (anti-VEGF-A) for intravitreal injection; inhibits choroidal neovascularization in wet AMD | [29] |
Eculizumab | Humanized monoclonal anti-C5 antibody inhibiting terminal complement activation | [30] | Bevacizumab | Humanized full-length anti-VEGF monoclonal antibody used off-label intravitreally for wet AMD | [31] | |
HtrA serine peptidase 1 antibody | Inhibits HtrA serine peptidase 1 activity to attenuate extracellular matrix degradation and oxidative stress in AMD | [32] | Aflibercept | VEGF receptor fusion protein; inhibits VEGF-A/B and PlGF for the treatment of wet AMD | [33] | |
C3 complement inhibitor Pegcetacoplan (APL-2) | C3 complement inhibitor targeting proximal complement cascade, reducing inflammation and cellular damage in GA | [34] | Faricimab | Bispecific monoclonal antibody targeting VEGF-A and Ang-2 to treat neovascular AMD | [35] | |
Brolucizumab | Humanized single-chain antibody fragment targeting VEGF-A for neovascular AMD | [36] | ||||
Gene | GT005 | AAV2-based gene therapy delivering complement factor I (CFI) to suppress alternative complement pathway overactivation in geographic atrophy AMD | [37] | HMR59 | AAV2 vector-based gene therapy upregulates CD59 expression on the RPE; prevents the complement cascade reaction suspected to cause macular neovascularisation | [38] |
AAVCAGsCD59 | AAV-mediated gene therapy expressing soluble CD59 to inhibit complement membrane attack complex (MAC) formation in geographic atrophy AMD | [39] | ABBV-RGX-314 | AAV8-based gene therapy encoding anti-VEGF Fab for neovascular AMD | [40] | |
Recombinant human complement factor (GEM103) | A purified CFH replacement therapy targeting complement overactivation in geographic atrophy AMD | [41] | ADVM-022 | AAV.7m8-mediated gene therapy encoding aflibercept for sustained VEGF suppression in neovascular AMD via single intravitreal injection | [42] | |
Cell | Human embryonic stem cell (hESC)-derived RPE | Pluripotent stem cell-derived RPE monolayers for AMD cell replacement therapy; restore retinal homeostasis via phagocytosis of photoreceptor outer segments and VEGF regulation | [43] | Coated synthetic basement membrane loaded with human ESC-derived RPE patches | Engineered Bruch’s membrane-mimetic scaffolds enhance RPE monolayer polarization and phagocytic function, improving subretinal integration in AMD models while mitigating inflammation via immunomodulatory surface coatings | [44] |
Human umbilical cord tissue-derived cells (palucorcel) | Isolated from umbilical cord tissue, exhibiting unique regenerative and immunomodulatory properties | [45] | PDMS membrane coated with laminin and liposomes loaded with dexamethasone | The PDMS membrane coated with laminin and dexamethasone-loaded liposomes integrates biomaterial engineering, extracellular matrix protein functionalization, and controlled drug delivery to achieve synergistic biological effects | [46] | |
Encapsulated Cell Technology (ECT) | ECT is an advanced therapeutic platform designed for sustained intraocular drug delivery; combines cell-based bioengineering and immunoisolation strategies to enable long-term, localized secretion of therapeutic agents, addressing the limitations of conventional intravitreal injections. | [47] | Human ESC-derived RPE | Human ESC-derived RPE represents a cutting-edge regenerative approach for wet AMD, aiming to restore retinal homeostasis by replacing dysfunctional RPE cells and modulating pathological angiogenesis. | [48] | |
Bone marrow-derived stem cells (BMSC) | BMSC-based therapy is a promising strategy for the treatment of dry AMD. By targeting early RPE dysfunction and blocking GA expansion, it may complement future interventions targeting photoreceptor cell regeneration, providing a comprehensive approach to this currently untreatable disease. | [49] |
Cell Type | Cell Species | Injection Volumes/Concentrations | Injection Methods | Vantage | Challenge | Quote |
---|---|---|---|---|---|---|
RPC | Mouse | 100,000 cells/µL; volume unknown | Injection into the subretinal space | Exhibits specific stem cell proliferation and differentiation properties; can differentiate into a variety of retinal cell types; lowers the risk of immune rejection and tumor development | Restricted proliferative potential; inefficient differentiation fidelity toward defined retinal neuronal lineages | [62,63,64] |
ESC | 150 µL of RPE cells suspension; three dose groups (1000 cells/µL, 14,000 cells/µL, 21,000 cells/µL) | Injection into the subretinal space (i.e., the anatomical interface between the atrophic photoreceptor-retinal pigment epithelium-choriocapillaris complex and the relatively preserved posterior pole retina) | Potential to differentiate into various types of cells | Ethical issues; risk of tumorigenesis; risk of immune rejection | [56,65] | |
iPSC | Human | 2 µL of RPE cells suspension at a concentration of 2.5 × 104 cells/µL in PBS | Injection into the subretinal space | Reprogrammed from adult somatic cells to avoid ethical issues; potential to differentiate into various types of cells | Tumorigenic risk; genetic or epigenetic abnormalities caused by reprogramming | [10] |
MSC | Human | 1 × 105 cells/eye; volume unknown | Injection into the subretinal space | Derived from adult tissues, simple and widely available, immunomodulatory, low tumourigenicity | Low survival rate due to microenvironmental effects at the site of injury; further work needed to determine the best source of donors | [66,67] |
Polymers | Tested Species | Cell Types | Vantage | Drawbacks | Quote |
---|---|---|---|---|---|
Gelatine | Mouse | MSC | Biocompatibility, biodegradability, non-toxicity, plasticity, adhesion | High moisture absorption and poor mechanical properties | [124,125,126,127] |
Chitosan | Mouse | RPC | Low cost, antimicrobial, low toxicity, biodegradable, biocompatible | Low solubility at physiological pH, easy interaction with other biological structures | [125,128,129,130,131,132] |
Collagen | Human | RPE | Biocompatibility, biomimetic, biodegradability, haemostasis | Poor mechanical properties, poor thermal properties, enzymatic degradation | [133,134,135,136] |
Alginate | Human | hESC-RPE | Easily extracted, abundantly available, biocompatible, biodegradable, nontoxic | High cost | [126,137,138,139,140] |
Hyaluronic Acid | Human | RPE | Antibacterial, antioxidant, biodegradable | Readily degradable, potentially variable elements | [125,141,142,143,144,145] |
Poly (lactic-co-glycolic acid) (PLGA) | Human | iPSC-RPE | Good mechanical properties, nontoxic, biodegradable, non-immunogenic, controlled drug release, biocompatible | / | [146,147,148,149,150,151] |
Polycaprolactone (PCL) | Human | ARPE-19; hRPE | Biocompatible, low cost, absorbable | Insufficient mechanical strength, low number of cellular recognition sites, poor bioactivity, hydrophobicity | [134,152,153,154] |
Polylactic Acid (PLA) | Human | Primary human retinal pigment epithelial cells | Biocompatibility, biodegradability, piezoelectricity | Poor mechanical properties, hydrophobicity, poor electrical conductivity | [155,156] |
Parylene-C | Human | hESC-RPE; Allogeneic RPE cells | Biocompatibility, mechanical flexibility, optical transparency, low inherent stresses | Low air permeability, low mechanical strength, limited thermal budget | [157,158,159,160,161] |
Polymers | Biocompatible | Mechanical Properties | Immunogenicity | Quote |
---|---|---|---|---|
Gelatine | Five days post-wounding, the lightly cross-linked gelatin hydrogel significantly promotes wound healing by 60–100% and exhibits good biocompatibility. | Maximum stress in compression: 1.62–4.69 kPa; maximum stress in tension: 1.05–4.23 kPa | Mildly cross-linked gelatin hydrogel promotes cell infiltration and tissue repair without causing an immune response. | [162,163] |
Chitosan | After 7 days of culture, the cell viability of hMSCs on the chitosan-containing matrix was approximately 90%, demonstrating good biocompatibility. | Elastic modulus: 2.6–12.4 kPa | 1 kDa chitosan: significant anti-inflammatory effect, able to attenuate the inflammatory response by inducing Tregs; thus, its molecular weight has an important influence on its immunomodulatory properties. | [164,165] |
Collagen | The number of L929 cells increased by a factor of 3.5–4 within 7 days, demonstrating good biocompatibility. | Elastic modulus: 1–20 kPa | Although collagen is biocompatible, xenogeneic collagen has potential for immune reactions. | [166] |
Alginate | The viability of ARPE-19 cells was significantly increased (p < 0.05), demonstrating good biocompatibility. | Elevated oxidant ratio and reduced viscosity | Downregulated inflammation and upregulated expression of anti-inflammatory cytokines | [137,167] |
Hyaluronic Acid | The expression of ARPE-19-specific proteins and genes was significantly increased (p < 0.05), demonstrating good biocompatibility. | Inherent mechanical properties are not strong but can be enhanced by chemical modification and cross-linking. | Does not cause an immune response | [145,168] |
Poly (lactic-co-glycolic acid) (PLGA) | Frequently utilized as drug delivery vehicles, it exhibits biocompatibility. | Elastic modulus: 15 ± 3–150 ± 38 MPa | FDA- and EMA-approved drug delivery system for parenteral administration that does not cause an immune response | [169] |
Polycaprolactone (PCL) | The viability of porcine islet cells was significantly increased (93.8% ± 2.7%, p < 0.05), demonstrating good biocompatibility. | Elastic modulus: 195–531 MPa | PCL scaffolds elicited a weaker immune response in animal models, as evidenced by less immune cell infiltration and a lower inflammatory response. | [170,171] |
Polylactic Acid (PLA) | The increased number of natural killer cells on the PLA scaffold indicates good biocompatibility. | Elastic modulus: 1.91 ± 0.09 GPa | After PLA implantation, there is a mild inflammatory response that gradually decreases as the PLA degrades. | [172,173,174] |
Parylene-C | L929 cells were co-cultured with eluates extracted from parylene-C-coated chips for 24 h, showing a cytotoxicity grade of 0. | Reduced tensile strength (not specified) | Bioinsulation assessment and hypersensitivity assessment showed that Parylene-C has good biocompatibility and insulating properties, with an overall favorable immune response. | [158,175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Hu, Z.; Gao, Z. Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds. Bioengineering 2025, 12, 278. https://doi.org/10.3390/bioengineering12030278
Li Z, Hu Z, Gao Z. Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds. Bioengineering. 2025; 12(3):278. https://doi.org/10.3390/bioengineering12030278
Chicago/Turabian StyleLi, Ziming, Zhiyong Hu, and Zhixian Gao. 2025. "Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds" Bioengineering 12, no. 3: 278. https://doi.org/10.3390/bioengineering12030278
APA StyleLi, Z., Hu, Z., & Gao, Z. (2025). Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds. Bioengineering, 12(3), 278. https://doi.org/10.3390/bioengineering12030278